Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 441
Filter
1.
Sci Rep ; 14(1): 15794, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982208

ABSTRACT

Iodine is an essential trace element in the human diet because it is involved in the synthesis of thyroid hormones. Iodine deficiency affects over 2.2 billion people worldwide, making it a significant challenge to find plant-based sources of iodine that meet the recommended daily intake of this trace element. In this study, cabbage plants were cultivated in a hydroponic system containing iodine at concentrations ranging from 0.01 to 1.0 mg/L in the form of potassium iodide or potassium iodate. During the experiments, plant physiological parameters, biomass production, and concentration changes of iodine and selected microelements in different plant parts were investigated. In addition, the oxidation state of the accumulated iodine in root samples was determined. Results showed that iodine addition had no effect on photosynthetic efficiency and chlorophyll content. Iodide treatment did not considerably stimulate biomass production but iodate treatment increased it at concentrations less than 0.5 mg/L. Increasing iodine concentrations in the nutrient solutions increased iodine content in all plant parts; however, the iodide treatment was 2-7 times more efficient than the iodate treatment. It was concluded, that iodide addition was more favourable on the target element accumulation, however, it should be highlighted that application of this chemical form in nutrient solution decreased the concetrations of selected micoelement concentration comparing with the control plants. It was established that iodate was reduced to iodide during its uptake in cabbage roots, which means that independently from the oxidation number of iodine (+ 5, - 1) applied in the nutrient solutions, the reduced form of target element was transported to the aerial and edible tissues.


Subject(s)
Biofortification , Brassica , Hydroponics , Iodates , Iodine , Iodine/metabolism , Iodine/analysis , Brassica/metabolism , Brassica/growth & development , Brassica/drug effects , Iodates/metabolism , Biomass , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/drug effects , Photosynthesis/drug effects , Potassium Iodide/pharmacology , Potassium Compounds/pharmacology , Potassium Compounds/metabolism , Chlorophyll/metabolism
2.
BMC Plant Biol ; 24(1): 668, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39004715

ABSTRACT

BACKGROUND: Biofortification represents a promising and sustainable strategy for mitigating global nutrient deficiencies. However, its successful implementation poses significant challenges. Among staple crops, wheat emerges as a prime candidate to address these nutritional gaps. Wheat biofortification offers a robust approach to enhance wheat cultivars by elevating the micronutrient levels in grains, addressing one of the most crucial global concerns in the present era. MAIN TEXT: Biofortification is a promising, but complex avenue, with numerous limitations and challenges to face. Notably, micronutrients such as iron (Fe), zinc (Zn), selenium (Se), and copper (Cu) can significantly impact human health. Improving Fe, Zn, Se, and Cu contents in wheat could be therefore relevant to combat malnutrition. In this review, particular emphasis has been placed on understanding the extent of genetic variability of micronutrients in diverse Triticum species, along with their associated mechanisms of uptake, translocation, accumulation and different classical to advanced approaches for wheat biofortification. CONCLUSIONS: By delving into micronutrient variability in Triticum species and their associated mechanisms, this review underscores the potential for targeted wheat biofortification. By integrating various approaches, from conventional breeding to modern biotechnological interventions, the path is paved towards enhancing the nutritional value of this vital crop, promising a brighter and healthier future for global food security and human well-being.


Subject(s)
Biofortification , Malnutrition , Micronutrients , Triticum , Triticum/metabolism , Triticum/genetics , Micronutrients/metabolism , Malnutrition/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Zinc/metabolism , Nutritive Value
3.
Food Chem ; 455: 139740, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38843715

ABSTRACT

Monascus species are functional fermentation fungi with great potential for selenium (Se) supplementation. This study investigated the effects of Se bio-fortification on the growth, morphology, and biosynthesis of Monascus ruber M7. The results demonstrated a significant increase in the yield of orange and red Monascus pigments (MPs) in red yeast rice (RYR) by 38.52% and 36.57%, respectively, under 20 µg/mL of selenite pressure. Meanwhile, the production of citrinin (CIT), a mycotoxin, decreased from 244.47 µg/g to 175.01 µg/g. Transcriptome analysis revealed significant upregulation of twelve genes involved in MPs biosynthesis, specifically MpigE, MpigF, and MpigN, and downregulation of four genes (mrr3, mrr4, mrr7, and mrr8) associated with CIT biosynthesis. Additionally, three genes encoding cysteine synthase cysK (Log2FC = 1.6), methionine synthase metH (Log2FC = 2.2), and methionyl-tRNA synthetase metG (Log2FC = 1.8) in selenocompound metabolism showed significantly upregulated. These findings provide insights into Se biotransformation and metabolism in filamentous fungi.


Subject(s)
Biofortification , Citrinin , Monascus , Selenious Acid , Selenium , Monascus/metabolism , Monascus/genetics , Monascus/growth & development , Selenium/metabolism , Selenious Acid/metabolism , Citrinin/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Pigments, Biological/metabolism , Fermentation , Biological Products
4.
Nutrients ; 16(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38794719

ABSTRACT

With a burgeoning global population, meeting the demand for increased food production presents challenges, particularly concerning mineral deficiencies in diets. Micronutrient shortages like iron, iodine, zinc, selenium, and magnesium carry severe health implications, especially in developing nations. Biofortification of plants and plant products emerges as a promising remedy to enhance micronutrient levels in food. Utilizing agronomic biofortification, conventional plant breeding, and genetic engineering yields raw materials with heightened micronutrient contents and improved bioavailability. A similar strategy extends to animal-derived foods by fortifying eggs, meat, and dairy products with micronutrients. Employing "dual" biofortification, utilizing previously enriched plant materials as a micronutrient source for livestock, proves an innovative solution. Amid biofortification research, conducting in vitro and in vivo experiments is essential to assess the bioactivity of micronutrients from enriched materials, emphasizing digestibility, bioavailability, and safety. Mineral deficiencies in human diets present a significant health challenge. Biofortification of plants and animal products emerges as a promising approach to alleviate micronutrient deficiencies, necessitating further research into the utilization of biofortified raw materials in the human diet, with a focus on bioavailability, digestibility, and safety.


Subject(s)
Biofortification , Food, Fortified , Micronutrients , Humans , Animals , Micronutrients/deficiency , Micronutrients/analysis , Biological Availability , Animal Feed/analysis , Trace Elements/deficiency , Trace Elements/analysis , Deficiency Diseases/prevention & control
5.
Sci Rep ; 14(1): 12368, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811671

ABSTRACT

Iron, a crucial micronutrient, is an integral element of biotic vitality. The scarcity of iron in the soil creates agronomic challenges and has a detrimental impact on crop vigour and chlorophyll formation. Utilizing iron oxide nanoparticles (IONPs) via nanopriming emerges as an innovative method to enhance agricultural efficiency and crop health. The objective of this study was to synthesize biogenic IONPs from Glycyrrhiza glabra (G. glabra) plant extract using green chemistry and to evaluate their nanopriming effects on rice seed iron levels and growth. The synthesized IONPs were analyzed using UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM), Transmission electron microscopy (TEM), and Energy-dispersive X-ray (EDX) techniques. The UV-Vis peak at 280 nm revealed the formation of IONPs. SEM and TEM showed that the nanoparticles were spherical and had an average diameter of 23.8 nm. Nanopriming resulted in a substantial enhancement in growth, as seen by a 9.25% and 22.8% increase in shoot lengths for the 50 ppm and 100 ppm treatments, respectively. The yield metrics showed a positive correlation with the concentrations of IONPs. The 1000-grain weight and spike length observed a maximum increase of 193.75% and 97.73%, respectively, at the highest concentration of IONPs. The study indicates that G. glabra synthesized IONPs as a nanopriming agent significantly increased rice seeds' growth and iron content. This suggests that there is a relationship between the dosage of IONPs and their potential for improving agricultural biofortification.


Subject(s)
Biofortification , Glycyrrhiza , Oryza , Seeds , Oryza/growth & development , Oryza/metabolism , Seeds/growth & development , Seeds/metabolism , Seeds/chemistry , Glycyrrhiza/chemistry , Glycyrrhiza/growth & development , Glycyrrhiza/metabolism , Plant Extracts/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Green Chemistry Technology/methods , Iron/metabolism , Iron/chemistry , Ferric Compounds/chemistry , Spectroscopy, Fourier Transform Infrared
6.
Plant Physiol Biochem ; 212: 108772, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38801788

ABSTRACT

The agricultural industry is rapidly accepting daily changes and updates, and expanding to meet the basic demands of humanity. The main objective of modern agricultural practices is high profits with minimal investment, without upsetting any other form of life or abiotic factors. According to this principle, nanofertilizers are recommended for use in agriculture and are classified in different ways based on their nutritive value, functional role in the environment, chemical composition, and form of application to ensure their persistent availability in the required quantities. These nanofertilizers meet the global crop nutrient requirement of 191.8 million metric tons along with multitudes of added value, and which are highly endorsed in the agricultural field compared to other chemical fertilizers, or their usage can be reduced to less than 50% by the use of nanofertilizers. In this review, we discuss different types of nanofertilizers, their effects on crop yield, stress tolerance, and their impact on the environment. Furthermore, the different types of nanofertilizer delivery, modes of action, and toxic impacts of nanofertilizers have been discussed. Although a large number of commercially successful effects of nanofertilizers have been demonstrated, the effects of biomagnification and cellular transformation are still disputed. The effect of the biomagnification of nanofertilizers remains unclear. A suitable strategy must be developed to easily recycle nanofertilizers. It is the need of the hour to accept the use of nanofertilizers in parallel to addressing this issue.


Subject(s)
Agriculture , Biofortification , Crops, Agricultural , Fertilizers , Crops, Agricultural/metabolism , Crops, Agricultural/growth & development , Biofortification/methods , Agriculture/methods , Nutrients/metabolism
7.
Sci Total Environ ; 927: 172204, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38580128

ABSTRACT

Agriculture stands as a thriving enterprise in India, serving as both the bedrock of economy and vital source of nutrition. In response to the escalating demands for high-quality food for swiftly expanding population, agricultural endeavors are extending their reach into the elevated terrains of the Himalayas, tapping into abundant resources for bolstering food production. Nonetheless, these Himalayan agro-ecosystems encounter persistent challenges, leading to crop losses. These challenges stem from a combination of factors including prevailing frigid temperatures, suboptimal farming practices, unpredictable climatic shifts, subdivided land ownership, and limited resources. While the utilization of chemical fertilizers has been embraced to enhance the quality of food output, genuine concerns have arisen due to the potential hazards they pose. Consequently, the present investigation was initiated with the objective of formulating environmentally friendly and cold-tolerant broad ranged bioinoculants tailored to enhance the production of Kidney bean while concurrently enriching its nutrient content across entire hilly regions. The outcomes of this study unveiled noteworthy advancements in kidney bean yield, registering a substantial increase ranging from 12.51 ± 2.39 % to 14.15 ± 0.83 % in regions of lower elevation (Jeolikote) and an even more remarkable surge ranging from 20.60 ± 3.03 % to 29.97 ± 5.02 % in higher elevated areas (Chakrata) compared to the control group. Furthermore, these cold-tolerant bioinoculants exhibited a dual advantage by fostering the enhancement of essential nutrients within the grains and fostering a positive influence on the diversity and abundance of microbial life in the rhizosphere. As a result, to effectively tackle the issues associated with chemical fertilizers and to achieve sustainable improvements in both the yield and nutrient composition of kidney bean across varying elevations, the adoption of cold-tolerant Enterobacter hormaechei CHM16, and Pantoea agglomerans HRM 23, including the consortium, presents a promising avenue. Additionally, this study has contributed significant insights-into the role of organic acids like oxalic acid in the solubilization of nutrients, thereby expanding the existing knowledge in this specialized field.


Subject(s)
Biofortification , Cold Temperature , Rhizosphere , India , Phaseolus/physiology , Agriculture/methods , Altitude , Soil Microbiology , Crops, Agricultural
8.
J Nutr ; 154(6): 1815-1826, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599385

ABSTRACT

BACKGROUND: Evidence of the effectiveness of biofortified maize with higher provitamin A (PVA) to address vitamin A deficiency in rural Africa remains scant. OBJECTIVES: This study projects the impact of adopting PVA maize for a diversity of households in an area typical of rural Zimbabwe and models the cost and composition of diets adequate in vitamin A. METHODS: Household-level weighed food records were generated from 30 rural households during a week in April and November 2021. Weekly household intakes were calculated, as well as indicative costs of diets using data from market surveys. The impact of PVA maize adoption was modeled assuming all maize products contained observed vitamin A concentrations. The composition and cost of the least expensive indicative diets adequate in vitamin A were calculated using linear programming. RESULTS: Very few households would reach adequate intake of vitamin A with the consumption of PVA maize. However, from a current situation of 33%, 50%-70% of households were projected to reach ≥50% of their requirements (the target of PVA), even with the modest vitamin A concentrations achieved on-farm (mean of 28.3 µg RAE per 100 g). This proportion would increase if higher concentrations recorded on-station were achieved. The estimated daily costs of current diets (mean ± standard deviation) were USD 1.43 ± 0.59 in the wet season and USD 0.96 ± 0.40 in the dry season. By comparison, optimization models suggest that diets adequate in vitamin A could be achieved at daily costs of USD 0.97 and USD 0.79 in the wet and dry seasons, respectively. CONCLUSIONS: The adoption of PVA maize would bring a substantial improvement in vitamin A intake in rural Zimbabwe but should be combined with other interventions (e.g., diet diversification) to fully address vitamin A deficiency.


Subject(s)
Biofortification , Diet , Rural Population , Vitamin A , Zea mays , Zea mays/chemistry , Zimbabwe , Vitamin A/administration & dosage , Humans , Vitamin A Deficiency/prevention & control , Vitamin A Deficiency/diet therapy , Provitamins , Food, Fortified , Nutritional Status , Female , Male
9.
Curr Opin Biotechnol ; 87: 103132, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38669731

ABSTRACT

In the post-Green Revolution era, disparities in dietary access, rising obesity rates, demographic shifts, adoption of plant-based diets, and the impact of climate change collectively contribute to a progressive decline in dietary nutritional value, exacerbating B vitamin deficiencies across both low- and high-income countries. While the prevailing focus of biofortification has been on three micronutrients - provitamin A, iron, and zinc - utilizing conventional breeding, it is imperative to diversify biofortification strategies to combat micronutrient malnutrition. Metabolic engineering, facilitated by biotechnological tools, presents a promising avenue, contingent upon advances in fundamental knowledge, technological innovation, regulatory updates, and sustained public funding. Recognizing the intricate metabolic interplay of B vitamins in plants and humans, a comprehensive 'from metabolism to metabolism' approach is crucial for designing effective biofortification strategies that target multiple vitamins. This holistic perspective also extends beyond individual crops to encompass the entire food chain, a complex socioeconomic ecosystem that necessitates a paradigm shift, prioritizing quality over quantity.


Subject(s)
Biofortification , Biofortification/methods , Humans , Vitamin B Complex/metabolism , Metabolic Engineering/methods , Vitamin B Deficiency/metabolism
10.
Food Funct ; 15(7): 3433-3445, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38436090

ABSTRACT

Bananas (Musa spp.) are a target crop for provitamin A carotenoids (pVACs) biofortification programs aiming at reducing the negative impact on health caused by vitamin A deficiency in vulnerable populations. However, studies to understand the effect of ripening methods and stages and the genotype on carotenoid content and bioaccessibility in the banana germplasm are scarce. This study evaluated carotenoid content and bioaccessibility in 27 different banana accessions at three maturation stages and two ripening methods (natural ripening and ethylene ripening). Across most accessions, total carotenoid content (TCC) increased from unripe to ripe fruit; only two accessions showed a marginal decrease. The ripening method affected carotenoid accumulation; 18 accessions had lower TCC when naturally ripened compared with the ethylene ripening group, while nine accessions showed higher TCC when ripened with exogenous ethylene, suggesting that treating bananas with exogenous ethylene might directly affect TCC accumulation, but the response is accession dependent. Additionally, carotenoid bioaccessibility varied across genotypes and was correlated with the amount of soluble starch and resistant starch. These findings highlight the importance of ripening methods and genotypes in maximizing banana carotenoid content and bioaccessibility, which could contribute to improving pVACs delivery in biofortification programs.


Subject(s)
Musa , Musa/genetics , Carotenoids , Biofortification , Fruit/genetics , Genotype , Ethylenes , Plant Proteins/genetics
11.
Sci Total Environ ; 926: 171772, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38499106

ABSTRACT

The application of soil amendment (SA) and the cultivation of low Cd-accumulating varieties have been a widely favored strategy to enable the safe utilization of Cd-contaminated arable land. However, little has been reported on the reciprocal effects of SA on the Cd mitigation and nutritional quality of different wheat varieties. In this study, we evaluated the impact of an SA on agronomic traits, Cd accumulation, translocation and mineral nutrition of 12 wheat varieties in an acidic field with a Cd concentration of 0.46 mg/kg. The results showed that the SA significantly reduced soil DTPA Cd (42.3 %) and resulted in a slight decrease in wheat grain yield (4.24-9.72 %, average 7.62 %). Similarly, the SA significantly reduced grain Cd concentrations (average 61.65 %) while increased the concentrations of beneficial elements such as Mo and Se in all wheat varieties. However, this intervention also led to a reduction in the concentration of essential mineral elements (such as Ca, Fe, and Mn) in whole wheat grain and starchy endosperm, as well as a reduction in their proportion in the bran. Based on genotypic differences, Huaimai 33, Zhenmai 168, Sumai 188 and Yangmai 28 were considered to be the relatively most promising wheat varieties for achieving a balance among food safety, nutritional quality, and economic yield in this region. Taken together, this study highlights the varietal differences in Cd mitigation and mineral accumulation in different wheat varieties in response to the SA, offering new perspectives for phytoremediation and biofortification strategies for Cd-contaminated farmland.


Subject(s)
Cadmium , Soil Pollutants , Cadmium/analysis , Soil , Triticum , Biofortification , Soil Pollutants/analysis , Minerals , Edible Grain/chemistry
12.
Food Chem ; 448: 139123, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38552461

ABSTRACT

In the present work, liposomes have been used as nanocarriers in the biofortification of wheat plants with selenium (Se) through foliar application. Liposomal formulations were prepared using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and Phospholipon®90H (P90H) (average size <100 nm), loaded with different concentrations of inorganic Se (selenite and selenate) and applied twice to the plants in the stage of vegetative growth. Liposomes enhanced Se uptake by wheat plants compared to direct application. The highest Se enrichment was achieved using the phospholipid DPPC and a concentration of 1000 µmol·L-1 of Se without affecting the biomass, chlorophylls, carotenoids, and the concentration of mineral nutrients of the plants. The chemical speciation of Se in the plants was further investigated by X-ray absorption spectroscopy (XAS). The results from XAS spectra revealed that most of the inorganic Se was transformed to organic Se and that the use of liposomes influenced the proportion of C-Se-C over C-Se-Se-C species.


Subject(s)
Biofortification , Liposomes , Plant Leaves , Selenium , Triticum , Triticum/chemistry , Triticum/growth & development , Triticum/metabolism , Liposomes/chemistry , Selenium/chemistry , Selenium/metabolism , Selenium/analysis , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Leaves/growth & development , Nanoparticles/chemistry , Drug Carriers/chemistry
13.
Plant Physiol Biochem ; 208: 108501, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38452450

ABSTRACT

The vacuolar iron transporter (VIT) family is responsible for absorbing and storing iron ions in vacuoles. Here, the BnVIT-L2 gene from Brassica napus has been cloned for the first time and was found to be expressed in multiple tissues and organs, induced by iron stress. The BnVIT-L2 protein is located in vacuolar membranes and has the ability to bind both iron and other bivalent metal ions. Over-expression of the BnVIT-L2 gene increased lateral root number and main root length, as well as chlorophyll and iron content in transgenic Arabidopsis plants (BnVIT-L2/At) exposed to iron stress, compared to wild type Col-0. Furthermore, over-expression of this gene improved the adaptability of transgenic B. napus plants (BnVIT-L2-OE) under iron stress. The regulation of plant tolerance under iron stress by BnVIT-L2 gene may involve in the signal of reactive oxygen species (ROS), as suggested by Ribosome profiling sequencing (Ribo-seq). This study provides a reference for investigating plant growth and biofortification under iron stress through the BnVIT-L2 gene.


Subject(s)
Arabidopsis , Iron , Iron/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Biofortification , Plants, Genetically Modified/metabolism , Arabidopsis/metabolism , Ions/metabolism , Gene Expression Regulation, Plant , Plant Roots/genetics , Plant Roots/metabolism
14.
Plant Physiol Biochem ; 208: 108503, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38484679

ABSTRACT

Rutin is a significant flavonoid with strong antioxidant property and various therapeutic effects. It plays a crucial role in disease prevention and human health maintenance, especially in anti-inflammatory, antidiabetic, hepatoprotective and cardiovascular effects. While many plants can synthesize and accumulate rutin, tartary buckwheat is the only food crop possessing high levels of rutin. At present, the rutin content (RC) is regarded as the key index for evaluating the nutritional quality of tartary buckwheat. Consequently, rutin has become the focus for tartary buckwheat breeders and has made considerable progress. Here, we summarize research on the rutin in tartary buckwheat in the past two decades, including its accumulation, biosynthesis and breakdown pathways, and regulatory mechanisms. Furthermore, we propose several strategies to increase the RC in tartary buckwheat seeds based on current knowledge. This review aims to provide valuable references for elevating the quality of tartary buckwheat in the future.


Subject(s)
Fagopyrum , Rutin , Humans , Rutin/metabolism , Fagopyrum/metabolism , Biofortification , Flavonoids/metabolism , Metabolic Networks and Pathways
15.
J Sci Food Agric ; 104(10): 6100-6107, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38445779

ABSTRACT

BACKGROUND: Dietary selenium (Se) deficiency, stemming from low Se concentrations in agricultural products, threatens human health. While Se-containing fertilizers can enhance the Se content in crops, the key factors governing Se biofortification with Se fertilization remain unclear. RESULTS: This study constructed a global meta-analysis dataset based on field experiments comprising 364 entries on Se content in agricultural products and 271 entries on their yield. Random forest models and mixed effects meta-analyses revealed that plant types (i.e., cereals, vegetables, legumes, and forages) primarily influenced Se biofortification, with Se fertilization rates being the next significant factor. The random forest model, which included variables like plant types, Se fertilization rates, methods and types of Se application, initial soil conditions (including Se content, organic carbon content, and pH), soil types, mean annual precipitation, and temperature, explained 82.14% of the variation in Se content and 48.42% of the yield variation in agricultural products. For the same agricultural products, the increase in Se content decreased with higher rates of Se fertilization. The increase in Se content in their edible parts will be negligible for cereals, forages, legumes, and vegetable crops, when Se fertilization rates were 164, 103, 144, and 147 g Se ha-1, respectively. Conversely, while low Se fertilization rates enhanced yields, high rates led to a yield reduction, particularly in cereals. CONCLUSION: Our findings highlight the need for balanced and precise Se fertilization strategies to optimize Se biofortification benefits and minimize the risk of yield reduction. © 2024 Society of Chemical Industry.


Subject(s)
Biofortification , Crops, Agricultural , Fertilizers , Selenium , Soil , Crops, Agricultural/chemistry , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Edible Grain/chemistry , Edible Grain/metabolism , Fabaceae/chemistry , Fabaceae/metabolism , Fabaceae/growth & development , Fertilizers/analysis , Selenium/analysis , Selenium/metabolism , Soil/chemistry , Vegetables/chemistry , Vegetables/metabolism , Vegetables/growth & development
16.
J Integr Plant Biol ; 66(4): 635-637, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38351742

ABSTRACT

This commentary describes recent research discovering that the NAC transcription factor gene ZmNAC78 controls iron intake in maize and its implications for biofortification of this important crop. Using ZmNAC78, iron levels in maize can be more than doubled compared with current varieties.


Subject(s)
Iron Deficiencies , Iron , Biofortification , Zea mays/genetics , Food, Fortified
17.
Funct Integr Genomics ; 24(2): 34, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365972

ABSTRACT

Malnutrition, often termed "hidden hunger," represents a pervasive global issue carrying significant implications for health, development, and socioeconomic conditions. Addressing the challenge of inadequate essential nutrients, despite sufficient caloric intake, is crucial. Biofortification emerges as a promising solution by enhance the presence of vital nutrients like iron, zinc, iodine, and vitamin A in edible parts of different crop plants. Crop biofortification can be attained through either agronomic methods or genetic breeding techniques. Agronomic strategies for biofortification encompass the application of mineral fertilizers through foliar or soil methods, as well as leveraging microbe-mediated mechanisms to enhance nutrient uptake. On the other hand, genetic biofortification involves the strategic crossing of plants to achieve a desired combination of genes, promoting balanced nutrient uptake and bioavailability. Additionally, genetic biofortification encompasses innovative methods such as speed breeding, transgenic approaches, genome editing techniques, and integrated omics approaches. These diverse strategies collectively contribute to enhancing the nutritional profile of crops. This review highlights the above-said genetic biofortification strategies and it also covers the aspect of reduction in antinutritional components in food through genetic biofortification.


Subject(s)
Biofortification , Hunger , Biofortification/methods , Plant Breeding , Crops, Agricultural/genetics , Soil
18.
Ecotoxicol Environ Saf ; 272: 116081, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38335579

ABSTRACT

Selenium (Se) is a trace element that is essential for human health. Daily dietary Se intake is governed by the food chain through soil-plant systems. However, the cadmium (Cd) content tends to be excessive in seleniferous soil, in which Se and Cd have complex interactions. Therefore, it is a great challenge to grow crops containing appreciable amounts of Se but low amounts of Cd. We compared the effects of five Se-transforming bacteria on Se and Cd uptake by Brassica rapa L. in a native seleniferous Cd-polluted soil. The results showed that three Se-oxidizing bacteria (LX-1, LX-100, and T3F4) increased the Se content of the aboveground part of the plant by 330.8%, 309.5%, and 724.3%, respectively, compared to the control (p < 0.05). The three bacteria also reduced the aboveground Cd content by 15.1%, 40.4%, and 16.4%, respectively (p < 0.05). In contrast, the Se(IV)-reducing bacterium ES2-45 and weakly Se-transforming bacterium LX-4 had no effect on plant Se uptake, although they did decrease the aboveground Cd content. In addition, the three Se-oxidizing bacteria increased the Se available in the soil by 38.4%, 20.4%, and 24.0%, respectively, compared to the control (p < 0.05). The study results confirm the feasibility of using Se-oxidizing bacteria to simultaneously enhance plant Se content and reduce plant Cd content in seleniferous Cd-polluted soil.


Subject(s)
Selenium , Soil Pollutants , Humans , Cadmium/analysis , Sand , Biodegradation, Environmental , Biofortification , Soil , Crops, Agricultural , Oxidation-Reduction , Soil Pollutants/analysis
20.
BMC Plant Biol ; 24(1): 24, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38166490

ABSTRACT

BACKGROUND: Salinity stress is a major limiting factor for plant growth, particularly in arid and semi-arid environments. To mitigate the detrimental effects of salinity stress on vegetable production, selenium (Se) biofortification and grafting onto tolerant rootstocks have emerged as effective and sustainable cultivation practices. This study aimed to investigate the combined effects of Se biofortification and grafting onto tolerant rootstock on the yield of cucumber grown under salinity stress greenhouse conditions. The experiment followed a completely randomized factorial design with three factors: salinity level (0, 50, and 100 mM of NaCl), foliar Se application (0, 5, and 10 mg L-1 of sodium selenate) and grafting (grafted and non-grafted plants) using pumpkin (Cucurbita maxima) as the rootstock. Each treatment was triplicated. RESULTS: The results of this study showed that Se biofortification and grafting significantly enhanced salinity tolerance in grafted cucumbers, leading to increased yield and growth. Moreover, under salinity stress conditions, Se-Biofortified plants exhibited increased leaf relative water content (RWC), proline, total soluble sugars, protein, phenol, flavonoids, and antioxidant enzymes. These findings indicate that Se contributes to the stabilization of cucumber cell membrane and the reduction of ion leakage by promoting the synthesis of protective compounds and enhancing antioxidant enzyme activity. Moreover, grafting onto pumpkin resulted in increased salinity tolerance of cucumber through reduced Na uptake and translocation to the scion. CONCLUSION: In conclusion, the results highlight the effectiveness of Se biofortification and grafting onto pumpkin in improving cucumber salinity tolerance. A sodium selenate concentration of 10 mg L-1 is suggested to enhance the salinity tolerance of grafted cucumbers. These findings provide valuable insights for the development of sustainable cultivation practices to mitigate the adverse impact of salinity stress on cucumber production in challenging environments.


Subject(s)
Cucumis sativus , Selenium , Antioxidants , Salt Tolerance , Selenic Acid , Biofortification
SELECTION OF CITATIONS
SEARCH DETAIL
...