Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 515
Filter
1.
Int J Mol Sci ; 23(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35163367

ABSTRACT

Bioactive peptides are a group of biological molecules that are normally buried in the structure of parent proteins and become active after the cleavage of the proteins. Another group of peptides is actively produced and found in many microorganisms and the body of organisms. Today, many groups of bioactive peptides have been marketed chemically or recombinantly. This article reviews the various production methods and sources of these important/ubiquitous and useful biomolecules. Their applications, such as antimicrobial, antihypertensive, antioxidant activities, blood-lipid-lowering effect, opioid role, antiobesity, ability to bind minerals, antidiabetic, and antiaging effects, will be explored. The types of pathways proposed for bioactive applications will be in the next part of the article, and at the end, the future perspectives of bioactive peptides will be reviewed. Reading this article is recommended for researchers interested in various fields of physiology, microbiology, biochemistry, and nanotechnology and food industry professionals.


Subject(s)
Biological Factors/pharmacology , Peptides/pharmacology , Animals , Biological Factors/chemistry , Biological Factors/isolation & purification , Drug Industry , Food Industry , Humans , Peptides/chemistry , Peptides/isolation & purification
2.
Molecules ; 26(19)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34641295

ABSTRACT

Due to sedentary lifestyle and harsh environmental conditions, gorgonian coral extracts are recognized as a rich source of novel compounds with various biological activities, of interest to the pharmaceutical and cosmetic industries. The presented study aimed to perform chemical screening of organic extracts and semi-purified fractions obtained from the common Adriatic gorgonian, sea fan, Eunicella cavolini (Koch, 1887) and explore its abilities to exert different biological effects in vitro. Qualitative chemical evaluation revealed the presence of several classes of secondary metabolites extended with mass spectrometry analysis and tentative dereplication by using Global Natural Product Social Molecular Networking online platform (GNPS). Furthermore, fractions F4 and F3 showed the highest phenolic (3.28 ± 0.04 mg GAE/g sample) and carotene (23.11 ± 2.48 mg ß-CA/g sample) content, respectively. The fraction F3 inhibited 50% of DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) and ABTS (2,2'-azino-bis (3-ethylbenzthiazolin-6-yl) sulfonic acid) radicals at the concentrations of 767.09 ± 11.57 and 157.16 ± 10.83 µg/mL, respectively. The highest anti-inflammatory potential was exhibited by F2 (IC50 = 198.70 ± 28.77 µg/mL) regarding the inhibition of albumin denaturation and F1 (IC50 = 254.49 ± 49.17 µg/mL) in terms of soybean lipoxygenase inhibition. In addition, the most pronounced antiproliferative effects were observed for all samples (IC50 ranging from 0.82 ± 0.14-231.18 ± 46.13 µg/mL) against several carcinoma cell lines, but also towards non-transformed human fibroblasts pointing to a generally cytotoxic effect. In addition, the antibacterial activity was tested by broth microdilution assay against three human pathogenic bacteria: Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The latter was the most affected by fractions F2 and F3. Finally, further purification, isolation and characterization of pure compounds from the most active fractions are under investigation.


Subject(s)
Anthozoa/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Biological Factors/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Biological Factors/chemistry , Biological Factors/isolation & purification , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Escherichia coli/drug effects , Hep G2 Cells , Humans , MCF-7 Cells , Mass Spectrometry , Microbial Sensitivity Tests , Molecular Structure , Pseudomonas aeruginosa , Secondary Metabolism , Staphylococcus aureus/drug effects
3.
Mar Drugs ; 19(6)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208171

ABSTRACT

Sinularia is one of the conspicuous soft coral species widely distributed in the world's oceans at a depth of about 12 m. Secondary metabolites from the genus Sinularia show great chemical diversity. More than 700 secondary metabolites have been reported to date, including terpenoids, norterpenoids, steroids/steroidal glycosides, and other types. They showed a broad range of potent biological activities. There were detailed reviews on the terpenoids from Sinularia in 2013, and now, it still plays a vital role in the innovation of lead compounds for drug development. The structures, names, and pharmacological activities of compounds isolated from the genus Sinularia from 2013 to March 2021 are summarized in this review.


Subject(s)
Anthozoa/metabolism , Biological Factors , Secondary Metabolism , Steroids , Terpenes , Animals , Anthozoa/chemistry , Biological Factors/chemistry , Biological Factors/isolation & purification , Biological Factors/metabolism , Biological Factors/pharmacology , Drug Development , Drug Discovery , Steroids/chemistry , Steroids/isolation & purification , Steroids/metabolism , Steroids/pharmacology , Terpenes/chemistry , Terpenes/isolation & purification , Terpenes/metabolism , Terpenes/pharmacology
4.
Inflammopharmacology ; 29(4): 1201-1210, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34241784

ABSTRACT

Marine sponges and their associated microbiota are multicellular animals known to produce metabolites with interesting pharmacological properties playing a pivotal role against a plethora of pathologic disorders such as inflammation, cancer and infections. Characellide A and B belong to a novel class of glycolipopeptides isolated from the deep sea marine sponge Characella pachastrelloides. In this study, we have evaluated the effects of characellide A and B on cytokine and chemokine release from human peripheral blood mononuclear cells (PBMC). Characellide A induces a concentration- and time-dependent CXCL8, IL-6 and TNF-α release from PBMC. This production is mediated by the induction of gene transcription. Moreover, cytokine/chemokine release induced by characellide A from PBMC is CD1d-dependent because a CD1d antagonist, 1,2-bis(diphenylphosphino)ethane [DPPE]-polyethylene glycolmonomethylether [PEG], specifically inhibits characellide A-induced activation of PBMC. In conclusion, characellide A is a novel modulator of adaptative/innate immune responses. Further studies are needed to understand its potential pharmacological application.


Subject(s)
Biological Factors/pharmacology , Immunomodulating Agents/pharmacology , Inflammation Mediators/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Porifera , Animals , Biological Factors/isolation & purification , Dose-Response Relationship, Drug , Humans , Immunomodulating Agents/isolation & purification , Immunomodulation/drug effects , Immunomodulation/physiology , Inflammation Mediators/agonists , Inflammation Mediators/immunology , Leukocytes, Mononuclear/immunology
5.
Biotechnol Lett ; 43(7): 1487-1502, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33822305

ABSTRACT

The interest in bioactive compounds from microalgae is increasing since they have medicinal and nutritional areas. The present work aims to evaluate the potential pharmaceutical interest of extracts from three eustigmatophyte strains from the Coimbra Collection of Algae (ACOI): Chlorobotrys gloeothece, Chlorobotrys regularis and Characiopsis aquilonaris. Antioxidant and antiproliferative activities were determined as well as chlorophyll a, carotenoid and phenolic total contents. In addition, major pigments and sterols were identified and quantified. The three strains were grown until the stationary phase and then the biomass was extracted. Antioxidant activity was measured by TEAC, DPPH and FRAP assays and antiproliferative effect was assessed by the MTT method on MCF-7, PC-3 and NHDF cells. The pigment and phenolic total contents were determined by spectrophotometry. Of these strains, C. aquilonaris showed the highest antioxidant activity measured by TEAC and FRAP assays (23.98 ± 0.01 µmol TE eq g-1 DW and 42.57 ± 0.04 µmol TE eq g-1 DW, respectively), a selective effect in reduting MCF-7 cells proliferation and a larger amount of chlorophyll a, carotenoids and phenolic content (18.40 ± 0.00 µg chlorophyll a mg-1 DW, 2.27 ± 0.00 mg carotenoids g-1 DW and 6.23 ± 0.01 mg GAE g-1 DW, respectively). A positive correlation between chlorophyll a and TEAC assay was observed, as well as between carotenoids and TEAC and FRAP assays, suggesting these compounds as important contributors to significant antioxidant activity. Violaxanthin, cholesterol and stigmasterol were present in larger amount in C. aquilonaris while C. regularis showed a higher amount of ß-carotene. These results suggest that these three ACOI eustigmatophytes are promising for applications in the improvement of human health, particularly in cancer prevention and treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Biological Factors/pharmacology , Stramenopiles/growth & development , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Biological Factors/chemistry , Biological Factors/isolation & purification , Cell Proliferation/drug effects , Cell Survival/drug effects , Chlorophyll A/chemistry , Cholesterol/chemistry , Humans , MCF-7 Cells , PC-3 Cells , Stigmasterol/chemistry , Stramenopiles/chemistry , Xanthophylls/chemistry , beta Carotene/chemistry
6.
World J Microbiol Biotechnol ; 37(5): 74, 2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33779874

ABSTRACT

Some pathogenic microbes can be used for nefarious applications and instigate population-based fear. In a bio-threat scenario, rapid and accurate methods to detect biological agents in a wide range of complex environmental and clinical matrices, is of paramount importance for the implementation of mitigation protocols and medical countermeasures. This study describes targeted and shot-gun tandem MS based approaches for the verification of biological agents from the environmental samples. The marker proteins and peptides were elucidated by an exhaustive literature mining, in silico analysis of prioritized proteins, and MS/MS analysis of abundant proteins from selected bacterial species. For the shot-gun methodology, tandem MS analysis of abundant peptides was carried from spiked samples. The validation experiments employing a combination of shot-gun tandem MS analysis and a targeted search reported here is a proof of concept to show the applicability of the methodology for the unambiguous verification of biological agents at sub-species level, even with limited fractionation of crude protein extracts from environmental samples.


Subject(s)
Biological Factors/classification , Biological Warfare Agents/classification , Gammaproteobacteria/classification , Peptides/analysis , Proteins/analysis , Tandem Mass Spectrometry/methods , Biological Factors/isolation & purification , Biomarkers , Gammaproteobacteria/isolation & purification , Humans , Peptides/chemistry , Proteins/chemistry , Sensitivity and Specificity , Validation Studies as Topic
7.
Nat Chem Biol ; 17(5): 576-584, 2021 05.
Article in English | MEDLINE | ID: mdl-33664521

ABSTRACT

Cariogenic Streptococcus mutans is known as a predominant etiological agent of dental caries due to its exceptional capacity to form biofilms. From strains of S. mutans isolated from dental plaque, we discovered, in the present study, a polyketide/nonribosomal peptide biosynthetic gene cluster, muf, which directly correlates with a strong biofilm-forming capability. We then identified the muf-associated bioactive product, mutanofactin-697, which contains a new molecular scaffold, along with its biosynthetic logic. Further mode-of-action studies revealed that mutanofactin-697 binds to S. mutans cells and also extracellular DNA, increases bacterial hydrophobicity, and promotes bacterial adhesion and subsequent biofilm formation. Our findings provided an example of a microbial secondary metabolite promoting biofilm formation via a physicochemical approach, highlighting the importance of secondary metabolism in mediating critical processes related to the development of dental caries.


Subject(s)
Biofilms/drug effects , Biological Factors/biosynthesis , Genes, Bacterial , Secondary Metabolism/genetics , Streptococcus mutans/metabolism , Bacterial Adhesion/drug effects , Biofilms/growth & development , Biological Factors/isolation & purification , Biological Factors/pharmacology , Computational Biology/methods , DNA/genetics , DNA/metabolism , Dental Caries/microbiology , Dental Caries/pathology , Gene Expression Regulation, Bacterial , Humans , Hydrophobic and Hydrophilic Interactions , Multigene Family , Peptide Biosynthesis, Nucleic Acid-Independent , Protein Binding , Streptococcus mutans/genetics , Streptococcus mutans/growth & development , Streptococcus mutans/pathogenicity
8.
Inflammopharmacology ; 29(4): 925-938, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33738701

ABSTRACT

OBJECTIVES: Intervention studies using New Zealand green-lipped or greenshell™ mussel (GSM) (Perna canaliculus) extract in osteoarthritis (OA) patients have shown effective pain relief. This systematic review summarises the efficacy of GSM extracts in the treatment of OA. METHODS: A literature search of the three databases EMBASE, MEDLINE, and Scopus was performed to identify relevant articles published up to March 2020. Inclusion criteria were clinical trials published in English measuring the effect of supplementation of whole or a lipid extract from GSM on pain and mobility outcomes in OA patients. RESULTS: A total of nine clinical trials were included in systematic review, from which five studies were considered appropriate for inclusion in a forest plot. Pooled results showed that GSM extracts (lipid extract or whole powder) provide moderate and clinically significant treatment effects on a visual analogue scale (VAS) pain score (effect size: - 0.46; 95% CI - 0.82 to - 0.10; p = 0.01). The whole GSM extract improved gastrointestinal symptoms in OA patients taking anti-inflammatory medications. The GSM extract was considered to be generally well tolerated in most of the studies. CONCLUSION: The overall analysis showed that GSM provided moderate and clinically meaningful treatment effects on OA pain. However, the current evidence is limited by the number and quality of studies, and further larger and high-quality studies are needed to confirm the effectiveness and to identify the optimal GSM format. Nevertheless, it is worth considering using GSM extracts especially for patients seeking alternative pain relief treatments with fewer side effects compared to conventional treatment.


Subject(s)
Biological Factors/isolation & purification , Biological Factors/therapeutic use , Dietary Supplements , Osteoarthritis/drug therapy , Pain Measurement/drug effects , Perna , Aged , Aged, 80 and over , Animals , Biological Factors/pharmacology , Clinical Trials as Topic/methods , Female , Humans , Male , Middle Aged , Osteoarthritis/diagnosis , Pain Measurement/methods , Treatment Outcome
9.
Int J Med Mushrooms ; 23(2): 1-11, 2021.
Article in English | MEDLINE | ID: mdl-33639077

ABSTRACT

This review provides results obtained by scientists from different countries on the antiviral activity of medicinal mushrooms against influenza viruses that can cause pandemics. Currently, the search for antiviral compounds is relevant in connection with the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Medicinal mushrooms contain biologically active compounds (polysaccharides, proteins, terpenes, melanins, etc.) that exhibit an antiviral effect. The authors present the work carried out at the State Research Center of Virology and Biotechnology Vector in Russia, whose mission is to protect the population from biological threats. The research center possesses a collection of numerous pathogenic viruses, which allowed screening of water extracts, polysaccharides, and melanins from fruit bodies and fungal cultures. The results of investigations on different subtypes of influenza virus are presented, and special attention is paid to Inonotus obliquus (chaga mushroom). Compounds produced from this mushroom are characterized by the widest range of antiviral activity. Comparative data are presented on the antiviral activity of melanin from natural I. obliquus and submerged biomass of an effective strain isolated in culture against the pandemic strain of influenza virus A/California/07/09 (H1N1 pdm09).


Subject(s)
Agaricales/chemistry , Antiviral Agents/pharmacology , Biological Factors/pharmacology , Orthomyxoviridae/drug effects , Animals , Antiviral Agents/isolation & purification , Biological Factors/isolation & purification , Humans , Inonotus/chemistry , Melanins/isolation & purification , Melanins/pharmacology , Orthomyxoviridae/classification , Pandemics , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology
10.
BMC Microbiol ; 21(1): 1, 2021 01 02.
Article in English | MEDLINE | ID: mdl-33386072

ABSTRACT

BACKGROUND: Biofilms can form in many industries, one of them is the food industry. The formation of biofilms in this industry could cause immense economic losses and endanger public health. Biofilms formation is mainly triggered by quorum sensing. Therefore, inhibition of quorum sensing could be an innovative approach to inhibit the formation of biofilms. One way to inhibit quorum sensing is by using anti-quorum sensing compounds. Actinomycetes are a group of bacteria that is acknowledged to produce these compounds. RESULTS: There were eight crude extracts of Actinomycetes isolates that showed promising anti-quorum sensing activity against Chromobacterium violaceum. The concentration of the crude extracts was 20 mg/mL. All the crude extracts showed no antibacterial activity against food spoilage bacteria, except for crude extracts of isolate 18 PM that showed antibacterial activity against Bacillus subtilis. They also showed various antibiofilm activity, both inhibition and destruction. The highest inhibition and destruction activity sequentially was done by crude extracts of isolate 12 AC with 89.60% against Bacillus cereus and crude extracts of isolate SW03 with 93.06% against Shewanella putrefaciens. CONCLUSIONS: Actinomycetes isolates that isolated from different regions in Indonesia can be used as potential candidates to overcome biofilms formed by food spoilage bacteria using their ability to produce anti-quorum sensing compounds.


Subject(s)
Actinobacteria/metabolism , Bacteria/growth & development , Biological Factors/pharmacology , Chromobacterium/physiology , Quorum Sensing/drug effects , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Bacillus cereus/drug effects , Bacillus cereus/growth & development , Bacillus subtilis/drug effects , Bacillus subtilis/growth & development , Bacteria/drug effects , Biofilms/drug effects , Biological Factors/isolation & purification , Chromobacterium/drug effects , Chromobacterium/growth & development , Food Microbiology , Indonesia , Microbial Viability/drug effects , Shewanella putrefaciens/drug effects , Shewanella putrefaciens/growth & development
11.
Stem Cells Dev ; 30(5): 247-264, 2021 03.
Article in English | MEDLINE | ID: mdl-33403929

ABSTRACT

The secretome of mesenchymal stromal cells (MSCs) is enriched for biotherapeutic effectors contained within and independent of extracellular vesicles (EVs) that may support tissue regeneration as an injectable agent. We have demonstrated that the intrapancreatic injection of concentrated conditioned media (CM) produced by bone marrow MSC supports islet regeneration and restored glycemic control in hyperglycemic mice, ultimately providing a platform to elucidate components of the MSC secretome. Herein, we extend these findings using human pancreas-derived MSC (Panc-MSC) as "biofactories" to enrich for tissue regenerative stimuli housed within distinct compartments of the secretome. Specifically, we utilized 100 kDa ultrafiltration as a simple method to debulk protein mass and to enrich for EVs while concentrating the MSC secretome into an injectable volume for preclinical assessments in murine models of blood vessel and islet regeneration. EV enrichment (EV+) was validated using nanoscale flow cytometry and atomic force microscopy, in addition to the detection of classical EV markers CD9, CD81, and CD63 using label-free mass spectrometry. EV+ CM was predominately enriched with mediators of wound healing and epithelial-to-mesenchymal transition that supported functional regeneration in mesenchymal and nonmesenchymal tissues. For example, EV+ CM supported human microvascular endothelial cell tubule formation in vitro and enhanced the recovery of blood perfusion following intramuscular injection in nonobese diabetic/severe combined immunodeficiency mice with unilateral hind limb ischemia. Furthermore, EV+ CM increased islet number and ß cell mass, elevated circulating insulin, and improved glycemic control following intrapancreatic injection in streptozotocin-treated mice. Collectively, this study provides foundational evidence that Panc-MSC, readily propagated from the subculture of human islets, may be utilized for regenerative medicine applications.


Subject(s)
Biological Factors/pharmacology , Extracellular Vesicles/chemistry , Mesenchymal Stem Cells/chemistry , Pancreas/physiology , Regeneration/drug effects , Secretome/chemistry , Animals , Biological Factors/administration & dosage , Biological Factors/isolation & purification , Blood Vessels/drug effects , Blood Vessels/physiology , Cells, Cultured , Culture Media, Conditioned/chemistry , Culture Media, Conditioned/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/physiology , Humans , Hyperglycemia/blood , Hyperglycemia/chemically induced , Hyperglycemia/prevention & control , Mesenchymal Stem Cells/metabolism , Mice, Inbred NOD , Mice, SCID , Microscopy, Atomic Force , Pancreas/cytology , Streptozocin , Ultrafiltration/methods
12.
World J Microbiol Biotechnol ; 37(1): 17, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33394203

ABSTRACT

Four types of mycelial extracts were derived from the airlift liquid fermentation (ALF) of Pleurotus flabellatus, namely exopolysaccharide (EX), endopolysaccharide (EN), hot water (WE), and hot alkali (AE) extracts. Such extracts were screened for their active components and biological potential. EN proved to be most effective in inhibition of lipid peroxidation (EC50 = 1.71 ± 0.02 mg/mL) and in Cupric ion reducing antioxidant capacity (CUPRAC) assay (EC50 = 2.91 ± 0.01 mg TE/g). AE exhibited most pronounced ability to chelate ferrous ions (EC50 = 4.96 ± 0.08 mg/mL) and to scavenge ABTS radicals (EC50 = 3.36 ± 0.03 mg TE/g). ß-glucans and total phenols contributed most to the chelating ability and quenching of ABTS radicals. Inhibition of lipid peroxidation correlated best with total glucans, total proteins, and ß-glucans. Total proteins contributed most to CUPRAC antioxidant capacity. Antifungal effect was determined against Candida albicans ATCC 10231 (MIC: 0.019-0.625 mg/mL; MFC: 0.039-2.5 mg/mL), and towards C. albicans clinical isolate (MIC and MFC: 10.0-20.0 mg/mL). Comparison of cytotoxicity against colorectal carcinoma HCT 116 cells (IC50: 1.8 ± 0.3-24.6 ± 4.2 mg/mL) and normal lung MRC-5 fibroblasts (IC50: 17.0 ± 4.2-42.1 ± 6.1 mg/mL) showed that EN, and especially AE possess selective anticancer activity (SI values 3.41 and 9.44, respectively). Slight genotoxicity was observed only for AE and EX, indicating the low risk concerning this feature. Notable antioxidative and anticandidal activities, selective cytotoxicity against colorectal carcinoma cells, and absence/low genotoxicity pointed out that ALF-cultivated P. flabellatus mycelium could be considered as a valuable source of bioactive substances.


Subject(s)
Antifungal Agents/isolation & purification , Antineoplastic Agents/isolation & purification , Biological Factors/isolation & purification , Bioreactors/microbiology , Pleurotus/growth & development , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biological Factors/chemistry , Biological Factors/pharmacology , Candida albicans/drug effects , Candida albicans/growth & development , Cell Proliferation/drug effects , Cell Survival/drug effects , Fermentation , Fungal Polysaccharides/isolation & purification , Fungal Polysaccharides/pharmacology , HCT116 Cells , Humans , Lipid Peroxidation/drug effects , Microbial Sensitivity Tests , Pleurotus/chemistry , beta-Glucans/isolation & purification , beta-Glucans/pharmacology
13.
J Ethnopharmacol ; 268: 113570, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33181285

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Antrodia camphorata (AC) is a rare functional fungus in Taiwan and is known as traditional Chinese medicine. It has been reported to inhibit proliferation and promote apoptosis in human cancer cells. AIM OF THE STUDY: To investigate the potential mechanism of apoptosis induced in colon cancer cells by Antrodia camphorata extract (ACE). MATERIALS AND METHODS: The MTT assay and crystal violet staining were used to determine relative cell viability in vitro at 24 and 48 h. The effects of ACE on apoptosis were determined by Hoechst 33342 staining and flow cytometric analysis following Annexin V-FITC/PI staining. The gene expression profile of HCT116 cells was assessed by the RNA sequencing system. In combination with RNA-seq data and qRT-PCR, Western blot analysis was used to evaluate expression of proteins. The intracellular ROS of HCT116 cells were determined using a DCFH-DA fluorescence probe. RESULTS: ACE significantly reduces cell viability in a dose-dependent manner and triggers apoptosis. To explore the underlying mechanism, we performed transcriptome analysis of ACE-treated colon cancer HCT116 cells. Bioinformatics analyses showed that ACE treatment is associated with pathways in cancer. We further used Cytoscape to analyze hub genes in this network. Among them, BMP4, which is associated with cancer cell death through regulation of the tumor suppressor p53, was significantly decreased at both mRNA and protein levels in ACE treatment groups. We found that cell death is reversible via inactivation or knockdown of p53 gene and reduction of reactive oxygen species (ROS) generation in response to ACE exposure, indicating that p53 plays an important role in ROS generation induced by ACE. Meanwhile, ROS scavenger NAC was used to verify that cell death is reversible via reduction of ROS. CONCLUSION: Our findings demonstrate that ACE has potential as an anticancer agent that induces apoptosis through BMP4 and p53-dependent response to ROS in human colon cancer.


Subject(s)
Apoptosis/drug effects , Biological Factors/therapeutic use , Bone Morphogenetic Protein 4/biosynthesis , Colonic Neoplasms/metabolism , Polyporales , Reactive Oxygen Species/metabolism , Tumor Suppressor Protein p53/metabolism , Apoptosis/physiology , Biological Factors/isolation & purification , Biological Factors/pharmacology , Cell Survival/drug effects , Cell Survival/physiology , Colonic Neoplasms/drug therapy , Dose-Response Relationship, Drug , Gene Expression Regulation, Neoplastic , HCT116 Cells , Humans , Reactive Oxygen Species/antagonists & inhibitors , Tumor Suppressor Protein p53/antagonists & inhibitors
14.
J Ethnopharmacol ; 264: 113382, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-32918991

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Crassostrea gigas Thunberg and other oysters have been traditionally used in China as folk remedies to invigorate the kidney and as natural aphrodisiacs to combat male impotence. AIM OF THE STUDY: Erectile dysfunction (ED) has become a major health problem for the global ageing population. The aim of this study is therefore to evaluate the effect of peptide-rich preparations from C. gigas oysters on ED and related conditions as increasing evidence suggests that peptides are important bioactive components of marine remedies and seafood. MATERIALS AND METHODS: Crassostrea oyster peptide (COP) preparations COP1, COP2 and COP3 were obtained from C. gigas oysters by trypsin, papain or sequential trypsin-papain digestion, respectively. The contents of testosterone, cyclic adenosine monophosphate (cAMP) and nitric oxide (NO) and the activity of nitric oxide synthase (NOS) in mice and/or cells were measured by enzyme-linked immunosorbent assays. Real-time PCR was used to assess the expression of genes associated with sex hormone secretion pathways. The model animal Caenorhabditis elegans was also used to analyze the gene expression of a conserved steroidogenic enzyme. In silico analysis of constituent peptides was performed using bioinformatic tools based on public databases. RESULTS: The peptide-rich preparation COP3, in which >95% peptides were <3000 Da, was found to increase the contents of male mouse serum testosterone and cAMP, both of which are known to play important roles in erectile function, and to increase the activity of mouse penile NOS, which is closely associated with ED. Further investigation using mouse Leydig-derived TM3 cells demonstrates that COP3 was able to stimulate the production of testosterone as well as NO, a pivotal mediator of penile erection. Real-time PCR analysis reveals that COP3 up-regulated the expression of Areg and Acvr2b, the genes known to promote sex hormone secretion, but not Fst, a gene involved in suppressing follicle-stimulating hormone release. Furthermore, COP3 was also shown to up-regulate the expression of let-767, a well-conserved C. elegans gene encoding a protein homologous to human 17-ß-hydroxysteroid dehydrogenases. Preliminary bioinformatic analysis using the peptide sequences in COP3 cryptome identified 19 prospective motifs, each of which occurred in more than 10 peptides. CONCLUSIONS: In this paper, Crassostrea oyster peptides were prepared by enzymatic hydrolysis and were found for the first time to increase ED-associated biochemical as well as molecular biology parameters. These results may help to explain the ethnopharmacological use of oysters and provide an important insight into the potentials of oyster peptides in overcoming ED-related health issues.


Subject(s)
Biological Factors/isolation & purification , Biological Factors/pharmacology , Crassostrea/enzymology , Peptide Fragments/isolation & purification , Peptide Fragments/pharmacology , Testosterone/blood , Animals , Caenorhabditis elegans , Cells, Cultured , Computational Biology/methods , Dose-Response Relationship, Drug , Enzyme Assays/methods , Hydrolysis , Male , Mice
15.
Gene ; 768: 145320, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33248199

ABSTRACT

Phellinus linteus (mushroom) grown on Rosa multiflora (PL@RM), exposed beneficial effect and safety on Type 2 diabetes mellitus (T2DM) from Korean folk remedies. However, its active chemical constituents and mechanism(s) against T2DM have not been confirmed. Hence, we deciphered the active compounds and mechanism(s) of PL@RM against T2DM through network pharmacology. GC-MS of PL@RM manifested 54 compounds and drug-likeness properties of these compounds were confirmed by Lipinski's rule. The compound (40) related genes were composed of Similarity Ensemble Approach (SEA) and SwissTargetPrediction (STP). The overlapping genes (61) between the two databases were identified. Besides, the T2DM related genes (4,736) were extracted from DisGeNet and OMIM database. In parallel, a Venn diagram was constructed between the overlapping genes (61) and T2DM related genes (4,736), and finally, 48 genes were picked. The interactive networks between compounds and overlapping genes were plotted and visualized by RStudio. In addition, KEGG Pathway enrichment analysis was evaluated by String. String analysis showed that the mechanisms of PL@RM against T2DM were related to 16 pathways, where inhibition of gluconeogenesis by inactivating metabolic pathways was noted as the hub pathway of PL@RM against T2DM. Besides, bubble chart indicated that activation of the AMPK signaling pathway might enhance the insulin receptor (IR) phosphorylation, which is regarded the key signaling pathway of PL@RM against T2DM. Furthermore, the autodock vina revealed the promising binding affinity energy of the epicholesterol (the most drug-likeness compound) on HMGCR (hub gene). Overall, this work hints at the therapeutic evidence of PL@RM on T2DM, and this data expound the main chemical compounds and mechanisms of PL@RM against T2DM.


Subject(s)
Biological Factors/pharmacology , Diabetes Mellitus, Type 2/genetics , Phellinus/growth & development , Rosa/microbiology , AMP-Activated Protein Kinases/genetics , Biological Factors/chemistry , Biological Factors/isolation & purification , Computer Simulation , Diabetes Mellitus, Type 2/drug therapy , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation/drug effects , Gene Regulatory Networks/drug effects , Humans , Phellinus/chemistry , Signal Transduction/drug effects
16.
Toxicology ; 447: 152612, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33171268

ABSTRACT

Mitochondria are subcellular organelles involved in cell metabolism and cell life-cycle. Their role in apoptosis regulation makes them an interesting target of new drugs for dealing with cancer or rare diseases. Several peptides and proteins isolated from animal and plant sources are known for their therapeutic properties and have been tested on cancer cell-lines and xenograft murine models, highlighting their ability in inducing cell-death by triggering mitochondrial apoptosis. Some of those molecules have been even approved as drugs. Conversely, many other bioactive compounds are still under investigation for their proapoptotic properties. In this review we report about a group of peptides, isolated from animal venoms, with potential therapeutic properties related to their ability in triggering mitochondrial apoptosis. This class of compounds is known with different names, such as mitochondriotoxins or mitocans.


Subject(s)
Apoptosis/drug effects , Bile , Biological Factors/toxicity , Honey , Mitochondria/metabolism , Peptide Fragments/toxicity , Amino Acid Sequence , Animals , Apoptosis/physiology , Biological Factors/chemistry , Biological Factors/isolation & purification , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/isolation & purification , Intercellular Signaling Peptides and Proteins/toxicity , Mitochondria/chemistry , Neoplasms/drug therapy , Neoplasms/metabolism , Peptide Fragments/chemistry , Peptide Fragments/isolation & purification , Protein Structure, Secondary , Wasp Venoms/chemistry , Wasp Venoms/isolation & purification , Wasp Venoms/toxicity
17.
Sci Rep ; 10(1): 13870, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32807803

ABSTRACT

Although many advances have been achieved to treat aggressive tumours, cancer remains a leading cause of death and a public health problem worldwide. Among the main approaches for the discovery of new bioactive agents, the prospect of microbial secondary metabolites represents an effective source for the development of drug leads. In this study, we investigated the actinobacterial diversity associated with an endemic Antarctic species, Deschampsia antarctica, by integrated culture-dependent and culture-independent methods and acknowledged this niche as a reservoir of bioactive strains for the production of antitumour compounds. The 16S rRNA-based analysis showed the predominance of the Actinomycetales order, a well-known group of bioactive metabolite producers belonging to the Actinobacteria phylum. Cultivation techniques were applied, and 72 psychrotolerant Actinobacteria strains belonging to the genera Actinoplanes, Arthrobacter, Kribbella, Mycobacterium, Nocardia, Pilimelia, Pseudarthrobacter, Rhodococcus, Streptacidiphilus, Streptomyces and Tsukamurella were identified. The secondary metabolites were screened, and 17 isolates were identified as promising antitumour compound producers. However, the bio-guided assay showed a pronounced antiproliferative activity for the crude extracts of Streptomyces sp. CMAA 1527 and Streptomyces sp. CMAA 1653. The TGI and LC50 values revealed the potential of these natural products to control the proliferation of breast (MCF-7), glioblastoma (U251), lung/non-small (NCI-H460) and kidney (786-0) human cancer cell lines. Cinerubin B and actinomycin V were the predominant compounds identified in Streptomyces sp. CMAA 1527 and Streptomyces sp. CMAA 1653, respectively. Our results suggest that the rhizosphere of D. antarctica represents a prominent reservoir of bioactive actinobacteria strains and reveals it as an important environment for potential antitumour agents.


Subject(s)
Actinobacteria , Culture Techniques/methods , Drug Discovery , Neoplasms/pathology , Actinobacteria/metabolism , Actinomycetales/metabolism , Antarctic Regions , Anthracyclines/isolation & purification , Anthracyclines/metabolism , Anthracyclines/pharmacology , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Biological Factors/biosynthesis , Biological Factors/isolation & purification , Biological Factors/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Dactinomycin/biosynthesis , Dactinomycin/isolation & purification , Dactinomycin/pharmacology , Humans , Streptomyces/metabolism
18.
J Med Chem ; 63(22): 13428-13443, 2020 11 25.
Article in English | MEDLINE | ID: mdl-32787103

ABSTRACT

Human tyrosinase (hsTYR) is the key enzyme ensuring the conversion of l-tyrosine to dopaquinone, thereby initiating melanin synthesis, i.e., melanogenesis. Although the protein has long been familiar, knowledge about its three-dimensional structure and efficient overexpression protocols emerged only recently. Consequently, for decades medicinal chemistry studies aiming at developing skin depigmenting agents relied almost exclusively on biological assays performed using mushroom tyrosinase (abTYR), producing a plethoric literature, often of little useful purpose. Indeed, several recent reports have pointed out spectacular differences in terms of interaction patterns and inhibition values between hsTYR and abTYR, including for widely used standard tyrosinase inhibitors. In this review, we summarize the last developments regarding the potential role of hsTYR in human pathologies, the advances in recombinant expression systems and structural data retrieving, and the pioneer generation of true hsTYR inhibitors. Finally, we present suggestions for the design of future inhibitors of this highly attractive target in pharmacology and dermocosmetics.


Subject(s)
Agaricales , Drug Delivery Systems/trends , Enzyme Inhibitors/administration & dosage , Melanins/antagonists & inhibitors , Monophenol Monooxygenase/antagonists & inhibitors , Pigmentation/drug effects , Amino Acid Sequence , Biological Factors/administration & dosage , Biological Factors/chemistry , Biological Factors/isolation & purification , Drug Delivery Systems/methods , Drug Design , Enzyme Inhibitors/chemistry , Humans , Melanins/chemistry , Melanins/metabolism , Melanocytes/drug effects , Melanocytes/enzymology , Melanocytes/pathology , Melanoma/drug therapy , Melanoma/enzymology , Melanoma/pathology , Monophenol Monooxygenase/metabolism , Pigmentation/physiology , Protein Structure, Secondary , Skin Lightening Preparations/administration & dosage , Skin Lightening Preparations/chemistry
19.
J Ethnopharmacol ; 262: 113138, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32726681

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Porcupine bezoar (PB) is used as folk medicine for various medical conditions including cancer treatment in Malaysia. However, its toxicity profile has never been thoroughly ascertained to confirm its safe nature as an efficacious traditional medicine in the treatment of cancer as well as other ailments. AIM OF THE STUDY: This study was aimed to reveal three different PBs' aqueous extracts(viz. PB-A, PB-B, PB-C) chemical constituent's profile using GC-MS analysis, anticancer property on A375, HeLa and MCF7 cancer cells, toxicity profile on zebrafish embryo morphology, EC50, LC50 and teratogenicity index. MATERIALS AND METHODS: PBs' extracts characterization was performed through GC-MS analysis, in vitro anticancer effect was carried out on A375, HeLa and MCF7 cancer cell lines and finally and toxicity properties on three different PBs aqueous extracts (viz. PB-A, PB-B, PB-C) were determined using zebrafish embryo model. RESULTS: The GC-MS analysis revealed 10 similar compounds in all PBs' extracts. Dilauryl thiodipropionate was found to be a major compound in all PBs' extracts followed by tetradecanoic acid. An in vitro anticancer study revealed PB extracts exerted median inhibition concentration (IC50) <50 µg/mL, on cancer cells viz. A375, HeLa and MCF7 with no significant toxicity on normal cells viz. NHDF cells. In vivo toxicity of PBs extracts found affecting tail detachment, hatching, craniofacial, brain morphology, soft tissues, edema, spinal, somites, notochord and cardiovascular system (brachycardia, disruption of blood circulation) deformities. The LC50 and EC50 demonstrated PB extracts effect as dose and time dependent with median concentration <150.0 µg/mL. Additionally, teratogenicity index (TI) viz. >1.0 revealed teratogenic property for PB extracts. CONCLUSIONS: The findings revealed that all three PBs aqueous extracts possessed anticancer activity and exhibited significant toxicological effects on zebrafish embryos with high teratogenicity index. Hence, its use as an anticancer agent requires further investigation and medical attentions to determine its safe dose.


Subject(s)
Antineoplastic Agents/toxicity , Bezoars , Biological Factors/toxicity , Embryonic Development/drug effects , Gas Chromatography-Mass Spectrometry/methods , Porcupines , Animals , Antineoplastic Agents/analysis , Antineoplastic Agents/isolation & purification , Biological Factors/analysis , Biological Factors/isolation & purification , Brachyura , Cell Line, Tumor , Dose-Response Relationship, Drug , Embryonic Development/physiology , Female , HeLa Cells , Humans , MCF-7 Cells , Male , Zebrafish
20.
J Ethnopharmacol ; 262: 112998, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32485303

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Natural bear bile powder (NBBP) has been used to treat seizures for thousands of years, but its application is greatly restricted due to ethical reasons. Cultured bear bile powder (CBBP), which is produced by biotransformation, may be an appropriate substitute for NBBP. However, the anti-convulsant effects of CBBP and its mechanisms remain unclear. AIM OF THE STUDY: This study aimed to investigate the anti-convulsant effects and possible mechanisms of CBBP in a febrile seizure (FS) rat model. MATERIALS AND METHODS: FS was induced by placing the rats in a warm water bath (45.5 °C). The incidence rate and latency of FS, and hematoxylin-eosin staining (HE) were conducted for neurological damage. The levels of 4 bile acids and 8 main neurotransmitters in vivo were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The expression of bile acid related transports, neurotransmitter receptors, inflammatory factors, neurotrophic factors and glial fibrillary acidic protein (GFAP) in hippocampal tissues were detected by real-time PCR, western blotting, and immunohistochemistry. RESULTS: Pre-treatments with CBBP and similarly, NBBP, significantly reduced the incidence rate and prolonged the latency of FS. Additionally, CBBP alleviated the histological injury induced by FS in the rat hippocampus tissue. LC-MS/MS analyses revealed that CBBP markedly increased the levels of tauroursodeoxycholic acid (TUDCA), taurochenodeoxycholic acid (TCDCA), ursodeoxycholic acid (UDCA), and chenodeoxycholic acid (CDCA) in FS rats. Furthermore, the content of gamma-aminobutyric acid (GABA) was up-regulated in rats pre-treated with CBBP whereas GFAP was down-regulated. CBBP also significantly suppressed the expression of interleukin -1ß (IL-1ß), tumor necrosis factor α (TNF-α), nuclear factor kappa B (NF-κB), and brain-derived neurotrophic factor (BDNF) and its TrkB receptors, and improved the expression of GABA type A receptors (GABAAR) and farnesoid X receptors (FXR). CONCLUSIONS: The present study demonstrated that CBBP had anti-convulsant effects in a FS rat model. CBBP may protect rats against FS, probably by up-regulating FXR, which was activated by increasing brain bile acids, up-regulating GABAergic transmission by inhibiting BDNF-TrkB signaling, and suppressing neuroinflammation by inhibiting the NF-κB pathway.


Subject(s)
Anticonvulsants/therapeutic use , Biological Factors/therapeutic use , Brain/drug effects , Inflammation Mediators/antagonists & inhibitors , Seizures, Febrile/drug therapy , Synaptic Transmission/drug effects , Animals , Anticonvulsants/isolation & purification , Anticonvulsants/pharmacology , Bile , Biological Factors/isolation & purification , Biological Factors/pharmacology , Brain/metabolism , Inflammation Mediators/metabolism , Male , Powders , Random Allocation , Rats , Rats, Sprague-Dawley , Seizures, Febrile/metabolism , Synaptic Transmission/physiology , Ursidae
SELECTION OF CITATIONS
SEARCH DETAIL
...