Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.838
Filter
2.
PLoS One ; 19(5): e0300862, 2024.
Article in English | MEDLINE | ID: mdl-38739614

ABSTRACT

Influenza A viruses of the H2 subtype represent a zoonotic and pandemic threat to humans due to a lack of widespread specific immunity. Although A(H2) viruses that circulate in wild bird reservoirs are distinct from the 1957 pandemic A(H2N2) viruses, there is concern that they could impact animal and public health. There is limited information on AIVs in Latin America, and next to nothing about H2 subtypes in Brazil. In the present study, we report the occurrence and genomic sequences of two influenza A viruses isolated from wild-caught white-rumped sandpipers (Calidris fuscicollis). One virus, identified as A(H2N1), was isolated from a bird captured in Restinga de Jurubatiba National Park (PNRJ, Rio de Janeiro), while the other, identified as A(H2N2), was isolated from a bird captured in Lagoa do Peixe National Park (PNLP, Rio Grande do Sul). DNA sequencing and phylogenetic analysis of the obtained sequences revealed that each virus belonged to distinct subtypes. Furthermore, the phylogenetic analysis indicated that the genomic sequence of the A(H2N1) virus isolated from PNRJ was most closely related to other A(H2N1) viruses isolated from North American birds. On the other hand, the A(H2N2) virus genome recovered from the PNLP-captured bird exhibited a more diverse origin, with some sequences closely related to viruses from Iceland and North America, and others showing similarity to virus sequences recovered from birds in South America. Viral genes of diverse origins were identified in one of the viruses, indicating local reassortment. This suggests that the extreme South of Brazil may serve as an environment conducive to reassortment between avian influenza virus lineages from North and South America, potentially contributing to an increase in overall viral diversity.


Subject(s)
Charadriiformes , Influenza A virus , Influenza in Birds , Phylogeny , Reassortant Viruses , Animals , Brazil , Influenza in Birds/virology , Influenza in Birds/epidemiology , Influenza A virus/genetics , Influenza A virus/isolation & purification , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , Charadriiformes/virology , Genome, Viral , Birds/virology
3.
Sci Rep ; 14(1): 10285, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704404

ABSTRACT

High pathogenicity avian influenza (HPAI) poses a significant threat to both domestic and wild birds globally. The avian influenza virus, known for environmental contamination and subsequent oral infection in birds, necessitates careful consideration of alternative introduction routes during HPAI outbreaks. This study focuses on blowflies (genus Calliphora), in particular Calliphora nigribarbis, attracted to decaying animals and feces, which migrate to lowland areas of Japan from northern or mountainous regions in early winter, coinciding with HPAI season. Our investigation aims to delineate the role of blowflies as HPAI vectors by conducting a virus prevalence survey in a wild bird HPAI-enzootic area. In December 2022, 648 Calliphora nigribarbis were collected. Influenza virus RT-PCR testing identified 14 virus-positive samples (2.2% prevalence), with the highest occurrence observed near the crane colony (14.9%). Subtyping revealed the presence of H5N1 and HxN1 in some samples. Subsequent collections in December 2023 identified one HPAI virus-positive specimen from 608 collected flies in total, underscoring the potential involvement of blowflies in HPAI transmission. Our observations suggest C. nigribarbis may acquire the HPAI virus from deceased wild birds directly or from fecal materials from infected birds, highlighting the need to add blowflies as a target of HPAI vector control.


Subject(s)
Birds , Influenza in Birds , Animals , Japan/epidemiology , Influenza in Birds/virology , Influenza in Birds/epidemiology , Influenza in Birds/transmission , Birds/virology , Insect Vectors/virology , Calliphoridae , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/genetics , Feces/virology
4.
Front Immunol ; 15: 1352022, 2024.
Article in English | MEDLINE | ID: mdl-38698856

ABSTRACT

The complement system is an innate immune mechanism against microbial infections. It involves a cascade of effector molecules that is activated via classical, lectin and alternative pathways. Consequently, many pathogens bind to or incorporate in their structures host negative regulators of the complement pathways as an evasion mechanism. Factor H (FH) is a negative regulator of the complement alternative pathway that protects "self" cells of the host from non-specific complement attack. FH has been shown to bind viruses including human influenza A viruses (IAVs). In addition to its involvement in the regulation of complement activation, FH has also been shown to perform a range of functions on its own including its direct interaction with pathogens. Here, we show that human FH can bind directly to IAVs of both human and avian origin, and the interaction is mediated via the IAV surface glycoprotein haemagglutinin (HA). HA bound to common pathogen binding footprints on the FH structure, complement control protein modules, CCP 5-7 and CCP 15-20. The FH binding to H1 and H3 showed that the interaction overlapped with the receptor binding site of both HAs, but the footprint was more extensive for the H3 HA than the H1 HA. The HA - FH interaction impeded the initial entry of H1N1 and H3N2 IAV strains but its impact on viral multicycle replication in human lung cells was strain-specific. The H3N2 virus binding to cells was significantly inhibited by preincubation with FH, whereas there was no alteration in replicative rate and progeny virus release for human H1N1, or avian H9N2 and H5N3 IAV strains. We have mapped the interaction between FH and IAV, the in vivo significance of which for the virus or host is yet to be elucidated.


Subject(s)
Complement Factor H , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A virus , Influenza, Human , Protein Binding , Humans , Complement Factor H/metabolism , Complement Factor H/immunology , Animals , Influenza, Human/immunology , Influenza, Human/virology , Influenza, Human/metabolism , Influenza A virus/immunology , Influenza A virus/physiology , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Binding Sites , Influenza in Birds/virology , Influenza in Birds/immunology , Influenza in Birds/metabolism , Birds/virology , Host-Pathogen Interactions/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H9N2 Subtype/immunology
5.
J Gen Virol ; 105(5)2024 May.
Article in English | MEDLINE | ID: mdl-38695722

ABSTRACT

High-pathogenicity avian influenza viruses (HPAIVs) of the goose/Guangdong lineage are enzootically circulating in wild bird populations worldwide. This increases the risk of entry into poultry production and spill-over to mammalian species, including humans. Better understanding of the ecological and epizootiological networks of these viruses is essential to optimize mitigation measures. Based on full genome sequences of 26 HPAIV samples from Iceland, which were collected between spring and autumn 2022, as well as 1 sample from the 2023 summer period, we show that 3 different genotypes of HPAIV H5N1 clade 2.3.4.4b were circulating within the wild bird population in Iceland in 2022. Furthermore, in 2023 we observed a novel introduction of HPAIV H5N5 of the same clade to Iceland. The data support the role of Iceland as an utmost northwestern distribution area in Europe that might act also as a potential bridging point for intercontinental spread of HPAIV across the North Atlantic.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza in Birds , Phylogeny , Iceland/epidemiology , Animals , Influenza in Birds/virology , Influenza in Birds/epidemiology , Influenza in Birds/transmission , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , Genotype , Animals, Wild/virology , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Genome, Viral , Birds/virology
6.
Viruses ; 16(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38675940

ABSTRACT

West Nile Virus (WNV) and Usutu Virus (USUV) are both neurotropic mosquito-borne viruses belonging to the Flaviviridae family. These closely related viruses mainly follow an enzootic cycle involving mosquitoes as vectors and birds as amplifying hosts, but humans and other mammals can also be infected through mosquito bites. WNV was first identified in Uganda in 1937 and has since spread globally, notably in Europe, causing periodic outbreaks associated with severe cases of neuroinvasive diseases such as meningitis and encephalitis. USUV was initially isolated in 1959 in Swaziland and has also spread to Europe, primarily affecting birds and having a limited impact on human health. There has been a recent expansion of these viruses' geographic range in Europe, facilitated by factors such as climate change, leading to increased human exposure. While sharing similar biological traits, ecology, and epidemiology, there are significant distinctions in their pathogenicity and their impact on both human and animal health. While WNV has been more extensively studied and is a significant public health concern in many regions, USUV has recently been gaining attention due to its emergence in Europe and the diversity of its circulating lineages. Understanding the pathophysiology, ecology, and transmission dynamics of these viruses is important to the implementation of effective surveillance and control measures. This perspective provides a brief overview of the current situation of these two viruses in Europe and outlines the significant challenges that need to be addressed in the coming years.


Subject(s)
Birds , Flavivirus Infections , Flavivirus , West Nile Fever , West Nile virus , Europe/epidemiology , West Nile virus/genetics , West Nile virus/physiology , West Nile virus/isolation & purification , Animals , Humans , Flavivirus/classification , Flavivirus/genetics , Flavivirus/pathogenicity , Flavivirus/isolation & purification , Flavivirus/physiology , Flavivirus Infections/epidemiology , Flavivirus Infections/virology , Flavivirus Infections/transmission , Flavivirus Infections/veterinary , West Nile Fever/epidemiology , West Nile Fever/virology , West Nile Fever/transmission , Birds/virology , Culicidae/virology , Mosquito Vectors/virology , Disease Outbreaks
8.
Arch Virol ; 169(5): 111, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664271

ABSTRACT

India has reported highly pathogenic avian influenza (HPAI) H5N1 virus outbreaks since 2006, with the first human case reported in 2021. These included viruses belonging to the clades 2.2, 2.2.2, 2.2.2.1, 2.3.2.1a, and 2.3.2.1c. There are currently no data on the gene pool of HPAI H5N1 viruses in India. Molecular clock and phylogeography analysis of the HA and NA genes; and phylogenetic analysis of the internal genes of H5N1 viruses from India were carried out. Sequences reported from 2006 to 2015; and sequences from 2021 that were available in online databases were used in the analysis. Five separate introductions of H5N1 viruses into India were observed, via Indonesia or Korea (2002), Bangladesh (2009), Bhutan (2010), and China (2013, 2018) (clades 2.2, 2.2.2, 2.2.2.1, 2.3.2.1a, 2.3.2.1c, and 2.3.4.4b). Phylogenetic analysis revealed eight reassortant genotypes. The H5N1 virus isolated from the human case showed a unique reassortant genotype. Amino acid markers associated with adaptation to mammals were also present. This is the first report of the spatio-temporal origins and gene pool analysis of H5N1 viruses from India, highlighting the need for increased molecular surveillance.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza in Birds , Influenza, Human , Phylogeny , Phylogeography , India/epidemiology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/isolation & purification , Animals , Influenza in Birds/virology , Influenza in Birds/epidemiology , Humans , Influenza, Human/virology , Influenza, Human/epidemiology , Genotype , Reassortant Viruses/genetics , Reassortant Viruses/classification , Reassortant Viruses/isolation & purification , Neuraminidase/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Birds/virology , Disease Outbreaks
10.
Viruses ; 16(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38675878

ABSTRACT

Emerging coronaviruses (CoVs) are understood to cause critical human and domestic animal diseases; the spillover from wildlife reservoirs can result in mild and severe respiratory illness in humans and domestic animals and can spread more readily in these naïve hosts. A low-cost CoV molecular method that can detect a variety of CoVs from humans, animals, and environmental specimens is an initial step to ensure the early identification of known and new viruses. We examine a collection of 50 human, 46 wastewater, 28 bat, and 17 avian archived specimens using 3 published pan-CoV PCR assays called Q-, W-, and X-CoV PCR, to compare the performance of each assay against four CoV genera. X-CoV PCR can detect all four CoV genera, but Q- and W-CoV PCR failed to detect δ-CoV. In total, 21 (42.0%), 9 (18.0%), and 21 (42.0%) of 50 human specimens and 30 (65.22%), 6 (13.04%), and 27 (58.70%) of 46 wastewater specimens were detected using Q-, W-, and X-CoV PCR assays, respectively. The X-CoV PCR assay has a comparable sensitivity to Q-CoV PCR in bat CoV detection. Combining Q- and X-CoV PCR assays can increase sensitivity and avoid false negative results in the early detection of novel CoVs.


Subject(s)
Coronavirus , Sensitivity and Specificity , Humans , Animals , Coronavirus/genetics , Coronavirus/classification , Coronavirus/isolation & purification , Wastewater/virology , Chiroptera/virology , Birds/virology , Polymerase Chain Reaction/methods , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Coronavirus Infections/diagnosis
11.
Viruses ; 16(4)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38675910

ABSTRACT

Influenza A viruses (IAVs) pose a serious threat to global health. On the one hand, these viruses cause seasonal flu outbreaks in humans. On the other hand, they are a zoonotic infection that has the potential to cause a pandemic. The most important natural reservoir of IAVs are waterfowl. In this study, we investigated the occurrence of IAV in birds in the Republic of Buryatia (region in Russia). In 2020, a total of 3018 fecal samples were collected from wild migratory birds near Lake Baikal. Of these samples, 11 were found to be positive for the H13N8 subtype and whole-genome sequencing was performed on them. All samples contained the same virus with the designation A/Unknown/Buryatia/Arangatui-1/2020. To our knowledge, virus A/Unknown/Buryatia/Arangatui-1/2020 is the first representative of the H13N8 subtype collected on the territory of Russia, the sequence of which is available in the GenBank database. An analysis of reassortments based on the genome sequences of other known viruses has shown that A/Unknown/Buryatia/Arangatui-1/2020 arose as a result of reassortment. In addition, a reassortment most likely occurred several decades ago between the ancestors of the viruses recently collected in China, the Netherlands, the United States and Chile. The presence of such reassortment emphasizes the ongoing evolution of the H13N8 viruses distributed in Europe, North and East Asia, North and South America and Australia. This study underscores the importance of the continued surveillance and research of less-studied influenza subtypes.


Subject(s)
Birds , Genome, Viral , Influenza A virus , Influenza in Birds , Phylogeny , Reassortant Viruses , Whole Genome Sequencing , Animals , Reassortant Viruses/genetics , Reassortant Viruses/classification , Reassortant Viruses/isolation & purification , Influenza in Birds/virology , Influenza in Birds/epidemiology , Russia/epidemiology , Birds/virology , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Feces/virology , Animals, Wild/virology
12.
Viruses ; 16(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38675939

ABSTRACT

The flyways of many different wild waterfowl pass through the Caspian Sea region. The western coast of the middle Caspian Sea is an area with many wetlands, where wintering grounds with large concentrations of birds are located. It is known that wild waterfowl are a natural reservoir of the influenza A virus. In the mid-2000s, in the north of this region, the mass deaths of swans, gulls, and pelicans from high pathogenicity avian influenza virus (HPAIV) were noted. At present, there is still little known about the presence of avian influenza virus (AIVs) and different avian paramyxoviruses (APMVs) in the region's waterfowl bird populations. Here, we report the results of monitoring these viruses in the wild waterfowl of the western coast of the middle Caspian Sea from 2017 to 2020. Samples from 1438 individuals of 26 bird species of 7 orders were collected, from which 21 strains of AIV were isolated, amounting to a 1.46% isolation rate of the total number of samples analyzed (none of these birds exhibited external signs of disease). The following subtypes were determined and whole-genome nucleotide sequences of the isolated strains were obtained: H1N1 (n = 2), H3N8 (n = 8), H4N6 (n = 2), H7N3 (n = 2), H8N4 (n = 1), H10N5 (n = 1), and H12N5 (n = 1). No high pathogenicity influenza virus H5 subtype was detected. Phylogenetic analysis of AIV genomes did not reveal any specific pattern for viruses in the Caspian Sea region, showing that all segments belong to the Eurasian clades of classic avian-like influenza viruses. We also did not find the amino acid substitutions in the polymerase complex (PA, PB1, and PB2) that are critical for the increase in virulence or adaptation to mammals. In total, 23 hemagglutinating viruses not related to influenza A virus were also isolated, of which 15 belonged to avian paramyxoviruses. We were able to sequence 12 avian paramyxoviruses of three species, as follows: Newcastle disease virus (n = 4); Avian paramyxovirus 4 (n = 5); and Avian paramyxovirus 6 (n = 3). In the Russian Federation, the Newcastle disease virus of the VII.1.1 sub-genotype was first isolated from a wild bird (common pheasant) in the Caspian Sea region. The five avian paramyxovirus 4 isolates obtained belonged to the common clade in Genotype I, whereas phylogenetic analysis of three isolates of Avian paramyxovirus 6 showed that two isolates, isolated in 2017, belonged to Genotype I and that an isolate identified in 2020 belonged to Genotype II. The continued regular monitoring of AIVs and APMVs, the obtaining of data on the biological properties of isolated strains, and the accumulation of information on virus host species will allow for the adequate planning of epidemiological measures, suggest the most likely routes of spread of the virus, and assist in the prediction of the introduction of the viruses in the western coastal region of the middle Caspian Sea.


Subject(s)
Animals, Wild , Avulavirus , Birds , Influenza A virus , Influenza in Birds , Phylogeny , Animals , Influenza in Birds/virology , Influenza in Birds/epidemiology , Birds/virology , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Influenza A virus/pathogenicity , Animals, Wild/virology , Avulavirus/genetics , Avulavirus/classification , Avulavirus/isolation & purification , Avulavirus/pathogenicity , Genome, Viral , Avulavirus Infections/veterinary , Avulavirus Infections/virology , Avulavirus Infections/epidemiology
13.
Avian Dis ; 68(1): 38-42, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38687106

ABSTRACT

High mortality in great cormorants (Phalacrocorax carbo) was registered on the Alakol Lake in eastern Kazakhstan in 2021 when about 20% of juveniles died. High-throughput sequencing revealed the presence of a putative novel cormorant adenovirus significantly divergent from known aviadenoviruses. We suggest that this cormorant adenovirus can be considered an emerging threat to the health and conservation of this species.


Aislamiento y caracterización genética de un nuevo adenovirus asociado con la mortalidad masiva en cormoranes grandes (Phalacrocorax carbo). En 2021 se registró una alta mortalidad de cormoranes grandes (Phalacrocorax carbo) en el lago Alakol, en el este de Kazajstán, cuando murieron alrededor del 20% de las aves jóvenes. La secuenciación de alto rendimiento reveló la presencia de un supuesto nuevo adenovirus de cormorán significativamente divergente de los aviadenovirus conocidos. Sugerimos que este adenovirus de cormorán puede considerarse una amenaza emergente para la salud y conservación de esta especie.


Subject(s)
Adenoviridae Infections , Bird Diseases , Birds , Phylogeny , Animals , Adenoviridae Infections/veterinary , Adenoviridae Infections/virology , Bird Diseases/virology , Bird Diseases/mortality , Kazakhstan , Birds/virology , Adenoviridae/isolation & purification , Adenoviridae/genetics
14.
Am J Vet Res ; 85(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38593825

ABSTRACT

Highly pathogenic avian influenza (HPAI) has persisted as a One Health threat whose current circulation and impact are addressed in the companion Currents in One Health by Puryear and Runstadler, JAVMA, May 2024. Highly pathogenic avian influenza emerged as a by-product of agricultural practices and adapted to endemic circulation in wild bird species. Over more than 20 years, continued evolution in a complex ecology involving multiple hosts has produced a lineage that expanded globally over the last 2 years. Understanding the continued evolution and movement of HPAI relies on understanding how the virus is infecting different hosts in different contexts. This includes understanding the environmental factors and the natural ecology of viral transmission that impact host exposure and ultimately evolutionary trajectories. Particularly with the rapid host expansion, increased spillover to mammalian hosts, and novel clinical phenotypes in infected hosts, despite progress in understanding the impact of specific mutations to HPAI viruses that are associated with spillover potential, the threat to public health is poorly understood. Active research is focusing on new approaches to understanding the relationship of viral genotype to phenotype and the implementation of research and surveillance pipelines to make sense of the enormous potential for diverse HPAI viruses to emerge from wild reservoirs amid global circulation.


Subject(s)
Animals, Wild , Birds , Influenza in Birds , Mammals , Animals , Influenza in Birds/virology , Influenza in Birds/transmission , Influenza in Birds/epidemiology , Animals, Wild/virology , Birds/virology , Mammals/virology , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/epidemiology , Influenza A virus/pathogenicity , Influenza A virus/genetics , Communicable Diseases, Emerging/virology , Communicable Diseases, Emerging/veterinary , Communicable Diseases, Emerging/transmission
15.
Virus Res ; 344: 199348, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38467378

ABSTRACT

Avian influenza virus subtype H9N2 is endemic in commercial poultry in Tunisia. This subtype affects poultry and wild birds in Tunisia and poses a potential zoonotic risk. Tunisian H9N2 strains carry, in their hemagglutinins, the human-like marker 226 L that is most influential in avian-to-human viral transmission. For a better understanding of how ecological aspects of the H9N2 virus and its circulation in poultry, migratory birds and environment shapes the spread of the dissemination of H9N2 in Tunisia, herein, we investigate the epidemiological, evolutionary and zoonotic potential of seven H9N2 poultry isolates and sequence their whole genome. Phylogeographic and phylodymanic analysis were used to examine viral spread within and among wild birds, poultry and environment at geographical scales. Genetic evolution results showed that the eight gene sequences of Tunisian H9N2 AIV were characterized by molecular markers involved with virulence and mammalian infections. The geographical distribution of avian influenza virus appears as a network interconnecting countries in Europe, Asia, North Africa and West Africa. The spatiotemporal dynamics analysis showed that the H9N2 virus was transmitted from Tunisia to neighboring countries notably Libya and Algeria. Interestingly, this study also revealed, for the first time, that there was a virus transmission between Tunisia and Morocco. Bayesian analysis showed exchanges between H9N2 strains of Tunisia and those of the Middle Eastern countries, analysis of host traits showed that duck, wild birds and environment were ancestry related to chicken. The subtypes phylodynamic showed that PB1 segment was under multiple inter-subtype reassortment events with H10N7, H12N5, H5N2 and H6N1 and that PB2 was also a subject of inter-subtype reassortment with H10N4.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza in Birds , Phylogeny , Phylogeography , Animals , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/classification , Influenza A Virus, H9N2 Subtype/isolation & purification , Tunisia/epidemiology , Influenza in Birds/virology , Influenza in Birds/epidemiology , Influenza in Birds/transmission , Poultry/virology , Evolution, Molecular , Poultry Diseases/virology , Poultry Diseases/epidemiology , Genome, Viral , Animals, Wild/virology , Birds/virology , Chickens/virology
17.
Travel Med Infect Dis ; 59: 102712, 2024.
Article in English | MEDLINE | ID: mdl-38461878

ABSTRACT

We describe the evolution of the outbreak of Highly Pathogenic Avian Influenza (HPAI) A(H5N1) in sea lions (Otaria flavescens) of South America. At least 24,000 sea lions died in Peru, Chile, Argentina, Uruguay, and Brazil between January-October 2023. The most plausible route of infection is cohabiting with or foraging on infected birds. However, we urge a detailed evaluation of the sea lions actual source of infection given that the concomitant massive wild bird mortalities registered in the Pacific Ocean did not occur in the Atlantic Ocean.


Subject(s)
Influenza A Virus, H5N1 Subtype , Sea Lions , Animals , South America/epidemiology , Disease Outbreaks , Influenza in Birds/mortality , Influenza in Birds/epidemiology , Influenza in Birds/virology , Atlantic Ocean , Pacific Ocean , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/mortality , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/epidemiology , Birds/virology
18.
J Virol ; 98(4): e0005124, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38466095

ABSTRACT

Avian metapneumovirus subgroup C (aMPV/C), an important pathogen causing acute respiratory infection in chickens and turkeys, contributes to substantial economic losses in the poultry industry worldwide. aMPV/C has been reported to induce autophagy, which is beneficial to virus replication. Sequestosome 1 (SQSTM1/P62), a selective autophagic receptor, plays a crucial role in viral replication by clearing ubiquitinated proteins. However, the relationship between SQSTM1-mediated selective autophagy and aMPV/C replication is unclear. In this study, we found that the expression of SQSTM1 negatively regulates aMPV/C replication by reducing viral protein expression and viral titers. Further studies revealed that the interaction between SQSTM1 and aMPV/C M2-2 protein is mediated via the Phox and Bem1 (PB1) domain of the former, which recognizes a ubiquitinated lysine at position 67 of the M2-2 protein, and finally degrades M2-2 via SQSTM1-mediated selective autophagy. Collectively, our results reveal that SQSTM1 degrades M2-2 via a process of selective autophagy to suppress aMPV/C replication, thereby providing novel insights for the prevention and control of aMPV/C infection.IMPORTANCEThe selective autophagy plays an important role in virus replication. As an emerging pathogen of avian respiratory virus, clarification of the effect of SQSTM1, a selective autophagic receptor, on aMPV/C replication in host cells enables us to better understand the viral pathogenesis. Previous study showed that aMPV/C infection reduced the SQSTM1 expression accompanied by virus proliferation, but the specific regulatory mechanism between them was still unclear. In this study, we demonstrated for the first time that SQSTM1 recognizes the 67th amino acid of M2-2 protein by the interaction between them, followed by M2-2 degradation via the SQSTM1-mediated selective autophagy, and finally inhibits aMPV/C replication. This information supplies the mechanism by which SQSTM1 negatively regulates viral replication, and provides new insights for preventing and controlling aMPV/C infection.


Subject(s)
Autophagy , Birds , Metapneumovirus , Proteolysis , Sequestosome-1 Protein , Viral Proteins , Virus Replication , Animals , Humans , HEK293 Cells , Metapneumovirus/classification , Metapneumovirus/growth & development , Paramyxoviridae Infections/metabolism , Paramyxoviridae Infections/veterinary , Paramyxoviridae Infections/virology , Protein Binding , Sequestosome-1 Protein/chemistry , Sequestosome-1 Protein/metabolism , Vero Cells , Viral Proteins/chemistry , Viral Proteins/metabolism , Birds/virology
20.
Nature ; 622(7984): 810-817, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37853121

ABSTRACT

Highly pathogenic avian influenza (HPAI) H5N1 activity has intensified globally since 2021, increasingly causing mass mortality in wild birds and poultry and incidental infections in mammals1-3. However, the ecological and virological properties that underscore future mitigation strategies still remain unclear. Using epidemiological, spatial and genomic approaches, we demonstrate changes in the origins of resurgent HPAI H5 and reveal significant shifts in virus ecology and evolution. Outbreak data show key resurgent events in 2016-2017 and 2020-2021, contributing to the emergence and panzootic spread of H5N1 in 2021-2022. Genomic analysis reveals that the 2016-2017 epizootics originated in Asia, where HPAI H5 reservoirs are endemic. In 2020-2021, 2.3.4.4b H5N8 viruses emerged in African poultry, featuring mutations altering HA structure and receptor binding. In 2021-2022, a new H5N1 virus evolved through reassortment in wild birds in Europe, undergoing further reassortment with low-pathogenic avian influenza in wild and domestic birds during global dissemination. These results highlight a shift in the HPAI H5 epicentre beyond Asia and indicate that increasing persistence of HPAI H5 in wild birds is facilitating geographic and host range expansion, accelerating dispersion velocity and increasing reassortment potential. As earlier outbreaks of H5N1 and H5N8 were caused by more stable genomic constellations, these recent changes reflect adaptation across the domestic-bird-wild-bird interface. Elimination strategies in domestic birds therefore remain a high priority to limit future epizootics.


Subject(s)
Birds , Disease Outbreaks , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Internationality , Animals , Africa/epidemiology , Animals, Wild/virology , Asia/epidemiology , Birds/virology , Disease Outbreaks/prevention & control , Disease Outbreaks/statistics & numerical data , Disease Outbreaks/veterinary , Europe/epidemiology , Evolution, Molecular , Host Specificity , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N8 Subtype/genetics , Influenza A Virus, H5N8 Subtype/isolation & purification , Influenza in Birds/epidemiology , Influenza in Birds/mortality , Influenza in Birds/transmission , Influenza in Birds/virology , Mammals/virology , Mutation , Phylogeny , Poultry/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...