Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 4760, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33637771

ABSTRACT

Soil is considered an extensively explored ecological niche for microorganisms that produce useful biologically active natural products suitable for pharmaceutical applications. The current study aimed at investigating biological activities and metabolic profiles of three fungal strains identified from different desert sites in Saudi Arabia. Soil fungal isolates were collected from AlQasab, Tabuk, and Almuzahimiyah in Saudi Arabia and identified. Furthermore, their antibacterial activity was investigated against Staphylococcus aureus, Enterococcus faecalis, Klebsiella pneumonia, and Escherichia coli in blood, nutrient, and Sabouraud dextrose agars. Moreover, fungal extracts were evaluated on cell viability/proliferation against human breast carcinoma and colorectal adenocarcinoma cells. To identify the biomolecules of the fungal extracts, High-performance liquid chromatography HPLC-DAD coupled to analytical LC-QTOF-MS method was employed for fungal ethyl acetate crude extract. Identified fungal isolates, Chaetomium sp. Bipolaris sp. and Fusarium venenatum showed varied inhibitory activity against tested microbes in relation to crude extract, microbial strain tested, and growth media. F. venenatum showed higher anticancer activity compared to Chaetomium sp. and Bipolaris sp. extracts against four of the tested cancer cell lines. Screening by HPLC and LC/MS-QTOF identified nine compounds from Chaetomium sp. and three from Bipolaris sp. however, for F. venenatum extracts compounds were not fully identified. In light of the present findings, some biological activities of fungal extracts were approved in vitro, suggesting that such extracts could be a useful starting point to find compounds that possess promising agents for medical applications. Further investigations to identify exact biomolecules from F. venenatum extracts are needed.


Subject(s)
Bipolaris/metabolism , Chaetomium/metabolism , Fusarium/metabolism , Metabolome , Soil Microbiology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bipolaris/chemistry , Cell Line, Tumor , Chaetomium/chemistry , Chromatography, High Pressure Liquid , Desert Climate , Drug Discovery , Fusarium/chemistry , Humans , Mass Spectrometry , Saudi Arabia
2.
Microbiology (Reading) ; 167(3)2021 03.
Article in English | MEDLINE | ID: mdl-33555250

ABSTRACT

l-Arabinose, a major constituent pentose of plant cell-wall polysaccharides, has been suggested to be a less preferred carbon source for fungi but to be a potential signalling molecule that can cause distinct genome-wide transcriptional changes in fungal cells. Here, we explore the possibility that this unique pentose influences the morphological characteristics of the phytopathogenic fungus Bipolaris maydis strain HITO7711. When grown on plate media under different sugar conditions, the mycelial dry weight of cultures on l-arabinose was as low as that with no sugar, suggesting that l-arabinose does not substantially contribute to vegetative growth. However, the intensity of conidiation on l-arabinose was comparable to or even higher than that on d-glucose and on d-xylose, in contrast to the poor conidiation under the no-sugar condition. To explore the physiological basis of the passive growth and active conidiation on l-arabinose, we next investigated cellular responses of the fungus to these sugar conditions. Transcriptional analysis of genes related to carbohydrate metabolism showed that l-arabinose stimulates carbohydrate utilization through the hexose monophosphate shunt (HMP shunt), a catabolic pathway parallel to glycolysis and which participates in the generation of the reducing agent NADPH (the reduced form of nicotinamide adenine dinucleotide phosphate). Then, the HMP shunt was impaired by disrupting the related gene BmZwf1, which encodes glucose-6-phosphate dehydrogenase in this fungus. The resulting mutants on l-arabinose showed remarkably decreased conidiation, but a conversely increased mycelial dry weight compared with the wild-type. Our study demonstrates that l-arabinose acts to enhance resource allocation to asexual reproduction in B. maydis HITO7711 at the cost of vegetative growth, and suggests that this is mediated by the concomitant stimulation of the HMP shunt.


Subject(s)
Arabinose/metabolism , Bipolaris/growth & development , Bipolaris/metabolism , Bipolaris/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Genes, Mating Type, Fungal , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase/metabolism , Mutation , Mycelium/genetics , Mycelium/growth & development , Mycelium/metabolism , Reproduction, Asexual , Spores, Fungal/genetics , Spores, Fungal/growth & development , Spores, Fungal/metabolism
3.
J Am Chem Soc ; 143(7): 2970-2983, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33570388

ABSTRACT

Structurally unprecedented antibacterial alkaloids containing multiple electron-rich pyrrole units have recently been isolated from Curvularia sp. and Bipolaris maydis fungi. This article documents the evolution of a synthetic program aimed at accessing the flagship metabolites curvulamine and curindolizine which are presumably a dimer and trimer of a C10N biosynthetic building block, respectively. Starting with curvulamine, we detail several strategies to merge two simple, bioinspired fragments, which while ultimately unsuccessful, led us toward a pyrroloazepinone building block-based strategy and an improved synthesis of this 10π-aromatic heterocycle. A two-step annulation process was then designed to forge a conserved tetracyclic bis-pyrrole architecture and advanced into a variety of late-stage intermediates; unfortunately, however, a failed decarboxylation thwarted the total synthesis of curvulamine. By tailoring our annulation precursors, success was ultimately found through the use of a cyanohydrin nucleophile which enabled a 10-step total synthesis of curvulamine. Attempts were then made to realize a biomimetic coupling of curvulamine with an additional C10N fragment to arrive at curindolizine, the most complex family member. Although unproductive, we developed a 14-step total synthesis of this alkaloid through an abiotic coupling approach. Throughout this work, effort was made to harness and exploit the innate reactivity of the pyrrole nucleus, an objective which has uncovered many interesting findings in the chemistry of this reactive heterocycle.


Subject(s)
Alkaloids/chemical synthesis , Indole Alkaloids/chemical synthesis , Alkaloids/chemistry , Azepines/chemistry , Bipolaris/chemistry , Bipolaris/metabolism , Crystallography, X-Ray , Curvularia/chemistry , Curvularia/metabolism , Cyclization , Indole Alkaloids/chemistry , Indolizidines/chemistry , Molecular Conformation , Pyrroles/chemistry , Stereoisomerism
4.
Org Biomol Chem ; 19(6): 1378-1385, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33480950

ABSTRACT

The search for active microorganisms for the biotransformation of guttiferone A (1) and C (6) has been successfully undertaken from a collection of endophytic fungi of Symphonia globulifera. Of the twenty-five isolates obtained from the leaves, three are active and have been identified as Bipolaris cactivora. The products obtained are the result of xanthone cyclisation with the formation of two regioisomers among four possible and corresponding to 1,16-oxy-guttiferone and 3,16-oxy-guttiferone. The biotransformation conditions were studied. Interestingly, both oxy-guttiferones A are present in the plant, and the ratio of 3,16-oxy-guttiferone to 1,16-oxy-guttiferone is 4 : 1, very close to that observed by biotransformation (3.8 : 1). These results are consistent with the involvement of endophytes in their formation pathway from guttiferone A, in planta. Finally, biotransformation made it possible to obtain and describe for the first time oxy-guttiferones C.


Subject(s)
Benzophenones/metabolism , Bipolaris/metabolism , Endophytes/metabolism , Malpighiales/microbiology , Biotransformation , Malpighiales/chemistry , Plant Leaves/chemistry , Plant Leaves/microbiology
5.
Bioorg Chem ; 99: 103816, 2020 06.
Article in English | MEDLINE | ID: mdl-32305693

ABSTRACT

Three previously undescribed compounds, including a meroterpenoid, guignardone T (1), and two ophiobolin-type sesterterpenoids, maydispenoids A and B (2 and 3), along with four known compounds (4-7), were isolated from the phytopathogenic fungus Bipolaris maydis collected from Anoectochilus roxburghii (Wall.) Lindl leaves. The structures of all undescribed compounds were elucidated by spectroscopic analysis, electronic circular dichroism (ECD) calculations and single-crystal X-ray diffraction. Structurally, maydispenoids A was characterized by a fascinating decahydro-3-oxacycloocta[cd]pentalene fragment. It is notable that the compounds 2 and 3 exhibited potential inhibitory activity in anti-CD3/anti-CD28 monoclonal antibodies (mAbs) stimulated murine splenocytes proliferation, with IC50 values of 5.28 and 9.38 µM, respectively, and also suppress the murine splenocytes proliferation activated by lipopolysaccharide (LPS), with IC50 values of 7.25 and 16.82 µM, respectively. This is the first report of ophiobolin-type sesterterpenoids as immunosuppressor, and may provide new chemical templates for the development of new immunosuppressive drugs for autoimmune disease treatment.


Subject(s)
Bipolaris/chemistry , Immunosuppressive Agents/pharmacology , Sesterterpenes/pharmacology , Animals , Bipolaris/metabolism , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Immunosuppressive Agents/chemistry , Immunosuppressive Agents/metabolism , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Orchidaceae/chemistry , Orchidaceae/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Sesterterpenes/chemistry , Sesterterpenes/metabolism , Spleen/drug effects , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...