Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 418
Filter
1.
Clin Transl Sci ; 17(8): e13904, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39115257

ABSTRACT

With advances in medical technology, extracellular vesicles, also known as exosomes, are gaining widespread attention because of their potential therapeutic applications. However, their regulatory landscape is complex and varies across countries because of their unique intracellular mechanisms of action. The diversity of manufacturing techniques renders their standardization challenging, leading to a fragmented regulatory landscape. The current global regulatory framework of exosomes can be broadly classified into two strategies: one involves elucidating constituent components within exosomes and the other involves examining the physiological repercussions of their secretion. When using exosomes as therapeutic agents, they should be governed similarly to biological medicinal products. Similar to biologics, exosomes have been analyzed to determine their particle size and protein composition. An exosome-based therapeutic agent should be clinically approved after understanding its molecular composition and structure and demonstrating its pharmacokinetics and therapeutic efficacy. However, demonstrating the pharmacokinetics and therapeutic efficacy of exosomes is challenging for regulatory agencies. This article reviews the technical characteristics of exosomes, analyzes the trends in regulatory laws in various countries, and discusses the chemistry, manufacturing, and control requirements of clinical applications.


Subject(s)
Biological Products , Exosomes , Exosomes/metabolism , Humans , Biological Products/pharmacokinetics , Biological Products/metabolism , Animals
2.
Int J Nanomedicine ; 19: 5931-5949, 2024.
Article in English | MEDLINE | ID: mdl-38887690

ABSTRACT

The self-assembling aggregated structures of natural products have gained significant interest due to their simple synthesis, lack of carrier-related toxicity, and excellent biological efficacy. However, the mechanisms of their assembly and their ability to traverse the gastrointestinal (GI) barrier remain unclear. This review summarizes various intermolecular non-covalent interactions and aggregated structures, drawing on research indexed in Web of Science from 2010 to 2024. Cheminformatics analysis of the self-assembly behaviors of natural small molecules and their supramolecular aggregates reveals assembly-favorable conditions, aiding drug formulation. Additionally, the review explores the self-assembly properties of macromolecules like polysaccharides, proteins, and exosomes, highlighting their role in drug delivery. Strategies to overcome gastrointestinal barriers and enhance drug bioavailability are also discussed. This work underscores the potential of natural products in oral drug delivery and offers insights for designing more effective drug delivery systems.


Subject(s)
Biological Products , Drug Delivery Systems , Biological Products/chemistry , Biological Products/pharmacokinetics , Biological Products/administration & dosage , Humans , Administration, Oral , Drug Delivery Systems/methods , Biological Availability , Polysaccharides/chemistry , Polysaccharides/pharmacokinetics , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Animals , Gastrointestinal Tract/metabolism , Exosomes/chemistry
3.
J Ethnopharmacol ; 330: 118232, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38670407

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Arbutin is a naturally occurring glucoside extracted from plants, known for its antioxidant and tyrosinase inhibiting properties. It is widely used in cosmetic and pharmaceutical industries. With in-depth study of arbutin, its application in disease treatment is expanding, presenting promising development prospects. However, reports on the metabolic stability, plasma protein binding rate, and pharmacokinetic properties of arbutin are scarce. AIM OF THE STUDY: The aim of this study is to enrich the data of metabolic stability and pharmacokinetics of arbutin through the early pre-clinical evaluation, thereby providing some experimental basis for advancing arbutin into clinical research. MATERIALS AND METHODS: We developed an efficient and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for determining arbutin in plasma. We investigated the metabolic and pharmacokinetic properties of arbutin through in vitro metabolism assay, cytochrome enzymes P450 (CYP450) inhibition studies, plasma protein binding rate analysis, Caco-2 cell permeability tests, and rat pharmacokinetics to understand its in vivo performance. RESULTS: In vitro studies show that arbutin is stable, albeit with some species differences. It exhibits low plasma protein binding (35.35 ± 11.03% âˆ¼ 40.25 ± 2.47%), low lipophilicity, low permeability, short half-life (0.42 ± 0.30 h) and high oral bioavailability (65 ± 11.6%). Arbutin is primarily found in the liver and kidneys and is eliminated in the urine. It does not significantly inhibit CYP450 up to 10 µM, suggesting a low potential for drug interactions. Futhermore, preliminary toxicological experiments indicate arbutin's safety, supporting its potential as a therapeutic agent. CONCLUSION: This study provides a comprehensive analysis the drug metabolism and pharmacokinetics (DMPK) of arbutin, enriching our understanding of its metabolism stability and pharmacokinetics properties, It establishes a foundation for further structural optimization, pharmacological studies, and the clinical development of arbutin.


Subject(s)
Arbutin , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Arbutin/pharmacokinetics , Arbutin/pharmacology , Tandem Mass Spectrometry/methods , Animals , Humans , Caco-2 Cells , Male , Chromatography, Liquid/methods , Rats , Microsomes, Liver/metabolism , Microsomes, Liver/drug effects , Protein Binding , Cytochrome P-450 Enzyme System/metabolism , Biological Products/pharmacokinetics , Biological Products/pharmacology , Biological Products/chemistry , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme Inhibitors/pharmacokinetics , Liquid Chromatography-Mass Spectrometry
4.
Gastroenterol Hepatol ; 47(5): 522-552, 2024 May.
Article in English, Spanish | MEDLINE | ID: mdl-38311005

ABSTRACT

The treatment of inflammatory bowel disease has undergone a significant transformation following the introduction of biologic drugs. Thanks to these drugs, treatment goals have evolved from clinical response and remission to more ambitious objectives, such as endoscopic or radiologic remission. However, even though biologics are highly effective, a significant percentage of patients will not achieve an initial response or may lose it over time. We know that there is a direct relationship between the trough concentrations of the biologic and its therapeutic efficacy, with more demanding therapeutic goals requiring higher drug levels, and inadequate exposure being common. Therapeutic drug monitoring of biologic medications, along with pharmacokinetic models, provides us with the possibility of offering a personalized approach to treatment for patients with IBD. Over the past few years, relevant information has accumulated regarding its utility during or after induction, as well as in the maintenance of biologic treatment, in reactive or proactive strategies, and prior to withdrawal or treatment de-escalation. The aim of this document is to establish recommendations regarding the utility of therapeutic drug monitoring of biologics in patients with inflammatory bowel disease, in different clinical practice scenarios, and to identify areas where its utility is evident, promising, or controversial.


Subject(s)
Biological Products , Colitis, Ulcerative , Crohn Disease , Drug Monitoring , Humans , Colitis, Ulcerative/drug therapy , Crohn Disease/drug therapy , Biological Products/therapeutic use , Biological Products/pharmacokinetics , Inflammatory Bowel Diseases/drug therapy
5.
Mar Drugs ; 20(3)2022 Mar 20.
Article in English | MEDLINE | ID: mdl-35323514

ABSTRACT

The world is already facing the devastating effects of the SARS-CoV-2 pandemic. A disseminated mucormycosis epidemic emerged to worsen this situation, causing havoc, especially in India. This research aimed to perform a multitargeted docking study of marine-sponge-origin bioactive compounds against mucormycosis. Information on proven drug targets and marine sponge compounds was obtained via a literature search. A total of seven different targets were selected. Thirty-five compounds were chosen using the PASS online program. For homology modeling and molecular docking, FASTA sequences and 3D structures for protein targets were retrieved from NCBI and PDB databases. Autodock Vina in PyRx 0.8 was used for docking studies. Further, molecular dynamics simulations were performed using the IMODS server for top-ranked docked complexes. Moreover, the drug-like properties and toxicity analyses were performed using Lipinski parameters in Swiss-ADME, OSIRIS, ProTox-II, pkCSM, and StopTox servers. The results indicated that naamine D, latrunculin A and S, (+)-curcudiol, (+)-curcuphenol, aurantoside I, and hyrtimomine A had the highest binding affinity values of -8.8, -8.6, -9.8, -11.4, -8.0, -11.4, and -9.0 kcal/mol, respectively. In sum, all MNPs included in this study are good candidates against mucormycosis. (+)-curcudiol and (+)-curcuphenol are promising compounds due to their broad-spectrum target inhibition potential.


Subject(s)
Antifungal Agents , Biological Products , COVID-19 Drug Treatment , Mucormycosis/drug therapy , Porifera/chemistry , SARS-CoV-2 , Animals , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacokinetics , Antifungal Agents/toxicity , Biological Products/chemistry , Biological Products/isolation & purification , Biological Products/pharmacokinetics , Biological Products/toxicity , COVID-19/complications , Coinfection , Fungal Proteins/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Mucormycosis/etiology , Toxicity Tests, Acute
6.
Mar Drugs ; 20(2)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35200627

ABSTRACT

As a continuation of our research on the chemical reactivity, pharmacokinetics and ADMET properties of cyclopeptides of marine origin with potential therapeutic abilities, in this work our already presented integrated molecular modeling protocol has been used for the study of the chemical reactivity and bioactivity properties of the Veraguamides A-G family of marine natural drugs. This protocol results from the estimation of the conceptual density functional theory (CDFT) chemical reactivity descriptors together with several chemoinformatics tools commonly considered within the process of development of new therapeutic drugs. CP-CDFT is a branch of computational chemistry and molecular modeling dedicated to the study of peptides, and it is a protocol that allows the estimation with great accuracy of the CDFT-based reactivity descriptors and the associated physical and chemical properties, which can aid in determining the ability of the studied peptides to behave as potential useful drugs. Moreover, the superiority of the MN12SX density functional over other long-range corrected density functionals for the prediction of chemical and physical properties in the presence of water as the solvent is clearly demonstrated. The research was supplemented with an investigation of the bioactivity of the molecular systems and their ADMET (absorption, distribution, metabolism, excretion, and toxicity) parameters, as is customary in medicinal chemistry. Some instances of the CDFT-based chemical reactivity descriptors' capacity to predict the pKas of peptides as well as their potential as AGE inhibitors are also shown.


Subject(s)
Aquatic Organisms/metabolism , Biological Products/pharmacokinetics , Depsipeptides/pharmacokinetics , Biological Products/chemistry , Biological Products/toxicity , Cheminformatics , Density Functional Theory , Depsipeptides/chemistry , Depsipeptides/toxicity , Models, Molecular
7.
BMC Complement Med Ther ; 22(1): 35, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35120520

ABSTRACT

BACKGROUND: The chemokine CXCL12 and its two receptors (CXCR4 and CXCR7) are involved in inflammation and hematopoietic cell trafficking. This study was designed to investigate molecular docking interactions of four popular cardiovascular-active natural compounds; curcumin, resveratrol, quercetin, and eucalyptol; with these receptors and to predict their drug-like properties. We hypothesize that these compounds can modify CXCL12/CXCR4/CXCR7 pathway offering benefits for coronary artery disease patients. METHODS: Docking analyses were carried and characterized by Molecular Environment (MOE) software. Protein Data Bank ( http://www.rcsb.org/ ) has been retrieved from protein structure generation and crystal structures of CXCR4 and CXCR7 receptors (PDB code = 3ODU and 6K3F). The active sites of these receptors were evaluated and extracted from full protein and molecular docking protocol was done for compounds against them. The presented parameters included docking scores, ligand binding efficiency, and hydrogen bonding. The pharmacokinetic/toxic properties (ADME/T) were calculated using SwissADME, ProTox-II, and Pred-hERG softwares to predict drug-like properties of the compounds. The thermochemical and molecular orbital analysis, and molecular dynamics simulations were also done. RESULTS: All compounds showed efficient interactions with the CXCR4 and CXCR7 receptors. The docking scores toward proteins 3ODU of CXCR4 and 6K3F of CXCR7 were - 7.71 and - 7.17 for curcumin, - 5.97 and - 6.03 for quercetin, - 5.68 and - 5.49 for trans-resveratrol, and - 4.88 and - 4.70 for (1 s,4 s)-eucalyptol respectively indicating that all compounds, except quercetin, have more interactions with CXCR4 than with CXCR7. The structurally and functionally important residues in the interactive sites of docked CXCR4-complex and CXCR7-complex were identified. The ADME analysis showed that the compounds have drug-like properties. Only (1 s,4 s)-Eucalyptol has potential weak cardiotoxicity. The results of thermochemical and molecular orbital analysis and molecular dynamics simulation validated outcomes of molecular docking study. CONCLUSIONS: Curcumin showed the top binding interaction against active sites of CXCR4 and CXCR7 receptors, with the best safety profile, followed by quercetin, resveratrol, and eucalyptol. All compounds demonstrated drug-like properties. Eucalyptol has promising potential because it can be used by inhalation or skin massage. To our knowledge, this is the first attempt to find binding interactions of these natural agents with CXCR4 and CXCR7 receptors and to predict their druggability.


Subject(s)
Biological Products , Cardiovascular Agents , Molecular Dynamics Simulation , Receptors, CXCR4 , Receptors, CXCR , Signal Transduction , Biological Products/pharmacokinetics , Cardiovascular Agents/pharmacokinetics , Humans , Molecular Docking Simulation
8.
Eur J Med Chem ; 229: 114067, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34973507

ABSTRACT

Drugs have been largely inspired from natural products, while enzymes underlying their biosynthesis have enabled complex structures and diverse bioactivities. Nevertheless, the high enzyme specificity and limited in vivo precursor types have restricted the natural product reservoir, but Nature has imprinted natural products with active sites, which can be readily modified by chemosynthesis with various functional groups for more favorable druggability. Here in the less exploited fungal natural products, we introduced CtvA, a polyketide synthase for a mycotoxin citreoviridin biosynthesis in Aspergillus, into an endophytic fungus Calcarisporium arbuscula to expand tetrahydrofuran (THF) into a dioxabicyclo-octane (DBO) ring moiety based on versatility and promiscuity of the aurovertin biosynthetic enzyme. Alternative acylations on the hydroxyl groups essential for cell toxicity by chemosynthesis produced compounds with improved anti-tumor activities and pharmacokinetics. Thus, we showed an effective strategic way to optimize the fungal natural product efficiently for more promising drug development.


Subject(s)
Antineoplastic Agents/chemistry , Aurovertins/chemistry , Biological Products/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Octanes/chemistry , Polyketide Synthases/metabolism , Acylation , Antineoplastic Agents/pharmacokinetics , Aspergillus , Biological Products/pharmacokinetics , Cell Proliferation , Furans/chemistry , Humans , Hypocreales , Mycotoxins/metabolism
9.
J Pharmacol Exp Ther ; 380(3): 162-170, 2022 03.
Article in English | MEDLINE | ID: mdl-35058349

ABSTRACT

The novel wound-healing biologic EPICERTIN, a recombinant analog of cholera toxin B subunit, is in early development for the management of ulcerative colitis. This study established for the first time the pharmacokinetics (PK), bioavailability (BA), and acute safety of EPICERTIN in healthy and dextran sodium sulfate-induced colitic mice and healthy rats. For PK and BA assessments, single administrations of various concentrations of EPICERTIN were given intravenously or intrarectally to healthy and colitic C57BL/6 mice and to healthy Sprague-Dawley rats. After intravenous administration to healthy animals, the drug's plasma half-life (t 1/2) for males and females was 0.26 and 0.3 hours in mice and 19.4 and 14.5 hours in rats, respectively. After intrarectal administration, drug was detected at very low levels in only four samples of mouse plasma, with no correlation to colon epithelial integrity. No drug was detected in rat plasma. A single intrarectal dose of 0.1 µM (0.6 µg/mouse) EPICERTIN significantly facilitated the healing of damaged colonic epithelium as determined by disease activity index and histopathological scoring, whereas 10-fold higher or lower concentrations showed no effect. For acute toxicity evaluation, healthy rats were given a single intrarectal administration of various doses of EPICERTIN with sacrifice on Day 8, recording body weight, morbidity, mortality, clinical pathology, and gross necropsy observations. There were no drug-related effects of toxicological significance. The no observed adverse effect level (intrarectal) in rats was determined to be 5 µM (307 µg/animal, or 5.2 µg drug/cm2 of colorectal surface area), which is 14 times the anticipated intrarectally delivered clinical dose. SIGNIFICANCE STATEMENT: EPICERTIN is a candidate wound-healing biologic for the management of ulcerative colitis. This study determined for the first time the intravenous and intrarectal pharmacokinetics and bioavailability of the drug in healthy and colitic mice and healthy rats, and its acute safety in a dose-escalation study in rats. An initial therapeutic dose in colitic mice was also established. EPICERTIN delivered intrarectally was minimally absorbed systemically, was well tolerated, and induced epithelial wound healing topically at a low dose.


Subject(s)
Biological Products , Colitis, Ulcerative , Wound Healing , Administration, Topical , Animals , Biological Products/administration & dosage , Biological Products/adverse effects , Biological Products/pharmacokinetics , Colitis, Ulcerative/drug therapy , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Rodentia , Wound Healing/drug effects
11.
Biomed Pharmacother ; 145: 112416, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34781147

ABSTRACT

Phytochemicals are plant-derived bioactive compounds, which have been widely used for therapeutic purposes. Due to the poor water-solubility, low bioavailability and non-specific targeting characteristic, diverse classes of nanocarriers are utilized for encapsulation and delivery of bio-effective agents. Cell-derived nanovesicles (CDNs), known for exosomes or extracellular vesicles (EVs), are biological nanoparticles with multiple functions. Compared to the artificial counterpart, CDNs hold great potential in drug delivery given the higher stability, superior biocompatibility and the lager capability of encapsulating bioactive molecules. Here, we provide a bench-to-bedside review of CDNs-based nanoplatform, including the bio-origin, preparation, characterization and functionalization. Beyond that, the focus is laid on the therapeutic effect of CDNs-mediated drug delivery for natural products. The state-of-art development as well as some pre-clinical applications of using CDNs for disease treatment is also summarized. It is highly expected that the continuing development of CDNs-based delivery systems will further promote the clinical utilization and translation of phyto-nanomedicines.


Subject(s)
Drug Delivery Systems , Nanoparticles , Phytochemicals/administration & dosage , Animals , Biological Products/administration & dosage , Biological Products/chemistry , Biological Products/pharmacokinetics , Drug Carriers/chemistry , Drug Development , Exosomes/metabolism , Extracellular Vesicles/metabolism , Humans , Nanomedicine , Phytochemicals/chemistry , Phytochemicals/pharmacokinetics , Solubility
12.
J Clin Pharmacol ; 62(1): 36-45, 2022 01.
Article in English | MEDLINE | ID: mdl-34411322

ABSTRACT

The risk in terms of safety or diminished efficacy of switching between an originator biological product and a proposed interchangeable product is an important consideration for interchangeability evaluation in the regulatory framework. This simulation study evaluated the impact of several switching study design scenarios on the pharmacokinetic (PK) assessment between a virtual originator biological product and a virtual proposed interchangeable product. Our results show that (1) at least 3 switches are needed to optimize the detection of potential PK differences, (2) the initial incidence of antidrug antibodies after treatment with the reference product in the lead-in period is a significant covariate affecting the PK results, and (3) the area under the concentration-time curve is more sensitive than peak concentration in assessing the impact of switching on PK similarity. Our simulation work illustrates that a range of factors should be carefully considered when designing a switching study for the assessment of interchangeability between 2 biological products.


Subject(s)
Biological Products/pharmacokinetics , Area Under Curve , Biosimilar Pharmaceuticals/pharmacokinetics , Computer Simulation , Humans , Metabolic Clearance Rate , Models, Biological , Therapeutic Equivalency
13.
Clin Transl Sci ; 15(2): 322-329, 2022 02.
Article in English | MEDLINE | ID: mdl-34699676

ABSTRACT

Pharmacokinetic drug interactions precipitated by botanical and other natural products (NPs) remain critically understudied. Investigating these complex interactions is fraught with difficulties due to the methodologic and technical challenges associated with the inherently complex chemistries and product variability of NPs. This knowledge gap is perpetuated by a continuing absence of a harmonized framework regarding the design of clinical pharmacokinetic studies of NPs and NP-drug interactions. Accordingly, this Recommended Approach, the fourth in a series of Recommended Approaches released by the Center of Excellence for Natural Product Drug Interaction Research (NaPDI Center), provides recommendations for the design of clinical pharmacokinetic studies involving NPs. Building on prior Recommended Approaches and data generated from the NaPDI Center, such a framework is presented for the design of (1) phase 0 studies to assess the pharmacokinetics of an NP and (2) clinical pharmacokinetic NP-drug interaction studies. Suggestions for NP sourcing, dosing, study design, participant selection, sampling periods, and data analysis are presented. With the intent to begin addressing the gap between regulatory agencies' guidance documents about drug-drug interactions and contemporary NPDI research, the objective of this Recommended Approach is to propose methods for the design of clinical pharmacokinetic studies of NPs and NP-drug interactions.


Subject(s)
Advisory Committees , Biological Products/pharmacokinetics , Drug Interactions , Pharmaceutical Preparations , Guidelines as Topic , Humans , Research Design
14.
Handb Exp Pharmacol ; 273: 97-120, 2022.
Article in English | MEDLINE | ID: mdl-33474672

ABSTRACT

Neuropharmacokinetics considers cerebral drug distribution as a critical process for central nervous system drug action as well as for drug penetration through the CNS barriers. Brain distribution of small molecules obeys classical rules of drug partition, permeability, binding to fluid proteins or tissue components, and tissue perfusion. The biodistribution of all drugs, including both small molecules and biologics, may also be influenced by specific brain properties related to brain anatomy and physiological barriers, fluid dynamics, and cellular and biochemical composition, each of which can exhibit significant interspecies differences. All of these properties contribute to select optimal dosing paradigms and routes of drug delivery to reach brain targets for classical small molecule drugs as well as for biologics. The importance of these properties for brain delivery and exposure also highlights the need for efficient new analytical technologies to more comprehensively investigate drug distribution in the CNS, a complex multi-compartmentalized organ system.


Subject(s)
Biological Products , Brain , Biological Products/pharmacokinetics , Blood-Brain Barrier/metabolism , Brain/metabolism , Drug Delivery Systems , Humans , Pharmaceutical Preparations/metabolism , Species Specificity , Tissue Distribution
15.
Pharm Res ; 38(12): 2129-2145, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34904202

ABSTRACT

PURPOSE: Rebamipide (REB) a potent anti-ulcer agent, has not been exploited to its full potential, owing to it extremely poor solubility, leading to highly diminutive bioavailability (<10%). The purpose is to carry out its solid-state modification. METHOD: Cocrystallisation was done with three GRAS coformers namely citric acid (CA), 3,4-dihydroxybenzoic acid (DHBA) and oxalic acid (OXA) employing the liquid-assisted grinding method. Cocrystal formation was based upon amide-carboxyl and amide-hydroxyl supramolecular synthons. Characterization of novel cocrystals i.e. RCA, RDHBA and ROXA was carried out by DSC, PXRD and additionally by FT-IR spectroscopy. Chemical structures have been determined utilizing the PXRD pattern by Material Studio®. Furthermore, cocrystals were subjected to solubility and intrinsic dissolution rate (IDR) evaluation. Also, pharmacodynamic and pharmacokinetic studies were performed and compared with pure rebamipide. RESULT: The appearances of a single sharp melting endotherm in DSC, along with novel characteristic peaks in PXRD infer the existence of a new crystalline form. Shifting in characteristic vibrations in FT-IR spectroscopy supports the establishment of distinct hydrogen-bonded networks. Structural determination revealed that RCA crystallizes in 'Bb2b' space groups whereas RDHBA in 'P1' and ROXA crystallize out in the 'P-1' space group. All the cocrystals exhibited superior apparent solubility and almost 7-13 folds increase in IDR. Furthermore, 1.6-2.5 folds enhancement in relative bioavailability and remarkable amplification in anti-ulcer, anti-inflammatory and the antioxidant potential of these cocrystals were observed. CONCLUSION: The study ascertains the advantages of cocrystallization, with RCA showing greatest potential and suggests a viable alternative approach for improved formulation of rebamipide.


Subject(s)
Alanine/analogs & derivatives , Biological Products/chemistry , Chemical Engineering , Edema/drug therapy , Quinolones/chemistry , Stomach Ulcer/drug therapy , Alanine/administration & dosage , Alanine/chemistry , Alanine/pharmacokinetics , Animals , Biological Availability , Biological Products/pharmacokinetics , Carrageenan/administration & dosage , Carrageenan/immunology , Chemistry, Pharmaceutical/methods , Crystallization , Disease Models, Animal , Drug Compounding/methods , Edema/chemically induced , Edema/immunology , Humans , Hydrogen Bonding , Indomethacin , Male , Powder Diffraction , Quinolones/administration & dosage , Quinolones/pharmacokinetics , Rats , Spectroscopy, Fourier Transform Infrared , Stomach Ulcer/chemically induced
16.
Molecules ; 26(21)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34770873

ABSTRACT

As antimicrobial resistance has been increasing, new antimicrobial agents are desperately needed. Azalomycin F, a natural polyhydroxy macrolide, presents remarkable antimicrobial activities. To investigate its pharmacokinetic characteristics in rats, the concentrations of azalomycin F contained in biological samples, in vitro, were determined using a validated high-performance liquid chromatography-ultraviolet (HPLC-UV) method, and, in vivo, samples were assayed by an ultra-high performance liquid chromatography-tandem mass spectrometric (UPLC-MS/MS) method. Based on these methods, the pharmacokinetics of azalomycin F were first investigated. Its plasma concentration-time courses and pharmacokinetic parameters in rats were obtained by a non-compartment model for oral (26.4 mg/kg) and intravenous (2.2 mg/kg) administrations. The results indicate that the oral absolute bioavailability of azalomycin F is very low (2.39 ± 1.28%). From combinational analyses of these pharmacokinetic parameters, and of the results of the in-vitro absorption and metabolism experiments, we conclude that azalomycin F is absorbed relatively slowly and with difficulty by the intestinal tract, and subsequently can be rapidly distributed into the tissues and/or intracellular f of rats. Azalomycin F is stable in plasma, whole blood, and the liver, and presents plasma protein binding ratios of more than 90%. Moreover, one of the major elimination routes of azalomycin F is its excretion through bile and feces. Together, the above indicate that azalomycin F is suitable for administration by intravenous injection when used for systemic diseases, while, by oral administration, it can be used in the treatment of diseases of the gastrointestinal tract.


Subject(s)
Biological Products/pharmacokinetics , Macrolides/pharmacokinetics , Streptomyces/chemistry , Animals , Biofilms , Biological Products/blood , Biological Products/chemistry , Liver/chemistry , Liver/metabolism , Macrolides/blood , Macrolides/chemistry , Male , Rats , Rats, Sprague-Dawley , Streptomyces/metabolism
17.
Eur J Pharm Biopharm ; 169: 189-199, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34756974

ABSTRACT

Poor solubility of drug candidates is a well-known and thoroughly studied challenge in the development of oral dosage forms. One important approach to tackle this challenge is the formulation as an amorphous solid dispersion (ASD). To reach the desired biopharmaceutical improvement a high supersaturation has to be reached quickly and then be conserved long enough for absorption to take place. In the presented study, various formulations of regorafenib have been produced and characterized in biorelevant in-vitro experiments. Povidone-based formulations, which are equivalent to the marketed product Stivarga®, showed a fast drug release but limited stability and robustness after that. In contrast, HPMCAS-based formulations exhibited excellent stability of the supersaturated solution, but unacceptably slow drug release. The attempt to combine the desired attributes of both formulations by producing a ternary ASD failed. Only co-administration of HPMCAS as an external stabilizer to the rapidly releasing Povidone-based ASDs led to the desired dissolution profile and high robustness. This optimized formulation was tested in a pharmacokinetic animal model using Wistar rats. Despite the promising in-vitro results, the new formulation did not perform better in the animal model. No differences in AUC could be detected when compared to the conventional (marketed) formulation. These data represent to first in-vivo study of the new concept of external stabilization of ASDs. Subsequent in-vitro studies revealed that temporary exposure of the ASD to gastric medium had a significant and long-lasting effect on the dissolution performance and externally administered stabilizer could not prevent this sufficiently. By applying the co-administered HPMCAS as an enteric coating onto Stivarga tablets, a new bi-functional approach was realized. This approach achieved the desired tailoring of the dissolution profile and high robustness against gastric medium as well as against seeding.


Subject(s)
Drug Liberation/drug effects , Methylcellulose/analogs & derivatives , Phenylurea Compounds , Pyridines , Solubility/drug effects , Animals , Biological Products/administration & dosage , Biological Products/pharmacokinetics , Dosage Forms , Drug Administration Routes , Drug Compounding/methods , Excipients/administration & dosage , Excipients/pharmacokinetics , Methylcellulose/administration & dosage , Methylcellulose/pharmacokinetics , Phenylurea Compounds/administration & dosage , Phenylurea Compounds/pharmacokinetics , Povidone/chemistry , Povidone/pharmacology , Pyridines/administration & dosage , Pyridines/pharmacokinetics , Rats , Solid Phase Extraction/methods , Tablets, Enteric-Coated/administration & dosage , Tablets, Enteric-Coated/pharmacokinetics
18.
Mar Drugs ; 19(10)2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34677481

ABSTRACT

This study provides a review of all isolated natural products (NPs) reported for sponges within the order Verongiida (1960 to May 2020) and includes a comprehensive compilation of their geographic and physico-chemical parameters. Physico-chemical parameters were used in this study to infer pharmacokinetic properties as well as the potential pharmaceutical potential of NPs from this order of marine sponge. In addition, a network analysis for the NPs produced by the Verongiida sponges was applied to systematically explore the chemical space relationships between taxonomy, secondary metabolite and drug score variables, allowing for the identification of differences and correlations within a dataset. The use of scaffold networks as well as bipartite relationship networks provided a platform to explore chemical diversity as well as the use of chemical similarity networks to link pharmacokinetic properties with structural similarity. This study paves the way for future applications of network analysis procedures in the field of natural products for any order or family.


Subject(s)
Biological Products/pharmacokinetics , Network Pharmacology , Porifera , Animals , Aquatic Organisms , Biological Products/chemistry , Drug Discovery
19.
Life Sci ; 286: 120042, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34678262

ABSTRACT

At present, little information on the biopharmaceutical behaviour of proton pump inhibitors (PPIs) describing their absorption and biodistribution in vivo has been reported because the extreme instability of PPIs in the gastrointestinal environment makes it difficult to analyze such behaviour. In this work, a modified rat in situ intestinal perfusion model was employed to investigate absorption in the gastrointestinal tract and subsequent biodistribution of several PPIs (ilaprazole, esomeprazole and rabeprazole), which have different physicochemical properties. Our data indicated that PPIs exhibited significantly enhanced absorption rates in the whole intestine, including the duodenum, jejunum, ileum and colon, corresponding to the increase in the oil-water partition coefficient (LogP). PPIs and corresponding salt types showed no obvious differences in absorption, implying that solubility changes in the PPI have little effect on its absorption in the gastrointestinal tract. Among these PPIs, ilaprazole presented a more stable intestinal absorption behaviour, as well as more distribution and longer residence time in the stomach by HPLC-MS/MS analysis and radioactivity counts after 14C radiolabelling. These results may be useful information for PPI optimization and oral formulation design.


Subject(s)
Absorption, Physicochemical/drug effects , Intestinal Absorption/drug effects , Proton Pump Inhibitors/pharmacology , 2-Pyridinylmethylsulfinylbenzimidazoles/pharmacology , Absorption, Physicochemical/physiology , Adsorption , Animals , Biological Products/pharmacokinetics , Biological Products/pharmacology , Chemical Phenomena/drug effects , China , Esomeprazole/pharmacology , Female , Ileum/metabolism , Intestinal Absorption/physiology , Jejunum/metabolism , Male , Proton Pump Inhibitors/metabolism , Proton Pump Inhibitors/pharmacokinetics , Rabeprazole/pharmacology , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry/methods , Tissue Distribution/drug effects
20.
Curr Top Med Chem ; 21(26): 2365-2373, 2021.
Article in English | MEDLINE | ID: mdl-34525921

ABSTRACT

Natural products are an important source of bioactive molecules. However, the development of biological applications based on these compounds is hindered by intrinsic problems in their solubility, volatility, degradation, and bioavailability. Nanocarriers as drug administration systems promise to overcome these limitations by providing controlled and directed delivery. This review aims to present 1) the most frequently used nanocarriers as natural product administration systems, based on the progress of controlled and directed release, and 2) the challenges associated with the use of nanocarriers as therapeutic agents.


Subject(s)
Biological Products/administration & dosage , Biological Products/pharmacokinetics , Drug Carriers/administration & dosage , Drug Delivery Systems/methods , Nanostructures/administration & dosage , Animals , Biological Products/chemistry , Humans , Nanomedicine/methods
SELECTION OF CITATIONS
SEARCH DETAIL