Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.658
Filter
1.
J Affect Disord ; 356: 363-370, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38615848

ABSTRACT

BACKGROUND: Previous neuroimaging and pathological studies have found myelin-related abnormalities in bipolar disorder (BD), which prompted the use of magnetic resonance (MR) imaging technology sensitive to neuropathological changes to explore its neuropathological basis. We holistically investigated alterations in myelin within BD patients by inhomogeneous magnetization transfer (ihMT), which is sensitive and specific to myelin content. METHODS: Thirty-one BD and 42 healthy controls (HC) were involved. Four MR metrics, i.e., ihMT ratio (ihMTR), pseudo-quantitative ihMT (qihMT), magnetization transfer ratio and pseudo-quantitative magnetization transfer (qMT), were compared between groups using analysis methods based on whole-brain voxel-level and white matter regions of interest (ROI), respectively. RESULTS: The voxel-wise analysis showed significantly inter-group differences of ihMTR and qihMT in the corpus callosum. The ROI-wise analysis showed that ihMTR, qihMT, and qMT values in BD group were significantly lower than that in HC group in the genu and body of corpus callosum, left anterior limb of the internal capsule, left anterior corona radiate, and bilateral cingulum (p < 0.001). And the qihMT in genu of corpus callosum and right cingulum were negatively correlated with depressive symptoms in BD group. LIMITATIONS: This study is based on cross-sectional data and the sample size is limited. CONCLUSION: These findings suggest the reduced myelin content of anterior midline structure in the bipolar patients, which might be a critical pathophysiological feature of BD.


Subject(s)
Bipolar Disorder , Magnetic Resonance Imaging , Myelin Sheath , Humans , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/pathology , Female , Male , Adult , Myelin Sheath/pathology , Middle Aged , Corpus Callosum/diagnostic imaging , Corpus Callosum/pathology , White Matter/diagnostic imaging , White Matter/pathology , Case-Control Studies , Brain/diagnostic imaging , Brain/pathology
2.
Schizophr Bull ; 50(3): 533-544, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38206841

ABSTRACT

BACKGROUND: The hypothalamus is central to many hormonal and autonomous nervous system pathways. Emerging evidence indicates that these pathways may be disrupted in schizophrenia and bipolar disorder. Yet, few studies have examined the volumes of hypothalamic subunits in these patient groups. We compared hypothalamic subunit volumes in individuals with psychotic disorders to healthy controls. STUDY DESIGN: We included 344 patients with schizophrenia spectrum disorders (SCZ), 340 patients with bipolar disorders (BPD), and 684 age- and-sex-matched healthy controls (CTR). Total hypothalamus and five hypothalamic subunit volumes were extracted from T1-weighted magnetic resonance imaging (MRI) using an automated Bayesian segmentation method. Regression models, corrected for age, age2, sex, and segmentation-based intracranial volume (sbTIV), were used to examine diagnostic group differences, interactions with sex, and associations with clinical symptoms, antipsychotic medication, antidepressants and mood stabilizers. STUDY RESULTS: SCZ had larger volumes in the left inferior tubular subunit and smaller right anterior-inferior, right anterior-superior, and right posterior hypothalamic subunits compared to CTR. BPD did not differ significantly from CTR for any hypothalamic subunit volume, however, there was a significant sex-by-diagnosis interaction. Analyses stratified by sex showed smaller right hypothalamus and right posterior subunit volumes in male patients, but not female patients, relative to same-sex controls. There was a significant association between BPD currently taking antipsychotic medication and the left inferior tubular subunits volumes. CONCLUSIONS: Our results show regional-specific alterations in hypothalamus subunit volumes in individuals with SCZ, with relevance to HPA-axis dysregulation, circadian rhythm disruption, and cognition impairment.


Subject(s)
Bipolar Disorder , Hypothalamus , Magnetic Resonance Imaging , Schizophrenia , Humans , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/physiopathology , Bipolar Disorder/metabolism , Bipolar Disorder/drug therapy , Bipolar Disorder/pathology , Schizophrenia/diagnostic imaging , Schizophrenia/physiopathology , Schizophrenia/metabolism , Schizophrenia/drug therapy , Schizophrenia/pathology , Male , Female , Adult , Hypothalamus/diagnostic imaging , Hypothalamus/metabolism , Hypothalamus/physiopathology , Middle Aged , Young Adult
3.
Schizophr Bull ; 50(1): 177-186, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37606284

ABSTRACT

BACKGROUND AND HYPOTHESIS: Individuals at familial risk for developing schizophrenia (FRSZ) or bipolar disorder (FRBD) have shared and unique genetic risks. Few studies have compared neural activation between these two groups. Therefore, the present meta-analysis investigated functional brain similarities and differences between FRSZ and FRBD individuals. STUDY DESIGN: A systematic literature review was conducted of articles that compared FRSZ or FRBD individuals to healthy controls (31 FRSZ and 22 FRBD). Seed-based d mapping was used to conduct the meta-analysis. Analyses included comparisons of FRSZ to controls, FRBD to controls, and both relative groups to each other. STUDY RESULTS: Using a highly conservative family-wise error rate correction, there were no significant findings. Using a less conservative threshold, FRSZ compared to controls had lower activation in the left precuneus (Puncorrected = .02) across all studies and in the left middle frontal gyrus (Puncorrected = .03) in nonsocial cognition studies. FRBD compared to controls had lower activation in the left superior parietal gyrus (Puncorrected = .03) and right angular gyrus (Puncorrected = .03) in nonsocial cognition studies, and higher activation in the left superior frontal gyrus (Puncorrected = .01) in social tasks. Differences between FRSZ and FRBD were not significant. CONCLUSIONS: There were few robust differences between FRSZ or FRBD compared to controls. This suggests only weak support for neural activation differences between individuals at genetic risk for schizophrenia or bipolar disorder and controls. The tentative findings observed were in different brain regions for FRSZ and FRBD, with no strong evidence for shared effects between schizophrenia and bipolar genetic risk on neural activation.


Subject(s)
Bipolar Disorder , Schizophrenia , Humans , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/genetics , Bipolar Disorder/pathology , Schizophrenia/diagnostic imaging , Schizophrenia/genetics , Schizophrenia/pathology , Brain , Magnetic Resonance Imaging/methods , Genetic Predisposition to Disease
4.
Psychol Med ; 54(2): 278-288, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37212052

ABSTRACT

BACKGROUND: Individuals with bipolar disorder are commonly correctly diagnosed a decade after symptom onset. Machine learning techniques may aid in early recognition and reduce the disease burden. As both individuals at risk and those with a manifest disease display structural brain markers, structural magnetic resonance imaging may provide relevant classification features. METHODS: Following a pre-registered protocol, we trained linear support vector machine (SVM) to classify individuals according to their estimated risk for bipolar disorder using regional cortical thickness of help-seeking individuals from seven study sites (N = 276). We estimated the risk using three state-of-the-art assessment instruments (BPSS-P, BARS, EPIbipolar). RESULTS: For BPSS-P, SVM achieved a fair performance of Cohen's κ of 0.235 (95% CI 0.11-0.361) and a balanced accuracy of 63.1% (95% CI 55.9-70.3) in the 10-fold cross-validation. In the leave-one-site-out cross-validation, the model performed with a Cohen's κ of 0.128 (95% CI -0.069 to 0.325) and a balanced accuracy of 56.2% (95% CI 44.6-67.8). BARS and EPIbipolar could not be predicted. In post hoc analyses, regional surface area, subcortical volumes as well as hyperparameter optimization did not improve the performance. CONCLUSIONS: Individuals at risk for bipolar disorder, as assessed by BPSS-P, display brain structural alterations that can be detected using machine learning. The achieved performance is comparable to previous studies which attempted to classify patients with manifest disease and healthy controls. Unlike previous studies of bipolar risk, our multicenter design permitted a leave-one-site-out cross-validation. Whole-brain cortical thickness seems to be superior to other structural brain features.


Subject(s)
Bipolar Disorder , Humans , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/pathology , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , Machine Learning , Recognition, Psychology , Support Vector Machine
5.
Mol Psychiatry ; 28(11): 4915-4923, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37596354

ABSTRACT

According to the operational diagnostic criteria, psychiatric disorders such as schizophrenia (SZ), bipolar disorder (BD), major depressive disorder (MDD), and autism spectrum disorder (ASD) are classified based on symptoms. While its cluster of symptoms defines each of these psychiatric disorders, there is also an overlap in symptoms between the disorders. We hypothesized that there are also similarities and differences in cortical structural neuroimaging features among these psychiatric disorders. T1-weighted magnetic resonance imaging scans were performed for 5,549 subjects recruited from 14 sites. Effect sizes were determined using a linear regression model within each protocol, and these effect sizes were meta-analyzed. The similarity of the differences in cortical thickness and surface area of each disorder group was calculated using cosine similarity, which was calculated from the effect sizes of each cortical regions. The thinnest cortex was found in SZ, followed by BD and MDD. The cosine similarity values between disorders were 0.943 for SZ and BD, 0.959 for SZ and MDD, and 0.943 for BD and MDD, which indicated that a common pattern of cortical thickness alterations was found among SZ, BD, and MDD. Additionally, a generally smaller cortical surface area was found in SZ and MDD than in BD, and the effect was larger in SZ. The cosine similarity values between disorders were 0.945 for SZ and MDD, 0.867 for SZ and ASD, and 0.811 for MDD and ASD, which indicated a common pattern of cortical surface area alterations among SZ, MDD, and ASD. Patterns of alterations in cortical thickness and surface area were revealed in the four major psychiatric disorders. To our knowledge, this is the first report of a cross-disorder analysis conducted on four major psychiatric disorders. Cross-disorder brain imaging research can help to advance our understanding of the pathogenesis of psychiatric disorders and common symptoms.


Subject(s)
Autism Spectrum Disorder , Bipolar Disorder , Depressive Disorder, Major , Mental Disorders , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/pathology , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/pathology , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/pathology , Mental Disorders/pathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Magnetic Resonance Imaging/methods
6.
Psychiatry Clin Neurosci ; 77(11): 613-621, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37585287

ABSTRACT

AIM: Elevated inflammation and larger choroid plexus (ChP) volume has been previously identified in mood disorders. Connections between inflammation, ChP, and clinical symptoms in bipolar II depression (BDII-D) are unclear. Data-driven clustering based on neuroanatomical phenotypes may help to elucidate neurobiological associations in BDII-D. METHODS: Inflammatory cytokines, clinical symptoms, and neuroanatomical features were assessed in 150 BDII-D patients. Sixty-eight cortical surface area (SA) and 19 subcortical volumes were extracted using FreeSurfer. The ChP volume was segmented manually using 3D Slicer. Regularized canonical correlation analysis was used to identify significantly correlated components between cortical SA and subcortical volumes (excluding the ChP), followed by k-means clustering to define brain-derived subgroups of BDII-D. Low-grade inflammation was derived by averaging the standardized z scores of interleukin (IL)-6, IL-1ß, and tumor necrosis factor-α (TNF-α), which were computed to create a composite z-value score. Partial Pearson correlations followed by multiple comparison correction were conducted to explore associations between inflammation, clinical symptoms, and ChP volume. RESULTS: Subgroup I demonstrated smaller subcortical volume and cortical SA, higher inflammation, and larger ChP volume compared with subgroup II. Greater ChP volume was associated with a higher low-grade inflammation (mean r = 0.289, q = 0.003), CRP (mean r = 0.249, q = 0.007), IL-6 (left r = 0.200, q = 0.03), and TNF-α (right r = 0.226, q = 0.01), while greater IL-1ß was significantly associated with severe depressive symptoms in BDII-D (r = 0.218, q = 0.045). CONCLUSIONS: Neuroanatomically-derived subgroups of BDII-D differed in their inflammation levels and ChP volume. These findings suggest an important role of elevated peripheral inflammation and larger ChP in BDII-D.


Subject(s)
Bipolar Disorder , Humans , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/pathology , Depression , Choroid Plexus/diagnostic imaging , Choroid Plexus/pathology , Tumor Necrosis Factor-alpha , Brain/pathology , Inflammation/pathology
7.
J Affect Disord ; 339: 984-997, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37481130

ABSTRACT

BACKGROUND: Pediatric bipolar disorder (PBD) is a severe disorder characterized by mood fluctuations starting at a young age. Several neuroimaging studies revealed a specific biological signature of PBD involving alterations in the amygdala and prefrontal regions. Considering the growing concerns regarding the effects of PBD treatments on developing brains, this review aims to provide an overview of the studies investigating the effect of mood stabilizers, antipsychotics, and anticonvulsants on neuroimaging findings in PBD. METHODS: We searched PubMed, Scopus, and Web of Science to identify all structural magnetic resonance imaging (sMRI), functional magnetic resonance imaging (fMRI), and diffusion tensor imaging (DTI) studies exploring the effects of medications on neuroimaging findings in PBD. A total of 18 studies met our inclusion criteria (fMRI n = 11, sMRI n = 6, DTI n = 1). RESULTS: Although the findings varied highly across the studies, some investigations consistently indicated that medications primarily affect the prefrontal cortex and the amygdala. Moreover, despite some exceptions, the reported medication effects predominantly lean towards structural and functional normalization. LIMITATIONS: The reviewed studies differ in methods, medications, and fMRI paradigms. Furthermore, most studies used observational approaches with small sample sizes, minimizing the statistical power. CONCLUSIONS: Evidence suggests the potential of antipsychotics and mood stabilizers to modulate the neuroimaging findings in PBD patients, mostly normalizing brain structure and function in key mood-regulating regions.


Subject(s)
Antipsychotic Agents , Bipolar Disorder , Humans , Child , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/drug therapy , Bipolar Disorder/pathology , Diffusion Tensor Imaging , Antipsychotic Agents/therapeutic use , Antipsychotic Agents/pharmacology , Brain/pathology , Magnetic Resonance Imaging , Antimanic Agents/therapeutic use , Antimanic Agents/pharmacology , Anticonvulsants/adverse effects , Neuroimaging
8.
J Affect Disord ; 338: 312-320, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37301295

ABSTRACT

OBJECTIVES: To characterize the neuroanatomy of BD in youth and its correlation to clinical characteristics. METHODS: The current study includes a sample of 105 unmedicated youth with first-episode BD, aged between 10.1 and 17.9 years, and 61 healthy comparison adolescents, aged between 10.1 and 17.7 years, who were matched for age, race, sex, socioeconomic status, intelligence quotient (IQ), and education level. T1-weighted magnetic resonance imaging (MRI) images were obtained using a 4 T MRI scanner. Freesurfer (V6.0) was used to preprocess and parcellate the structural data, and 68 cortical and 12 subcortical regions were considered for statistical comparisons. The relationship between morphological deficits and clinical and demographic characteristics were evaluated using linear models. RESULTS: Compared with healthy youth, youth with BD had decreased cortical thickness in frontal, parietal, and anterior cingulate regions. These youth also showed decreased gray matter volumes in 6 of the 12 subcortical regions examined including thalamus, putamen, amygdala and caudate. In further subgroup analyses, we found that youth with BD with comorbid attention-deficit hyperactivity disorder (ADHD) or with psychotic symptoms had more significant deficits in subcortical gray matter volume. LIMITATIONS: We cannot provide information about the course of structural changes and impact of treatment and illness progression. CONCLUSIONS: Our findings indicate that youth with BD have significant neurostructural deficits in both cortical and subcortical regions mainly located in the regions related to emotion processing and regulation. Variability in clinical characteristics and comorbidities may contribute to the severity of anatomic alterations in this disorder.


Subject(s)
Bipolar Disorder , Humans , Adolescent , Child , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/epidemiology , Bipolar Disorder/pathology , Brain/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Magnetic Resonance Imaging/methods , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology
9.
J Affect Disord ; 337: 75-85, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37236273

ABSTRACT

BACKGROUND: Cognitive impairment affects many patients with bipolar disorder (BD). No pro-cognitive treatment with robust efficacy exists partly due to limited insight into underlying neurobiological abnormalities. METHODS: This magnetic resonance imaging (MRI) study investigates structural neuronal correlates of cognitive impairment in BD by comparing brain measures in a large sample of cognitively impaired versus cognitively intact patients with BD or cognitively impaired patients with major depressive disorder (MDD) and healthy controls (HC). Participants underwent neuropsychological assessments and MRI scans. The cognitively impaired and - intact BD and MDD patient groups were compared with each other and HC regarding prefrontal cortex measures, hippocampus shape/volume, and total cerebral white (WM) and grey matter (GM). RESULTS: Cognitively impaired BD patients showed lower total cerebral WM volume than HC, which scaled with poorer global cognitive performance and more childhood trauma. Cognitively impaired BD patients also showed lower adjusted GM volume and thickness in the frontopolar cortex than HC but greater adjusted GM volume in the temporal cortex than cognitively normal BD patients. Cognitively impaired BD patients showed decreased cingulate volume than cognitively impaired MDD patients. Hippocampal measures were similar across all groups. LIMITATIONS: The cross-sectional study design prevented insights into causal relationships. CONCLUSIONS: Lower total cerebral WM and regional frontopolar and temporal GM abnormalities may constitute structural neuronal correlates of cognitive impairment in BD, of which the WM deficits scale with the degree of childhood trauma. The results deepen the understanding of cognitive impairment in BD and provide a neuronal target for pro-cognitive treatment development.


Subject(s)
Adverse Childhood Experiences , Bipolar Disorder , Cognitive Dysfunction , Depressive Disorder, Major , Humans , Bipolar Disorder/complications , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/pathology , Depressive Disorder, Major/pathology , Cross-Sectional Studies , Brain/diagnostic imaging , Brain/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Magnetic Resonance Imaging/methods
10.
Biol Psychiatry ; 94(7): 580-590, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37031780

ABSTRACT

BACKGROUND: Individuals with bipolar disorder (BD) and schizophrenia (SCZ) show aberrant brain dynamics (i.e., altered recruitment or traversal through different brain states over time). Existing investigations of brain dynamics typically assume that one dominant brain state characterizes each time point. However, as multiple brain states likely are engaged at any given moment, this approach can obscure alterations in less prominent but critical brain states. Here, we examined brain dynamics in BD and SCZ by implementing a novel framework that simultaneously assessed the engagement of multiple brain states. METHODS: Four recurring brain states were identified by applying nonlinear manifold learning and k-means clustering to the Human Connectome Project task-based functional magnetic resonance imaging data. We then assessed moment-to-moment state engagement in 2 independent samples of healthy control participants and patients with BD or SCZ using resting-state (N = 336) or task-based (N = 217) functional magnetic resonance imaging data. Relative state engagement and state engagement variability were extracted and compared across groups using multivariate analysis of covariance, controlling for site, medication, age, and sex. RESULTS: Our framework identified dynamic alterations in BD and SCZ, while a state discretization approach revealed no significant group differences. Participants with BD or SCZ showed reduced state engagement variability, but not relative state engagement, across multiple brain states during resting-state and task-based functional magnetic resonance imaging. We found decreased state engagement variability in older participants and preliminary evidence suggesting an association with avolition. CONCLUSIONS: Assessing multiple brain states simultaneously can reflect the complexity of aberrant brain dynamics in BD and SCZ, providing a more comprehensive understanding of the neural mechanisms underpinning these conditions.


Subject(s)
Bipolar Disorder , Connectome , Schizophrenia , Humans , Aged , Bipolar Disorder/pathology , Brain , Learning , Magnetic Resonance Imaging
11.
Asian J Psychiatr ; 82: 103513, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36827938

ABSTRACT

Our study aimed to examine the shared and distinct structural brain alterations, including cortical thickness(CT) and local gyrification index(LGI), and cognitive impairments between the early course stage of drug-naïve schizophrenia(SZ) and bipolar disorder(BD) patients when compared to healthy controls(HCs), and to further explore the correlation between altered brain structure and cognitive impairments. We included 72 SZ patients, 35 BD patients and 43 HCs. The cognitive function was assessed using the MATRICS Consensus Cognitive Battery. Cerebral cortex analyses were performed with FreeSurfer. Furthermore, any structural aberrations related to cognition impairments were examined. Cognitive impairments existed in SZ and BD patients and were much more severe and widespread in SZ patients, compared to HCs. There were no significant differences in LGI among three groups. Compared to HCs, SZ had thicker cortex in left pars triangularis, and BD showed thinner CT in left postcentral gyrus. In addition, BD showed thinner cortex in left pars triangularis, left pars opercularis, left insula and right fusiform gyrus compared to SZ. Moreover, our results indicated that CT in many brain areas were significantly correlated with cognitive function in HCs, but only CT of left pars triangularis was correlated with impaired social cognition found in SZ. The findings suggest that changes of CT in the left pars triangularis and left postcentral gyrus may be potential pathophysiological mechanisms of the cognition impairments in SZ and BD, respectively, and the divergent CT of partly brain areas in BD vs. SZ may help distinguish them in early phases.


Subject(s)
Bipolar Disorder , Brain Cortical Thickness , Brain , Cognition Disorders , Cognition , Schizophrenia , Schizophrenic Psychology , Schizophrenia/complications , Schizophrenia/pathology , Schizophrenia/physiopathology , Bipolar Disorder/complications , Bipolar Disorder/pathology , Bipolar Disorder/physiopathology , Bipolar Disorder/psychology , Brain/pathology , Brain/physiopathology , Cognition Disorders/complications , Cognition Disorders/pathology , Cognition Disorders/physiopathology , Cerebral Cortical Thinning , Humans , Male , Female , Young Adult , Case-Control Studies , Correlation of Data
12.
J Neural Transm (Vienna) ; 130(2): 145-152, 2023 02.
Article in English | MEDLINE | ID: mdl-36680695

ABSTRACT

Accumulated evidence has demonstrated abnormal amygdala activation in bipolar disorder (BD). The olfactory bulb (OB) has vigorous connections with the amygdala. Although odor-related functions of the OB decreased during the evolutionary process, we hypothesized that an evolved OB with increased activation in emotion regulation may be one of the main factors affecting amygdala functions in BD. Our aim was to investigate metabolism in the OB and amygdala in patients with BD. Twenty-six patients diagnosed with BD according to DSM-5 diagnostic criteria were included in this cross-sectional study. Metabolism in the OB and amygdala was assessed using fluorodeoxyglucose positron emission tomography/CT in patients with BD. The OB and amygdala metabolism was compared with the patients' Z scores. Both OB and amygdala metabolic activities were significantly higher than in the controls. A positive correlation was detected between right/left amygdala metabolism and right OB metabolism (p < 0.05, r:467 and r:662, respectively). This study increased our understanding of the etiopathogenesis of BD. In BD, the main cause of hypermetabolism in the amygdala may be increased metabolism in the OB. During evolution, the OB may have assumed a dominant role in emotional processing rather than olfactory functions.


Subject(s)
Bipolar Disorder , Humans , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/pathology , Olfactory Bulb/diagnostic imaging , Olfactory Bulb/pathology , Cross-Sectional Studies , Amygdala/pathology , Emotions/physiology , Magnetic Resonance Imaging
13.
Article in English | MEDLINE | ID: mdl-36427550

ABSTRACT

BACKGROUND: Despite reports of altered brain morphology in established bipolar disorder (BD), there is limited understanding of when these morphological abnormalities emerge. Assessment of patients during the early course of illness can help to address this gap, but few studies have examined surface-based brain morphology in patients at this illness stage. METHODS: We completed a secondary analysis of baseline data from a randomised control trial of BD individuals stabilised after their first episode of mania (FEM). The magnetic resonance imaging scans of n = 35 FEM patients and n = 29 age-matched healthy controls were analysed. Group differences in cortical thickness, surface area and gyrification were assessed at each vertex of the cortical surface using general linear models. Significant results were identified at p < 0.05 using cluster-wise correction. RESULTS: The FEM group did not differ from healthy controls with regards to cortical thickness or gyrification. However, there were two clusters of increased surface area in the left hemisphere of FEM patients, with peak coordinates falling within the lateral occipital cortex and pars triangularis. CONCLUSIONS: Cortical thickness and gyrification appear to be intact in the aftermath of a first manic episode, whilst cortical surface area in the inferior/middle prefrontal and occipitoparietal cortex is increased compared to age-matched controls. It is possible that increased surface area in the FEM group is the outcome of abnormalities in a premorbidly occurring process. In contrast, the findings raise the hypothesis that cortical thickness reductions seen in past studies of individuals with more established BD may be more attributable to post-onset factors.


Subject(s)
Bipolar Disorder , Humans , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/pathology , Mania/pathology , Prefrontal Cortex/pathology , Magnetic Resonance Imaging/methods , Occipital Lobe , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology
14.
Neuromolecular Med ; 25(1): 125-135, 2023 03.
Article in English | MEDLINE | ID: mdl-36436129

ABSTRACT

Lithium is a mood stabilizer broadly used to prevent and treat symptoms of mania and depression in people with bipolar disorder (BD). Little is known, however, about its mode of action. Here, we analyzed the impact of lithium on synaptic vesicle (SV) cycling at presynaptic terminals releasing glutamate, a neurotransmitter previously implicated in BD and other neuropsychiatric conditions. We used the pHluorin-based synaptic tracer vGpH and a fully automated image processing pipeline to quantify the effect of lithium on both SV exocytosis and endocytosis in hippocampal neurons. We found that lithium selectively reduces SV exocytic rates during electrical stimulation, and markedly slows down SV recycling post-stimulation. Analysis of single-bouton responses revealed the existence of functionally distinct excitatory synapses with varying sensitivity to lithium-some terminals show responses similar to untreated cells, while others are markedly impaired in their ability to recycle SVs. While the cause of this heterogeneity is unclear, these data indicate that lithium interacts with the SV machinery and influences glutamate release in a large fraction of excitatory synapses. Together, our findings show that lithium down modulates SV cycling, an effect consistent with clinical reports indicating hyperactivation of glutamate neurotransmission in BD.


Subject(s)
Glutamic Acid , Lithium Compounds , Synapses , Synaptic Vesicles , Lithium Compounds/pharmacology , Glutamic Acid/metabolism , Synaptic Vesicles/drug effects , Synaptic Vesicles/metabolism , Synapses/drug effects , Synapses/metabolism , Synaptic Transmission/drug effects , Action Potentials/drug effects , Bipolar Disorder/metabolism , Bipolar Disorder/pathology , Presynaptic Terminals/drug effects , Presynaptic Terminals/metabolism , Hippocampus/pathology , Exocytosis/drug effects , Endocytosis/drug effects , Animals , Rats , Cells, Cultured
15.
Psychol Med ; 53(10): 4707-4719, 2023 07.
Article in English | MEDLINE | ID: mdl-35796024

ABSTRACT

BACKGROUND: While adolescent-onset schizophrenia (ADO-SCZ) and adolescent-onset bipolar disorder with psychosis (psychotic ADO-BPD) present a more severe clinical course than their adult forms, their pathophysiology is poorly understood. Here, we study potentially state- and trait-related white matter diffusion-weighted magnetic resonance imaging (dMRI) abnormalities along the adolescent-onset psychosis continuum to address this need. METHODS: Forty-eight individuals with ADO-SCZ (20 female/28 male), 15 individuals with psychotic ADO-BPD (7 female/8 male), and 35 healthy controls (HCs, 18 female/17 male) underwent dMRI and clinical assessments. Maps of extracellular free-water (FW) and fractional anisotropy of cellular tissue (FAT) were compared between individuals with psychosis and HCs using tract-based spatial statistics and FSL's Randomise. FAT and FW values were extracted, averaged across all voxels that demonstrated group differences, and then utilized to test for the influence of age, medication, age of onset, duration of illness, symptom severity, and intelligence. RESULTS: Individuals with adolescent-onset psychosis exhibited pronounced FW and FAT abnormalities compared to HCs. FAT reductions were spatially more widespread in ADO-SCZ. FW increases, however, were only present in psychotic ADO-BPD. In HCs, but not in individuals with adolescent-onset psychosis, FAT was positively related to age. CONCLUSIONS: We observe evidence for cellular (FAT) and extracellular (FW) white matter abnormalities in adolescent-onset psychosis. Although cellular white matter abnormalities were more prominent in ADO-SCZ, such alterations may reflect a shared trait, i.e. neurodevelopmental pathology, present across the psychosis spectrum. Extracellular abnormalities were evident in psychotic ADO-BPD, potentially indicating a more dynamic, state-dependent brain reaction to psychosis.


Subject(s)
Bipolar Disorder , Psychotic Disorders , Schizophrenia , White Matter , Adult , Male , Humans , Female , Adolescent , Schizophrenia/diagnostic imaging , Schizophrenia/pathology , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/pathology , White Matter/diagnostic imaging , White Matter/pathology , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/pathology , Brain/pathology
16.
Psychol Med ; 53(13): 6102-6112, 2023 10.
Article in English | MEDLINE | ID: mdl-36285542

ABSTRACT

BACKGROUND: Inflammation plays a crucial role in the pathogenesis of major depressive disorder (MDD) and bipolar disorder (BD). This study aimed to examine whether the dysregulation of complement components contributes to brain structural defects in patients with mood disorders. METHODS: A total of 52 BD patients, 35 MDD patients, and 53 controls were recruited. The human complement immunology assay was used to measure the levels of complement factors. Whole brain-based analysis was performed to investigate differences in gray matter volume (GMV) and cortical thickness (CT) among the BD, MDD, and control groups, and relationships were explored between neuroanatomical differences and levels of complement components. RESULTS: GMV in the medial orbital frontal cortex (mOFC) and middle cingulum was lower in both patient groups than in controls, while the CT of the left precentral gyrus and left superior frontal gyrus were affected differently in the two disorders. Concentrations of C1q, C4, factor B, factor H, and properdin were higher in both patient groups than in controls, while concentrations of C3, C4 and factor H were significantly higher in BD than in MDD. Concentrations of C1q, factor H, and properdin showed a significant negative correlation with GMV in the mOFC at the voxel-wise level. CONCLUSIONS: BD and MDD are associated with shared and different alterations in levels of complement factors and structural impairment in the brain. Structural defects in mOFC may be associated with elevated levels of certain complement factors, providing insight into the shared neuro-inflammatory pathogenesis of mood disorders.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Motor Cortex , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/pathology , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/pathology , Complement Factor H , Properdin , Complement C1q , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology
17.
Curr Top Behav Neurosci ; 61: 35-48, 2023.
Article in English | MEDLINE | ID: mdl-35505055

ABSTRACT

While there is an abundance of epidemiological evidence implicating infectious agents in the etiology of severe mental illnesses, postmortem studies have not yet detected an increased incidence of microbial nucleic acid or proteins in the brains of people with mental illness. Nevertheless, abnormally expressed immune and inflammatory markers have consistently been found in the postmortem brain of patients with schizophrenia and mood disorders. Some of these abnormalities may be the result of an infection in utero or early in life that not only impacted the developing immune system but also the developing neurons of the brain. Some of the immune markers that are consistently found to be upregulated in schizophrenia implicate a possible viral infection and the blood brain barrier in the etiology and neuropathology of the disorder.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Mental Disorders , Humans , Bipolar Disorder/pathology , Brain/metabolism , Depressive Disorder, Major/metabolism , Inflammation/metabolism
18.
Hum Brain Mapp ; 44(2): 523-534, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36111883

ABSTRACT

Deficits in neural processing of reward have been described in both bipolar disorder (BD) and schizophrenia (SZ), but it remains unclear to what extent these deficits are caused by similar mechanisms. Efficient reward processing relies on adaptive coding which allows representing large input spans by limited neuronal encoding ranges. Deficits in adaptive coding of reward have previously been observed across the SZ spectrum and correlated with total symptom severity. In the present work, we sought to establish whether adaptive coding is similarly affected in patients with BD. Twenty-five patients with BD, 27 patients with SZ and 25 healthy controls performed a variant of the Monetary Incentive Delay task during functional magnetic resonance imaging in two reward range conditions. Adaptive coding was impaired in the posterior part of the right caudate in BD and SZ (trend level). In contrast, BD did not show impaired adaptive coding in the anterior caudate and right precentral gyrus/insula, where SZ showed deficits compared to healthy controls. BD patients show adaptive coding deficits that are similar to those observed in SZ in the right posterior caudate. Adaptive coding in BD appeared more preserved as compared to SZ participants especially in the more anterior part of the right caudate and to a lesser extent also in the right precentral gyrus. Thus, dysfunctional adaptive coding could constitute a fundamental deficit in severe mental illnesses that extends beyond the SZ spectrum.


Subject(s)
Bipolar Disorder , Schizophrenia , Humans , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/pathology , Magnetic Resonance Imaging , Motivation , Reward
19.
Dis Model Mech ; 15(10)2022 10 01.
Article in English | MEDLINE | ID: mdl-36239094

ABSTRACT

Cellular migration is a ubiquitous feature that brings brain cells into appropriate spatial relationships over time; and it helps in the formation of a functional brain. We studied the migration patterns of induced pluripotent stem cell-derived neural precursor cells (NPCs) from individuals with familial bipolar disorder (BD) in comparison with healthy controls. The BD patients also had morphological brain abnormalities evident on magnetic resonance imaging. Time-lapse analysis of migrating cells was performed, through which we were able to identify several parameters that were abnormal in cellular migration, including the speed and directionality of NPCs. We also performed transcriptomic analysis to probe the mechanisms behind the aberrant cellular phenotype identified. Our analysis showed the downregulation of a network of genes, centering on EGF/ERBB proteins. The present findings indicate that collective, systemic dysregulation may produce the aberrant cellular phenotype, which could contribute to the functional and structural changes in the brain reported for bipolar disorder. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Bipolar Disorder , Neural Stem Cells , Bipolar Disorder/genetics , Bipolar Disorder/pathology , Brain/pathology , Epidermal Growth Factor , Humans , Magnetic Resonance Imaging , Neural Stem Cells/pathology
20.
Neurosci Biobehav Rev ; 143: 104922, 2022 12.
Article in English | MEDLINE | ID: mdl-36272579

ABSTRACT

Major Depressive Disorder (MDD) and Bipolar Disorder Depression (BDD) are common psychiatric illnesses characterized by structural and functional brain alterations and signs of neuroinflammation. In line with the neuroinflammatory pathogenesis of depressive syndromes, recent studies have demonstrated how white matter (WM) microstructural impairments detected by Diffusion Tensor Imaging, are correlated to peripheral immunomarkers in depressed patients. In this context, we performed a comprehensive systematic search on PubMed, Medline and Scopus of the original studies published till June 2022, exploring the association between immunomarkers and WM alteration patterns in patients affected by MDD or BDD. Overall, the studies included in this review showed a consistent association between blood proinflammatory and counter-regulatory immunomarkers, including regulatory T cells and natural killer cells markers, as well as measures of demyelination and dysmyelination in both MDD and BDD patients. These pathogenetic insights could outline an integrated clinical perspective to affective disorders, helping psychiatrists to develop novel biotype-to-phenotype models of depression and opening the way to tailored approaches in treatments.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , White Matter , Humans , Bipolar Disorder/pathology , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/pathology , Diffusion Tensor Imaging/methods , Inflammation/pathology , White Matter/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...