Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Medicina (B Aires) ; 84(3): 555-559, 2024.
Article in Spanish | MEDLINE | ID: mdl-38907973

ABSTRACT

Cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) is a late onset neurodegenerative disorder. Its genetic basis has recently been identified in the gene encoding a subunit of the Replication Factor C (RFC1). We present the case of a 62-year-old woman who experienced a history of a biphasic presentation of imbalance and gait disorders, with rapid onset of symptoms followed by slow and progressive neurological deterioration. The diagnostic process was challenging, and numerous tests were conducted to rule out acquired and genetic causes of ataxia, leading to a diagnosis of late-onset idiopathic cerebellar ataxia. Subsequently, vestibular function tests identified severe bilateral vestibulopathy. This led to considering CANVAS among the diagnoses, which was ultimately confirmed through genetic testing (biallelic expansion of the pentanucleotide AAGGG in the RFC1 gene). This case highlights the importance of this new described genetic disease and its subacute presentation variant, emphasizing the relevance of objective vestibular function tests in idiopathic ataxias to achieve proper diagnosis and eventual genetic counseling for offspring.


El síndrome de ataxia cerebelosa, neuropatía y arreflexia vestibular (CANVAS) es un trastorno neurodegenerativo progresivo que se manifiesta en etapas tardías de la vida. Su base genética ha sido recientemente identificada en el gen que codifica la subunidad 1 del factor C de replicación (RFC1). Presentamos el caso de una mujer de 62 años con una historial de desequilibrio y deterioro de la marcha de presentación bifásica, con un inicio rápido de los síntomas seguido de un deterioro neurológico lento y progresivo. El proceso diagnóstico fue complejo y se realizaron numerosas pruebas para descartar causas adquiridas y genéticas de la ataxia, arribando al diagnóstico de ataxia cerebelosa de inicio tardío idiopática. Ulteriormente, las pruebas de función vestibular identificaron una grave vestibulopatía bilateral. Esto llevó a considerar el CANVAS entre los diagnósticos, que finalmente fue confirmado mediante pruebas genéticas (expansión bialélica del penta-nucleótido AAGGG en el gen RFC1). Este caso subraya la importancia de esta nueva enfermedad genética y su variante de presentación subaguda y enfatiza la relevancia de las pruebas objetivas de función vestibular en las ataxias consideradas idiopáticas para lograr un diagnóstico adecuado y un eventual asesoramiento genético a la descendencia.


Subject(s)
Cerebellar Ataxia , Humans , Female , Middle Aged , Cerebellar Ataxia/genetics , Cerebellar Ataxia/diagnosis , Bilateral Vestibulopathy/diagnosis , Bilateral Vestibulopathy/genetics , Bilateral Vestibulopathy/complications , Syndrome , Replication Protein C/genetics , Vestibular Function Tests
2.
J Neurol Sci ; 460: 122990, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38579416

ABSTRACT

Cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS) is a slowly progressing autosomal recessive ataxic disorder linked to an abnormal biallelic intronic (most commonly) AAGGG repeat expansion in the replication factor complex subunit 1 (RFC1). While the clinical diagnosis is relatively straightforward when the three components of the disorder are present, it becomes challenging when only one of the triad (cerebellar ataxia, neuropathy or vestibular areflexia) manifests. Isolated cases of Bilateral Vestibulopathy (BVP) or vestibular areflexia that later developed the other components of CANVAS have not been documented. We report four cases of patients with chronic imbalance and BVP that, after several years, developed cerebellar and neuropathic deficits with positive genetic testing for RFC1. Our report supports the concept that CANVAS should be considered in every patient with BVP of unknown etiology, even without the presence of the other triad components. This is especially important given that about 50% of cases in many BVP series are diagnosed as idiopathic, some of which may be undiagnosed CANVAS.


Subject(s)
Bilateral Vestibulopathy , Cerebellar Ataxia , Humans , Bilateral Vestibulopathy/diagnosis , Bilateral Vestibulopathy/genetics , Bilateral Vestibulopathy/complications , Male , Female , Adult , Cerebellar Ataxia/genetics , Cerebellar Ataxia/diagnosis , Middle Aged , Replication Protein C
3.
J Neurol ; 271(5): 2886-2892, 2024 May.
Article in English | MEDLINE | ID: mdl-38381176

ABSTRACT

OBJECTIVES: The cause of downbeat nystagmus (DBN) remains unknown in a substantial number of patients ("idiopathic"), although intronic GAA expansions in FGF14 have recently been shown to account for almost 50% of yet idiopathic cases. Here, we hypothesized that biallelic RFC1 expansions may also represent a recurrent cause of DBN syndrome. METHODS: We genotyped the RFC1 repeat and performed in-depth phenotyping in 203 patients with DBN, including 65 patients with idiopathic DBN, 102 patients carrying an FGF14 GAA expansion, and 36 patients with presumed secondary DBN. RESULTS: Biallelic RFC1 AAGGG expansions were identified in 15/65 patients with idiopathic DBN (23%). None of the 102 GAA-FGF14-positive patients, but 2/36 (6%) of patients with presumed secondary DBN carried biallelic RFC1 expansions. The DBN syndrome in RFC1-positive patients was characterized by additional cerebellar impairment in 100% (15/15), bilateral vestibulopathy (BVP) in 100% (15/15), and polyneuropathy in 80% (12/15) of cases. Compared to GAA-FGF14-positive and genetically unexplained patients, RFC1-positive patients had significantly more frequent neuropathic features on examination and BVP. Furthermore, vestibular function, as measured by the video head impulse test, was significantly more impaired in RFC1-positive patients. DISCUSSION: Biallelic RFC1 expansions are a common monogenic cause of DBN syndrome.


Subject(s)
Nystagmus, Pathologic , Phenotype , Replication Protein C , Humans , Replication Protein C/genetics , Male , Female , Middle Aged , Adult , Nystagmus, Pathologic/genetics , Aged , DNA Repeat Expansion/genetics , Fibroblast Growth Factors/genetics , Young Adult , Bilateral Vestibulopathy/genetics , Bilateral Vestibulopathy/physiopathology
4.
Am J Med Genet A ; 194(1): 103-106, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37747091

ABSTRACT

The well-known eye-of-the-tiger sign features bilateral and symmetrical changes in the globus pallidus, with a central area of high signal and peripheral low signal on T2-weighted MRI. Although formally considered pathognomonic of pantothenate kinase-associated neurodegeneration (PKAN), there are other neurodegenerative or genetic diseases showing similar findings. Cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS) is a late-onset ataxia, that was recently associated with biallelic AAGGG repeat expansion in the RFC1 gene. Although its predominant MRI finding is cerebellar atrophy, there may be other less common associated findings. Our aim is to present two cases of CANVAS with associated (pseudo-)eye-of-the-tiger sign, highlighting the possibility of yet another differential diagnosis for this imaging sign.


Subject(s)
Bilateral Vestibulopathy , Cerebellar Ataxia , Vestibular Diseases , Humans , Cerebellar Ataxia/diagnosis , Cerebellar Ataxia/genetics , Bilateral Vestibulopathy/diagnosis , Bilateral Vestibulopathy/genetics , Ataxia , Syndrome , Magnetic Resonance Imaging/methods
5.
J Neurol Neurosurg Psychiatry ; 95(2): 175-179, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37399286

ABSTRACT

BACKGROUND: Intronic GAA repeat expansions in the fibroblast growth factor 14 gene (FGF14) have recently been identified as a common cause of ataxia with potential phenotypic overlap with RFC1-related cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS). Our objective was to report on the frequency of intronic FGF14 GAA repeat expansions in patients with an unexplained CANVAS-like phenotype. METHODS: We recruited 45 patients negative for biallelic RFC1 repeat expansions with a combination of cerebellar ataxia plus peripheral neuropathy and/or bilateral vestibulopathy (BVP), and genotyped the FGF14 repeat locus. Phenotypic features of GAA-FGF14-positive versus GAA-FGF14-negative patients were compared. RESULTS: Frequency of FGF14 GAA repeat expansions was 38% (17/45) in the entire cohort, 38% (5/13) in the subgroup with cerebellar ataxia plus polyneuropathy, 43% (9/21) in the subgroup with cerebellar ataxia plus BVP and 27% (3/11) in patients with all three features. BVP was observed in 75% (12/16) of GAA-FGF14-positive patients. Polyneuropathy was at most mild and of mixed sensorimotor type in six of eight GAA-FGF14-positive patients. Family history of ataxia (59% vs 15%; p=0.007) was significantly more frequent and permanent cerebellar dysarthria (12% vs 54%; p=0.009) significantly less frequent in GAA-FGF14-positive than in GAA-FGF14-negative patients. Age at onset was inversely correlated to the size of the repeat expansion (Pearson's r, -0.67; R2=0.45; p=0.0031). CONCLUSIONS: GAA-FGF14-related disease is a common cause of cerebellar ataxia with polyneuropathy and/or BVP, and should be included in the differential diagnosis of RFC1 CANVAS and disease spectrum.


Subject(s)
Bilateral Vestibulopathy , Cerebellar Ataxia , Peripheral Nervous System Diseases , Polyneuropathies , Vestibular Diseases , Humans , Ataxia/genetics , Bilateral Vestibulopathy/genetics , Bilateral Vestibulopathy/diagnosis , Cerebellar Ataxia/genetics , Cerebellar Ataxia/diagnosis , Syndrome
6.
J Int Adv Otol ; 19(5): 383-387, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37789624

ABSTRACT

BACKGROUND: Cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) presents an unpredictable and uneven clinical development of cerebellar ataxia, neuropathy, and vestibular areflexia. The aim of this study is to report the variability of vestibular test results in genetically confirmed patients with cerebellar ataxia, neuropathy, and vestibular areflexia syndrome. METHODS: Caloric testing, video head impulse test (vHIT), and rotatory chair testing were performed in 7 patients who presented pathogenic repeat expansions in the replication factor complex unit 1 gene related to cerebellar ataxia, neuropathy, and vestibular areflexia syndrome. RESULTS: Reduced vestibulo-ocular reflex (VOR) gain was observed in 100% of the patients in rotatory chair testing. Three of them had bilateral areflexia in caloric testing while 2 showed unilateral hypofunction and 2 had no alterations in the test. Only 1 patient had bilateral abnormal vHIT with gains under 0.6 in both ears. CONCLUSION: Genetic testing allows an early diagnosis of cerebellar ataxia, neuropathy, and vestibular areflexia syndrome, whereby the vestibular system may be affected to different degrees. Rotatory chair testing has a higher sensitivity for the detection of vestibular hypofunction in these patients. Caloric testing can provide additional information. vHIT might underdiagnose patients with mild-to-moderate vestibulopathy.


Subject(s)
Bilateral Vestibulopathy , Cerebellar Ataxia , Peripheral Nervous System Diseases , Humans , Cerebellar Ataxia/diagnosis , Cerebellar Ataxia/genetics , Bilateral Vestibulopathy/diagnosis , Bilateral Vestibulopathy/genetics , Vestibular Function Tests , Reflex, Vestibulo-Ocular , Head Impulse Test
7.
Neurology ; 101(10): e1001-e1013, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37460231

ABSTRACT

BACKGROUND AND OBJECTIVES: Bilateral vestibulopathy (BVP) is a chronic debilitating neurologic disorder with no monogenic cause established so far despite familiar presentations. We hypothesized that replication factor complex subunit 1 (RFC1) repeat expansions might present a recurrent monogenic cause of BVP. METHODS: The study involved RFC1 screening and in-depth neurologic, vestibulo-oculomotor, and disease evolution phenotyping of 168 consecutive patients with idiopathic at least "probable BVP" from a tertiary referral center for balance disorders, with127 of them meeting current diagnostic criteria of BVP (Bárány Society Classification). RESULTS: Biallelic AAGGG repeat expansions in RFC1 were identified in 10/127 patients (8%) with BVP and 1/41 with probable BVP. Heterozygous expansions in 10/127 patients were enriched compared with those in reference populations. RFC1-related BVP manifested at a median age of 60 years (range 34-72 years) and co-occurred predominantly with mild polyneuropathy (10/11). Additional cerebellar involvement (7/11) was subtle and limited to oculomotor signs in early stages, below recognition of classic cerebellar ataxia, neuropathy, and vestibular areflexia syndrome. Clear dysarthria, appendicular ataxia, or cerebellar atrophy developed 6-8 years after onset. Dysarthria, absent patellar reflexes, and downbeat nystagmus best discriminated RFC1-positive BVP from RFC1-negative BVP, but neither sensory symptoms nor fine motor problems. Video head impulse gains of patients with RFC1-positive BVP were lower relative to those of patients with RFC1-negative BVP and decreased until 10 years disease duration, indicating a potential progression and outcome marker for RFC1-disease. DISCUSSION: This study identifies RFC1 as the first-and frequent-monogenic cause of BVP. It characterizes RFC1-related BVP as part of the multisystemic evolution of RFC1 spectrum disease, with implications for designing natural history studies and future treatment trials. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that RFC1 repeat expansions cause BVP.


Subject(s)
Bilateral Vestibulopathy , Cerebellar Ataxia , Vestibular Diseases , Humans , Ataxia , Bilateral Vestibulopathy/genetics , Bilateral Vestibulopathy/diagnosis , Cerebellar Ataxia/diagnosis , Dysarthria , Phenotype , Reflex, Abnormal , Vestibular Diseases/genetics
8.
Neurology ; 100(5): e543-e554, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36289003

ABSTRACT

BACKGROUND AND OBJECTIVE: Cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) is an autosomal recessive neurodegenerative disease characterized by adult-onset and slowly progressive sensory neuropathy, cerebellar dysfunction, and vestibular impairment. In most cases, the disease is caused by biallelic (AAGGG)n repeat expansions in the second intron of the replication factor complex subunit 1 (RFC1). However, a small number of cases with typical CANVAS do not carry the common biallelic repeat expansion. The objective of this study was to expand the genotypic spectrum of CANVAS by identifying sequence variants in RFC1-coding region associated with this condition. METHODS: Fifteen individuals diagnosed with CANVAS and carrying only 1 heterozygous (AAGGG)n expansion in RFC1 underwent whole-genome sequencing or whole-exome sequencing to test for the presence of a second variant in RFC1 or other unrelated gene. To assess the effect of truncating variants on RFC1 expression, we tested the level of RFC1 transcript and protein on patients' derived cell lines. RESULTS: We identified 7 patients from 5 unrelated families with clinically defined CANVAS carrying a heterozygous (AAGGG)n expansion together with a second truncating variant in trans in RFC1, which included the following: c.1267C>T (p.Arg423Ter), c.1739_1740del (p.Lys580SerfsTer9), c.2191del (p.Gly731GlufsTer6), and c.2876del (p.Pro959GlnfsTer24). Patient fibroblasts containing the c.1267C>T (p.Arg423Ter) or c.2876del (p.Pro959GlnfsTer24) variants demonstrated nonsense-mediated mRNA decay and reduced RFC1 transcript and protein. DISCUSSION: Our report expands the genotype spectrum of RFC1 disease. Full RFC1 sequencing is recommended in cases affected by typical CANVAS and carrying monoallelic (AAGGG)n expansions. In addition, it sheds further light on the pathogenesis of RFC1 CANVAS because it supports the existence of a loss-of-function mechanism underlying this complex neurodegenerative condition.


Subject(s)
Bilateral Vestibulopathy , Cerebellar Ataxia , Neurodegenerative Diseases , Peripheral Nervous System Diseases , Vestibular Diseases , Adult , Humans , Cerebellar Ataxia/genetics , Cerebellar Ataxia/diagnosis , Bilateral Vestibulopathy/genetics , Bilateral Vestibulopathy/diagnosis , Vestibular Diseases/genetics , Syndrome
9.
Clin Genet ; 103(2): 236-241, 2023 02.
Article in English | MEDLINE | ID: mdl-36250766

ABSTRACT

The biallelic pathogenic repeat (AAGGG)400-2000 intronic expansion in the RFC1 gene has been recently described as the cause of cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) and as a major cause of late-onset ataxia. Since then, many heterozygous carriers have been identified, with an estimated allele frequency of 0.7% to 4% in the healthy population. Here, we describe in two affected CANVAS sisters the presence of the nonsense c.724C > T p.(Arg242*) variant in compound heterozygosity with the pathogenic repeat expansion in the RFC1 gene. Further RNA analysis demonstrated a reduced expression of the p.Arg242* allele in patients confirming an efficient nonsense-mediated mRNA decay. We also highlight the importance of considering the sequencing of the RFC1 gene for the diagnosis, especially in patients with CANVAS diagnosis carriers of the AAGGG repeat expansion.


Subject(s)
Bilateral Vestibulopathy , Cerebellar Ataxia , Peripheral Nervous System Diseases , Replication Protein C , Vestibular Neuronitis , Humans , Ataxia/genetics , Bilateral Vestibulopathy/genetics , Cerebellar Ataxia/genetics , Cerebellar Ataxia/diagnosis , Peripheral Nervous System Diseases/diagnosis , Peripheral Nervous System Diseases/genetics , Syndrome , Vestibular Diseases/genetics , Vestibular Neuronitis/genetics , Replication Protein C/genetics
10.
Brain Nerve ; 74(11): 1247-1256, 2022 Nov.
Article in Japanese | MEDLINE | ID: mdl-36343928

ABSTRACT

Biallelic intronic repeat expansion in the RFC1 gene was reported as a cause of cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS). Its clinical features include late-onset cerebellar ataxia, sensory neuropathy (or neuronopathy), bilateral vestibular impairment, autonomic dysfunction, chronic cough, pyramidal sign, or parkinsonism. Repeat conformations heterogeneity is observed along with the possible phenotype-genotype correlation while its molecular pathogenesis remains uncovered.


Subject(s)
Autonomic Nervous System Diseases , Bilateral Vestibulopathy , Cerebellar Ataxia , Peripheral Nervous System Diseases , Humans , Bilateral Vestibulopathy/genetics , Bilateral Vestibulopathy/diagnosis , Cerebellar Ataxia/genetics , Cerebellar Ataxia/diagnosis , Syndrome
11.
Brain Behav ; 12(6): e32546, 2022 06.
Article in English | MEDLINE | ID: mdl-35502508

ABSTRACT

BACKGROUND: To investigate the association between disease duration and the severity of bilateral vestibulopathy in individuals with complete or incomplete CANVAS (Cerebellar Ataxia with Neuropathy and Vestibular Areflexia Syndrome) and biallelic RFC1 repeat expansions. METHODS: Retrospective analysis of clinical data and the vestibulo-ocular reflex quantified by the video head impulse test in 20 patients with confirmed biallelic RFC1 repeat expansions. RESULTS: Vestibulo-ocular reflex gain at first admittance 6.9 ± 5.0 years after disease onset was 0.16 [0.15-0.31] (median [interquartile range]). Cross-sectional analysis revealed that gain reduction was associated with disease duration. Follow-up measurements were available for ten individuals: eight of them exhibited a progressive decrease of the vestibulo-ocular reflex gain over time. At the first visit, six of all patients (30%) did not show clinical signs of cerebellar ataxia. CONCLUSIONS: Our data suggest a pathological horizontal head impulse test, which can easily be obtained in many outpatient clinics, as a sign of bilateral vestibulopathy in genetically confirmed CANVAS that can precede clinically accessible cerebellar ataxia at least in a subset of patients. The presumably continuous decline over time possibly reflects the neurodegenerative character of the disease. Thus, genetic testing for RFC1 mutations in (isolated) bilateral vestibulopathy might allow disease detection before the onset of cerebellar signs. Further studies including a wider spectrum of vestibular function tests are warranted in a prospective design.


Subject(s)
Bilateral Vestibulopathy , Cerebellar Ataxia , Bilateral Vestibulopathy/complications , Bilateral Vestibulopathy/diagnosis , Bilateral Vestibulopathy/genetics , Cross-Sectional Studies , Humans , Prospective Studies , Reflex, Vestibulo-Ocular , Retrospective Studies
12.
Brain ; 145(3): 1139-1150, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35355059

ABSTRACT

Cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) is a late-onset, slow-progressing multisystem neurodegenerative disorder. Biallelic AAGGG repeat expansion in RFC1 has been identified as causative of this disease, and repeat conformation heterogeneity (ACAGG repeat) was also recently implied. To molecularly characterize this disease in Japanese patients with adult-onset ataxia, we accumulated and screened 212 candidate families by an integrated approach consisting of flanking PCR, repeat-primed PCR, Southern blotting and long-read sequencing using Sequel II, GridION or PromethION. We identified 16 patients from 11 families, of whom seven had ACAGG expansions [(ACAGG)exp/(ACAGG)exp] (ACAGG homozygotes), two had ACAGG and AAGGG expansions [(ACAGG)exp/(AAGGG)exp] (ACAGG/AAGGG compound heterozygotes) and seven had AAGGG expansions [(AAGGG)exp/(AAGGG)exp] (AAGGG homozygotes). The overall detection rate was 5.2% (11/212 families including one family having two expansion genotypes). Long-read sequencers revealed the entire sequence of both AAGGG and ACAGG repeat expansions at the nucleotide level of resolution. Clinical assessment and neuropathology results suggested that patients with ACAGG expansions have similar clinical features to previously reported patients with homozygous AAGGG expansions, although motor neuron involvement was more notable in patients with ACAGG expansions (even if one allele was involved). Furthermore, a later age of onset and slower clinical progression were implied in patients with ACAGG/AAGGG compound heterozygous expansions compared with either ACAGG or AAGGG homozygotes in our very limited cohort. Our study clearly shows the occurrence of repeat conformation heterogeneity, with possible different impacts on the affected nervous systems. The difference in disease onset and progression between compound heterozygotes and homozygotes might also be suspected but with very limited certainty due to the small sample number of cases in our study. Studies of additional patients are needed to confirm this.


Subject(s)
Bilateral Vestibulopathy , Cerebellar Ataxia , Peripheral Nervous System Diseases , Vestibular Diseases , Vestibular Neuronitis , Adult , Ataxia , Bilateral Vestibulopathy/diagnosis , Bilateral Vestibulopathy/genetics , Cerebellar Ataxia/diagnosis , Cerebellar Ataxia/genetics , Humans , Reflex, Abnormal , Replication Protein C/genetics , Syndrome , Vestibular Diseases/genetics
14.
Otolaryngol Head Neck Surg ; 166(1): 74-79, 2022 01.
Article in English | MEDLINE | ID: mdl-33940977

ABSTRACT

OBJECTIVE: The biallelic inheritance of an expanded intronic pentamer (AAGGG)exp in the gene encoding replication factor C subunit 1 (RFC1) has been found to be a cause of cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS). This study describes clinical and genetic features of our patients with clinical suspicion of the syndrome. STUDY DESIGN: A retrospective descriptive study from an ataxia database comprising 500 patients. SETTING: The study was performed at the Otorhinolaryngology Department of a hospital in the north of Spain. METHODS: Specific genetic testing for CANVAS was performed in 13 patients with clinical suspicion of complete or incomplete syndrome. The clinical diagnosis was supported by quantitative vestibular hypofunction, cerebellar atrophy, and abnormal sensory nerve conduction testing. RESULTS: Nine of 13 (69%) patients met clinical diagnostic criteria for definite CANVAS disease. The first manifestation of the syndrome was lower limb dysesthesia in 8 of 13 patients and gait imbalance in 5 of 13. Eleven of 13 (85%) patients were carriers of the biallelic (AAGGG)exp in RFC1. CONCLUSION: A genetic cause of CANVAS has recently been discovered. We propose genetic screening for biallelic expansions of the AAGGG pentamer of RFC1 in all patients with clinical suspicion of CANVAS, since accurate early diagnosis could improve the quality of life of these patients.


Subject(s)
Bilateral Vestibulopathy/diagnosis , Bilateral Vestibulopathy/genetics , Cerebellar Ataxia/diagnosis , Cerebellar Ataxia/genetics , DNA Repeat Expansion/genetics , Replication Protein C/genetics , Aged , Databases, Factual , Diagnosis, Differential , Female , Genetic Testing , Humans , Introns/genetics , Male , Middle Aged , Retrospective Studies , Spain , Symptom Assessment , Syndrome
15.
Acta Neurol Belg ; 122(4): 939-945, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34101140

ABSTRACT

Cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) is a late-onset, slowly progressive disorder characterized by cerebellar ataxia, sensory neuropathy and bilateral vestibulopathy. Recently, a biallelic intronic AAGGG repeat expansion, (AAGGG)exp, in the Replication Factor C1 (RFC1) gene was identified as the cause of this disorder. In this study, we describe the phenotypic features of five patients from five different families diagnosed as CANVAS. The mean age at onset was 49.00 ± 9.05 years (between 34 and 56 years) and the most frequent presenting symptom in CANVAS was gait ataxia, followed by sensory disturbances. Persistent coughing was prominent in three patients, and it preceded the onset of ataxia and sensory symptoms in two patients. Parental consanguinity was present in three patients. Two patients showed symptoms or signs suggesting autonomic involvement. Sural nerve biopsy revealed axonal neuropathy in two patients. The mean age at onset was 49.00 ± 9.05 years (between 34 and 56 years) and the most frequent presenting symptom in CANVAS was gait ataxia, followed by sensory disturbances. Persistent coughing was prominent in three patients, and it preceded the onset of ataxia and sensory symptoms in two patients. Parental consanguinity was present in three patients. Two patients showed symptoms or signs suggesting autonomic involvement. Sural nerve biopsy revealed axonal neuropathy in two patients. Our study describes clinical findings, histopathological features and diagnostic clues of CANVAS from Turkey, a country with a high consanguineous marriage rate. Repeat expansion in the RFC1 gene should be considered in all cases with late-onset ataxia, especially when sensory disturbances, vestibular involvement and persistent coughing coexist.


Subject(s)
Bilateral Vestibulopathy , Cerebellar Ataxia , Peripheral Nervous System Diseases , Vestibular Diseases , Adult , Ataxia/complications , Bilateral Vestibulopathy/complications , Bilateral Vestibulopathy/diagnosis , Bilateral Vestibulopathy/genetics , Cerebellar Ataxia/complications , Cerebellar Ataxia/genetics , Gait Ataxia , Humans , Middle Aged , Peripheral Nervous System Diseases/complications , Sensation Disorders/complications , Syndrome , Vestibular Diseases/etiology
16.
Clin Genet ; 100(1): 90-94, 2021 07.
Article in English | MEDLINE | ID: mdl-33745133

ABSTRACT

Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) has been recently linked to biallelic expansions of a pentanucleotide repeat in the replication factor C subunit 1 (RFC1) gene. Herein, we sought to investigate the presence of pathological RFC1 expansions in selected Greek patients with late-onset ataxia and delineate the phenotypic spectrum of genetically confirmed CANVAS in the Greek population. We screened genetically a total of 77 selected index patients, 67 originating from a cerebellar ataxia cohort and 10 from a hereditary neuropathy cohort. We identified five index cases (6.5%) with biallelic pathological RFC1 expansions, two in the cerebellar ataxia cohort (3%) and three in the neuropathy cohort (30%). Overall, four out of five of cases with full-blown CANVAS and one case with sensory ataxic neuropathy had biallelic pathological expansions. The phenotypic spectrum of positive cases (including two affected siblings) was consistent with previous reports and implied that the sensory neuropathy may be the earliest feature in genetically confirmed CANVAS. Screening for biallelic RFC1 expansions is recommended in all cases with late-onset ataxia of unknown cause, particularly when a sensory neuropathy is present.


Subject(s)
Cerebellar Ataxia/genetics , DNA Repeat Expansion/genetics , Microsatellite Repeats/genetics , Replication Protein C/genetics , Adult , Aged , Aged, 80 and over , Bilateral Vestibulopathy/genetics , Cohort Studies , Female , Greece , Humans , Male , Middle Aged , Vestibular Diseases/genetics
17.
Brain ; 143(10): 2904-2910, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33103729

ABSTRACT

Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) is a progressive late-onset, neurological disease. Recently, a pentanucleotide expansion in intron 2 of RFC1 was identified as the genetic cause of CANVAS. We screened an Asian-Pacific cohort for CANVAS and identified a novel RFC1 repeat expansion motif, (ACAGG)exp, in three affected individuals. This motif was associated with additional clinical features including fasciculations and elevated serum creatine kinase. These features have not previously been described in individuals with genetically-confirmed CANVAS. Haplotype analysis showed our patients shared the same core haplotype as previously published, supporting the possibility of a single origin of the RFC1 disease allele. We analysed data from >26 000 genetically diverse individuals in gnomAD to show enrichment of (ACAGG) in non-European populations.


Subject(s)
Asian People/genetics , Bilateral Vestibulopathy/genetics , Cerebellar Ataxia/genetics , DNA Repeat Expansion/genetics , Replication Protein C/genetics , Aged , Bilateral Vestibulopathy/complications , Bilateral Vestibulopathy/diagnosis , Cerebellar Ataxia/complications , Cerebellar Ataxia/diagnosis , Cohort Studies , Female , Humans , Indonesia , Male , Middle Aged , Pedigree
20.
Brain ; 143(9): 2673-2680, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32851396

ABSTRACT

Cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (CANVAS) is a recently recognized neurodegenerative disease with onset in mid- to late adulthood. The genetic basis for a large proportion of Caucasian patients was recently shown to be the biallelic expansion of a pentanucleotide (AAGGG)n repeat in RFC1. Here, we describe the first instance of CANVAS genetic testing in New Zealand Maori and Cook Island Maori individuals. We show a novel, possibly population-specific CANVAS configuration (AAAGG)10-25(AAGGG)exp, which was the cause of CANVAS in all patients. There were no apparent phenotypic differences compared with European CANVAS patients. Presence of a common disease haplotype among this cohort suggests this novel repeat expansion configuration is a founder effect in this population, which may indicate that CANVAS will be especially prevalent in this group. Haplotype dating estimated the most recent common ancestor at ∼1430 ce. We also show the same core haplotype as previously described, supporting a single origin of the CANVAS mutation.


Subject(s)
Alleles , Bilateral Vestibulopathy/genetics , Cerebellar Ataxia/genetics , Founder Effect , Native Hawaiian or Other Pacific Islander/genetics , Replication Protein C/genetics , Adult , Aged , Bilateral Vestibulopathy/diagnosis , Bilateral Vestibulopathy/ethnology , Cerebellar Ataxia/diagnosis , Cerebellar Ataxia/ethnology , Cohort Studies , Female , Humans , Male , Middle Aged , Native Hawaiian or Other Pacific Islander/ethnology , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...