Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.265
Filter
1.
Vet Microbiol ; 293: 110094, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636175

ABSTRACT

Infectious bursa disease (IBD) is an acute, highly contactable, lethal, immunosuppressive infectious disease caused by the Infectious bursa disease virus (IBDV). Currently, the emerged novel variant IBDV (nVarIBDV) and the sustainedly prevalent very virulent IBDV (vvIBDV) are the two most prevalent strains of IBDV in China. The antigenic properties of the two prevalent strains differed significantly, which led to the escape of nVarIBDV from the immune protection provided by the existing vvIBDV vaccine. However, the molecular basis of the nVarIBDV immune escape remains unclear. In this study, we demonstrated, for the first time, that residues 252, 254, and 256 in the PDE of VP2 are involved in the immune escape of the emerging nVarIBDV. Firstly, the IFA-mediated antigen-antibody affinity assay showed that PBC and PDE of VP2 could affect the affinity of vvIBDV antiserum to VP2, of which PDE was more significant. The key amino acids of PDE influencing the antigen-antibody affinity were also identified, with G254N being the most significant, followed by V252I and I256V. Then the mutated virus with point or combined mutations was rescued by reverse genetics. it was further demonstrated that mutations of V252I, G254N, and I256V in PDE could individually or collaboratively reduce antigen-antibody affinity and interfere with antiserum neutralization, with G254N being the most significant. This study revealed the reasons for the widespread prevalence of nVarIBDV in immunized chicken flocks and provided innovative ideas for designing novel vaccines that match the antigen of the epidemic strain.


Subject(s)
Birnaviridae Infections , Capsid Proteins , Chickens , Immune Evasion , Infectious bursal disease virus , Poultry Diseases , Infectious bursal disease virus/genetics , Infectious bursal disease virus/immunology , Animals , Chickens/virology , Capsid Proteins/genetics , Capsid Proteins/immunology , Poultry Diseases/virology , Poultry Diseases/immunology , Birnaviridae Infections/veterinary , Birnaviridae Infections/virology , Birnaviridae Infections/immunology , China , Antibodies, Viral/immunology , Mutation , Viral Vaccines/immunology , Viral Structural Proteins
2.
Fish Shellfish Immunol ; 149: 109530, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570120

ABSTRACT

The elongation of very long chain fatty acids (ELOVL) proteins are key rate-limiting enzymes that catalyze fatty acid synthesis to form long chain fatty acids. ELOVLs also play regulatory roles in the lipid metabolic reprogramming induced by mammalian viruses. However, little is known about the roles of fish ELOVLs during virus infection. Here, a homolog of ELOVL7 was cloned from Epinephelus coioides (EcELOVL7a), and its roles in red-spotted grouper nervous necrosis virus (RGNNV) and Singapore grouper iridovirus (SGIV) infection were investigated. The transcription level of EcELOVL7a was significantly increased upon RGNNV and SGIV infection or other pathogen-associated molecular patterns stimulation in grouper spleen (GS) cells. Subcellular localization analysis showed that EcELOVL7a encoded an endoplasmic reticulum (ER) related protein. Overexpression of EcELOVL7a promoted the viral production and virus release during SGIV and RGNNV infection. Furthermore, the lipidome profiling showed that EcELOVL7a overexpression reprogrammed cellular lipid components in vitro, evidenced by the increase of glycerophospholipids, sphingolipids and glycerides components. In addition, VLCFAs including FFA (20:2), FFA (20:4), FFA (22:4), FFA (22:5) and FFA (24:0), were enriched in EcELOVL7a overexpressed cells. Consistently, EcELOVL7a overexpression upregulated the transcription level of the key lipid metabolic enzymes, including fatty acid synthase (FASN), phospholipase A 2α (PLA 2α), and cyclooxygenases -2 (COX-2), LPIN1, and diacylglycerol acyltransferase 1α (DGAT1α). Together, our results firstly provided the evidence that fish ELOVL7a played an essential role in SGIV and RGNNV replication by reprogramming lipid metabolism.


Subject(s)
Bass , DNA Virus Infections , Fatty Acid Elongases , Fish Diseases , Fish Proteins , Lipid Metabolism , Virus Replication , Animals , Fish Diseases/immunology , Fish Diseases/virology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/metabolism , DNA Virus Infections/veterinary , DNA Virus Infections/immunology , Bass/immunology , Bass/genetics , Fatty Acid Elongases/genetics , Nodaviridae/physiology , Gene Expression Regulation , Acetyltransferases/genetics , Acetyltransferases/metabolism , Birnaviridae Infections/veterinary , Birnaviridae Infections/immunology , Birnaviridae Infections/virology , Gene Expression Profiling/veterinary , Iridoviridae/physiology , Iridovirus/physiology , Phylogeny , Sequence Alignment/veterinary , Amino Acid Sequence , Metabolic Reprogramming
3.
J Virol ; 98(5): e0018124, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38639485

ABSTRACT

Infectious bursal disease (IBD) is an acute and fatal immunosuppressive disease caused by infectious bursal disease virus (IBDV). As an obligate intracellular parasite, IBDV infection is strictly regulated by host factors. Knowledge on the antiviral activity and possible mechanism of host factors might provide the theoretical basis for the prevention and control of IBD. In this study, RNA-sequencing results indicated that many host factors were induced by IBDV infection, among which the expression levels of OASL (2´,5´-oligadenylate synthetase-like protein) was significantly upregulated. OASL overexpression significantly inhibited IBDV replication, whereas OASL knockdown promoted IBDV replication. Interestingly, the antiviral ability of OASL was independent of its canonical enzymatic activity, i.e., OASL targeted viral protein VP2 for degradation, depending on the autophagy receptor p62/SQSTM1 in the autophagy pathway. Additionally, the 316 lysine (K) of VP2 was the key site for autophagy degradation, and its replacement with arginine disrupted VP2 degradation induced by OASL and enhanced IBDV replication. Importantly, our results for the first time indicate a unique and potent defense mechanism of OASL against double-stranded RNA virus by interaction with viral proteins, which leads to their degradation. IMPORTANCE: OASL (2´,5´-oligadenylate synthetase-like protein) exhibits broad-spectrum antiviral effects against single-stranded RNA viruses in mammals, potentially serving as a promising target for novel antiviral strategies. However, its role in inhibiting the replication of double-stranded RNA viruses (dsRNA viruses), such as infectious bursal disease virus (IBDV), in avian species remains unclear. Our findings indicated a unique and potent defense mechanism of OASL against dsRNA viruses. It has been previously shown in mammals that OASL inhibits virus replication through increasing interferon production. The groundbreaking aspect of our study is the finding that OASL has the ability to interact with IBDV viral protein VP2 and target it for degradation and thus exerts its antiviral effect. Our results reveal the interaction between avian natural antiviral immune response and IBDV infection. Our study not only enhances our understanding of bird defenses against viral infections but can also inform strategies for poultry disease management.


Subject(s)
2',5'-Oligoadenylate Synthetase , Autophagy , Birnaviridae Infections , Chickens , Infectious bursal disease virus , Viral Structural Proteins , Virus Replication , Infectious bursal disease virus/physiology , Animals , Birnaviridae Infections/virology , Birnaviridae Infections/metabolism , Viral Structural Proteins/metabolism , Viral Structural Proteins/genetics , 2',5'-Oligoadenylate Synthetase/metabolism , 2',5'-Oligoadenylate Synthetase/genetics , Poultry Diseases/virology , Poultry Diseases/metabolism , Host-Pathogen Interactions , HEK293 Cells , Humans , Cell Line
4.
Vet Microbiol ; 292: 110053, 2024 May.
Article in English | MEDLINE | ID: mdl-38502979

ABSTRACT

Infectious bursal disease virus (IBDV) caused an acute and highly contagious infectious disease characterized by severe immunosuppression, causing considerable economic losses to the poultry industry globally. Although this disease was well-controlled under the widely use of commercial vaccines in the past decades, the novel variant IBDV strains emerged recently because of the highly immunized-selection pressure in the field, posting new threats to poultry industry. Here, we reported novel variant IBDV is responsible for a disease outbreak, and assessed the epidemic and pathogenicity of IBDV in this study. Moreover, we constructed a challenge model using Fowl adenovirus serotype 4 (FAdV-4) to study on the immunosuppressive effect. Our findings underscore the importance of IBDV surveillance, and provide evidence for understanding the pathogenicity of IBDV.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Poultry Diseases , Animals , Chickens , Virulence , Birnaviridae Infections/prevention & control , Birnaviridae Infections/veterinary , Vaccination/veterinary , Poultry , Adenoviridae
5.
Poult Sci ; 103(5): 103547, 2024 May.
Article in English | MEDLINE | ID: mdl-38428353

ABSTRACT

Infectious bursal disease (IBD) significantly affects the poultry industry, causing substantial economic losses. This study aimed to investigate the effects of ghrelin on chicks infected with an attenuated virus strain of IBDV (aIBDV). Chicks were divided into 3 groups: a control group (group I), an aIBDV infection group (group II), and a ghrelin + aIBDV infection group (group III). Mice in groups II and III were fed until they reached 19 d of age and then inoculated with aIBDV to establish a subclinical infection model. Group III received an intraperitoneal injection of 0.5 nmol/100 g ghrelin from d 17 to 23. The present study utilized paraffin sectioning, H&E staining, and immunohistochemical staining to examine the effects of ghrelin on the bursa of fabricius and cecum tonsils in aIBDV-infected chicks. The results indicated that at 3 d postinfection (dpi), the average body weight of group III was significantly greater than that of group II (P < 0.05). At 3 and 7 dpi, the proportion of large lymphoid follicles in the bursa of fabricius in group III was notably greater than that in group II (P < 0.05). aIBDV infection resulted in bleeding, edema, and fibrosis in the cecal mucosal layer of chicks, but ghrelin administration mitigated these pathological changes. At 3 and 7 dpi, the thickness of the lamina propria in the cecal tonsils of group III was significantly lower than that in the cecal tonsils of group II (P < 0.05). Additionally, the percentage of large lymphoid follicles in the cecal tonsils of group III was significantly greater than that in group II at 3 and 5 dpi (P < 0.05). There were significantly fewer macrophages in the cecal tonsils of group III than in those of group II at 1, 3, and 5 dpi (P < 0.05). In conclusion, ghrelin supplementation improved performance and mitigated bursal atrophy in aIBDV-infected chicks. It also reduced histological lesions and immune responses in the cecum tonsil. Notably, the reduction in macrophages in the cecum tonsil following ghrelin administration may decrease the risk of aIBDV spread.


Subject(s)
Birnaviridae Infections , Bursa of Fabricius , Cecum , Chickens , Ghrelin , Infectious bursal disease virus , Poultry Diseases , Animals , Infectious bursal disease virus/physiology , Poultry Diseases/virology , Poultry Diseases/drug therapy , Poultry Diseases/immunology , Birnaviridae Infections/veterinary , Birnaviridae Infections/virology , Ghrelin/administration & dosage , Ghrelin/pharmacology , Bursa of Fabricius/virology , Bursa of Fabricius/drug effects , Cecum/virology , Male
6.
Poult Sci ; 103(4): 103552, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38422756

ABSTRACT

The novel variant IBDV (nVarIBDV, genotype A2dB1), characterized by bursal atrophy of fabricius and decreased lymphocytes, has been emerging on a large scale in Asia (including China) since late 2018. nVarIBDV is a new threat to the poultry industry, yet the currently licensed commercial vaccines, including the live viral vector vaccine, IBDV immune complex vaccine or VP2 subunit vaccine, are ineffective against nVarIBDV infection. In this study, specific-pathogen-free (SPF) chickens and broilers divided into 3 groups were vaccinated with the live viral vector vaccine, the VP2 subunit vaccine or the IBDV immune complex vaccine at 1 day-old, respectively. The SPF chickens received a secondary vaccination with the live B87 strain vaccine at 11-day-old. The bursa/body weight ratio, histopathology lesion of the bursa, and the differentiation between infected and vaccinated animals (DIVA) by qRT-PCR confirmed that the live viral vector vaccine or immune complex vaccine plus live B87 strain booster could provide at least 80% protection against the FJ2019-01 strain of nVarIBDV in SPF chickens. The broilers also received a secondary vaccination using a live W2512 G-61 strain vaccine at 14-day-old, and analyses showed that the VP2 subunit vaccine or immune complex vaccine plus the live W2512 G-61 strain booster also provided more than 80% protection against the FJ2019-01 strain of nVarIBDV. Unfortunately, the live viral vector vaccine plus live W2512 G-61 strain booster provided poor to moderate protection against FJ2019-01 in broilers. These findings suggest that combining commercial vaccines with rational booster immunization can effectively protect chickens against an nVarIBDV challenge.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Poultry Diseases , Viral Vaccines , Animals , Chickens , Immunization, Secondary/veterinary , Antigen-Antibody Complex , Birnaviridae Infections/prevention & control , Birnaviridae Infections/veterinary , Vaccines, Attenuated , Vaccines, Subunit , Antibodies, Viral , Bursa of Fabricius/pathology
7.
Poult Sci ; 103(2): 103306, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38228049

ABSTRACT

Gumboro virus is one of the most dangerous immunosuppressant viruses that infect chickens and causes massive financial losses worldwide. The current study aims to conduct a molecular characterization of chicken farms for the infectious bursal disease virus (IBDV). Based on postmortem (PM) lesions, 125 bursal samples from 25 farms were collected from clinically diseased commercial chicken farms with increased mortality and suspected Gumboro virus infection. Pooled bursal samples from suspected IBD-vaccinated flocks were tested for IBDV by reverse transcriptase polymerase chain reaction (RT-PCR). Fifteen out of 25 pooled specimens were found positive for IBDV, with a 60% detection rate, and confirmed positive for very virulent IBDV (vvIBDV) by sequence analysis. Nucleotide phylogenetic analysis of VP1 and VP2 genes was employed to compare the 5 chosen isolates with strains representing different governorates in Egypt during 2022. All strains were clustered with vvIBDV with no evidence of reassortment in the VP1 gene. The VP1 and VP2 genes are divided into groups (I, II). The strains in our study were related to group II, and it acquired a new mutation in the VP2 gene that clustered it into new subgroup B. By mutation analysis, the VP2 gene of all strains had a characteristic mutation to vvIBDV. It acquired new mutations in HVRs compared with HK46 in Y220F, A222T/V in all strains in our study, and Q221K that was found in IBD-EGY-AH5 and AH2 in the loop PBC in addition to G254S in all strains in our study and Q249k that found in IBD-EGY-AH1 and AH3 in the loop PDE. These mutations are important in the virulency and antigenicity of the virus. The VP1 had 242E, 390M, and 393D which were characteristic of vvIBDV and KpnI restriction enzyme (777GGTAC/C782) in addition to a new mutation (F243Y and N383H) in IBD-EGY-AH1 and AH4 strains. According to the current study, the strains were distinct from the vaccinal strain; they could be responsible for the most recent IBDV outbreaks observed in flocks instead of received vaccinations. The current study highlighted the importance of molecular monitoring to keep up to date on the circulating IBDV for regular evaluation of commercial vaccination programs against circulating field viruses.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Poultry Diseases , Animals , Chickens , Phylogeny , Birnaviridae Infections/epidemiology , Birnaviridae Infections/veterinary , Poultry Diseases/prevention & control , Viral Structural Proteins/genetics
8.
Vet Microbiol ; 290: 109989, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266371

ABSTRACT

ADP-ribosylation factor 6 (ARF6) is a small G protein with extensive functions, including regulation of cellular membrane transport and viral infection. Infectious bursal disease (IBD) is caused by infectious bursal disease virus (IBDV), which mainly invades the bursa of Fabricius and causes low immunity in poultry. Our study demonstrated that IBDV infection could promote the expression of ARF6; however, the underlying mechanism remains unclear. Herein, the function of ARF6 in IBDV infection was explored, and it was revealed that viral replication was significantly promoted by ARF6 overexpression and hampered by siRNA-mediated inhibition of ARF6. Using two site mutants of ARF6 (ARF6-T27N and ARF6-Q67L), we found that IBDV replication was repressed by ARF6-T27N, indicating that ARF6 promotes IBDV replication. Further exploration of its mechanism revealed that ARF6 affects the copy number of IBDVs entering cells. A clathrin inhibitor (pitstop 2) impeded the early replication of IBDV, even when ARF6 was overexpressed. These results indicated that ARF6 promotes viral replication by affecting the internalization of IBDV, which may involve clathrin-dependent endocytosis. Our findings improve the understanding of the processes governing IBDV infection and provide insights into its prevention and control.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Poultry Diseases , Animals , Clathrin/metabolism , ADP-Ribosylation Factor 6 , Virus Internalization , Endocytosis , Virus Replication , Chickens , Birnaviridae Infections/veterinary , Bursa of Fabricius
9.
Vaccine ; 42(2): 332-338, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38065771

ABSTRACT

Newcastle disease (ND) and infectious bursal disease (IBD) pose significant threats to the chicken industry, causing substantial economic losses. Currently, immunization through vaccination is the most effective strategy to prevent ND and IBD but currently used traditional vaccines, including inactivated or attenuated vaccines, face challenges in achieving a balance between immunogenicity and safety. To develop a green and efficient novel vaccine for ND and IBD, we developed a bivalent chimeric virus-like particle vaccine (ND-IBD cVLPs) displaying the ND virus (NDV) HN protein and the IBD virus (IBDV) VP2 protein based on the ND VLPs carrier platform and insect baculovirus expression system. This study aimed to evaluate the immunogenicity and protective efficacy of ND-IBD cVLPs in specific pathogen-free chickens. Chickens were immunized with 50 µg of purified ND-IBD cVLPs at 7 days old, boosted at 21 days old, and challenged at 42 days old. The results demonstrated that ND-IBD cVLPs stimulated highly effective hemagglutination inhibition antibody levels against NDV HN protein and enzyme-linked immunosorbent assay antibody levels against the IBDV VP2 protein. Furthermore, ND-IBD cVLPs provided complete protection against virulent NDV and IBDV challenges and mitigated pathological damage to the lung caused by NDV infection and the bursa of Fabricius caused by IBDV infection. These findings suggest that ND-IBD cVLPs hold promise as a safe and efficient novel vaccine candidate for the effective prevention of ND and IBD, extending the development of a foreign protein delivery platform of ND VLPs.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Newcastle Disease , Poultry Diseases , Vaccines, Virus-Like Particle , Viral Vaccines , Animals , Chickens , HN Protein , Antibodies, Viral , Newcastle disease virus/genetics , Newcastle Disease/prevention & control , Birnaviridae Infections/prevention & control , Birnaviridae Infections/veterinary
10.
Avian Pathol ; 53(1): 56-67, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37823857

ABSTRACT

RESEARCH HIGHLIGHTS: Different field IBDVs were found to circulate in the Near and Middle East.Multiple atypical genotypes (A3B1, A4B1, A6B1) were found to circulate extensively.Traditional very virulent IBDVs (A3B2) were a minority of the detected strains.Viral exchanges can be hypothesized between the region and different continents.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Poultry Diseases , Animals , Chickens/genetics , Infectious bursal disease virus/genetics , Molecular Epidemiology , Indian Ocean , Birnaviridae Infections/epidemiology , Birnaviridae Infections/veterinary , Phylogeny , Middle East/epidemiology , Viral Structural Proteins/genetics
11.
Vet Microbiol ; 288: 109950, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38101079

ABSTRACT

Newcastle disease (ND) and infectious bursal disease (IBD) are two viral infectious diseases that are extremely damaging to the poultry industry and are widespread throughout the world. It is necessary to develop a safe and effective vaccine against IBD and ND because vaccination is an effective preventive measure. It has been discovered that recombinant proteins expressed by an expression system in which a fragment of mammalian Immunoglobulin G (IgG) Fragment crystallizable (Fc) is linked to a segment of a gene have antibody-like properties that increase the exogenous protein's serum half-life. Heavy chain constant region 3 and heavy chain constant region 4 (CH3-CH4) of Avian Immunoglobulin Y (IgY) is structurally very similar to mammalian Ig G Fc. In this study, a bivalent vaccine rClone30-VP2L-CH3-CH4-GMCSF was developed by using NDV rClone30-chGM-CSF vector to produce VP2L-CH3-CH4 fusion protein. The vaccine has been given to 14-day-old specific pathogen free (SPF) free chickens to test whether it has the potential to prevent IBD and ND. Anti-IBDV and anti-NDV antibody levels in serum were evaluated using ELISA and HI, respectively, and the contents of CD4+ T, CD8+ T, and B cells in leukocytes were determined via flow cytometry. The contents and mRNA transcription levels of four inflammatory factors, IL-1ß, IL-4, IFN-γ and chGM-CSF, were detected by ELISA and real-time PCR respectively. The results showed that after vaccination with the rClone30-VP2L-CH3-CH4-GMCSF vaccine, the levels of anti NDV and anti IBDV antibodies in chickens were significantly higher than those of the rClone30 vaccine and commercial vaccines. Meanwhile, the contents and transcription levels of inflammatory factors in chickens inoculated with rClone30-VP2L-CH3-CH4-GMCSF were significantly increased, and the proliferation response of B cells, CD4+ and CD8+ T cells was also stronger. However, the rClone30-VP2L-CH3-CH4-GMCSF vaccine had no significant advantage over the rClone30-VP2L-GMCSF vaccine in any of the above-mentioned features. In summary, rClone30-VP2L-CH3-CH4-GMCSF can stimulate the body to produce a stronger immune response, showing its potential to be considered as vaccine against IBD and ND, but the addition of CH3-CH4 did not improve the vaccine's immune effect as expected. The research lays the foundation for developing vaccines for other infectious viral diseases and avoids a unrealistic vaccine optimization method.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Newcastle Disease , Poultry Diseases , Viral Vaccines , Animals , Chickens , Newcastle disease virus/genetics , Vaccines, Combined , Specific Pathogen-Free Organisms , CD8-Positive T-Lymphocytes , Antibodies, Viral , Newcastle Disease/prevention & control , Birnaviridae Infections/prevention & control , Birnaviridae Infections/veterinary , Mammals
12.
Viruses ; 15(12)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38140629

ABSTRACT

Infectious bursal disease (IBD) is an immunosuppressive disease causing significant damage to the poultry industry worldwide. Its etiological agent is infectious bursal disease virus (IBDV), a highly resistant RNA virus whose genetic variability considerably affects disease manifestation, diagnosis and control, primarily pursued by vaccination. In Egypt, very virulent strains (genotype A3B2), responsible for typical IBD signs and lesions and high mortality, have historically prevailed. The present molecular survey, however, suggests that a major epidemiological shift might be occurring in the country. Out of twenty-four samples collected in twelve governorates in 2022-2023, seven tested positive for IBDV. Two of them were A3B2 strains related to other very virulent Egyptian isolates, whereas the remaining five were novel variant IBDVs (A2dB1b), reported for the first time outside of Eastern and Southern Asia. This emerging genotype spawned a large-scale epidemic in China during the 2010s, characterized by subclinical IBD with severe bursal atrophy and immunosuppression. Its spread to Egypt is even more alarming considering that, contrary to circulating IBDVs, the protection conferred by available commercial vaccines appears suboptimal. These findings are therefore crucial for guiding monitoring and control efforts and helping to track the spread of novel variant IBDVs, possibly limiting their impact.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Poultry Diseases , Animals , Egypt/epidemiology , Chickens , Poultry , Birnaviridae Infections/epidemiology , Birnaviridae Infections/veterinary , Genotype , Phylogeny
13.
Viruses ; 15(11)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-38005855

ABSTRACT

OBJECTIVES: Infectious bursal disease virus (IBDV) is a highly contagious, acutely infectious agent that causes immunosuppression in chickens. We expressed IBDV VP2 proteins in Escherichia coli (E. coli) to develop an effective virus-like-particles (VLPs) vaccine and evaluated its immunogenicity. METHODS: The VLPs produced in E. coli were used as an immunogen mixed with a water-in-mineral-oil adjuvant (MontanideTM ISA 71 VG, ISA 71 RVG) or a white oil (7#) adjuvant. VLPs without an adjuvant, commercial subunit vaccine, inactivated vaccine, and attenuated vaccine were used as controls. These test vaccines were intramuscularly injected into 19-day-old SPF chickens, which were challenged with the IBDV virulent strain at 30 days after vaccination. RESULTS: The adjuvants boosted antibody production, and the adjuvant groups (except white oil) produced higher antibody levels than the non-adjuvanted controls and the commercial vaccine groups. In terms of cellular immunity, the VLPs plus adjuvant combinations produced higher levels of cytokines, IL-2, IL-4, and IFN-γ than the controls. CONCLUSION: IBDV VLPs plus the ISA 71 RVG adjuvant can be used as an optimal vaccine combination for improving the immune efficacy of IBD subunit vaccines, which can protect against the virulent strain.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Poultry Diseases , Vaccines, Virus-Like Particle , Viral Vaccines , Animals , Chickens , Escherichia coli/genetics , Antibodies, Viral , Antibody Formation , Adjuvants, Immunologic , Birnaviridae Infections/prevention & control , Birnaviridae Infections/veterinary
14.
J Virol ; 97(11): e0112523, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37902398

ABSTRACT

IMPORTANCE: The Avibirnavirus infectious bursal disease virus is still an important agent which largely threatens global poultry farming industry economics. VP3 is a multifunctional scaffold structural protein that is involved in virus morphogenesis and the regulation of diverse cellular signaling pathways. However, little is known about the roles of VP3 phosphorylation during the IBDV life cycle. In this study, we determined that IBDV infection induced the upregulation of Cdc7 expression and phosphorylated the VP3 Ser13 site to promote viral replication. Moreover, we confirmed that the negative charge addition of phosphoserine on VP3 at the S13 site was essential for IBDV proliferation. This study provides novel insight into the molecular mechanisms of VP3 phosphorylation-mediated regulation of IBDV replication.


Subject(s)
Avibirnavirus , Cell Cycle Proteins , Chickens , Infectious bursal disease virus , Protein Serine-Threonine Kinases , Viral Structural Proteins , Virus Replication , Animals , Avibirnavirus/chemistry , Avibirnavirus/growth & development , Avibirnavirus/metabolism , Birnaviridae Infections/enzymology , Birnaviridae Infections/metabolism , Birnaviridae Infections/veterinary , Birnaviridae Infections/virology , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Cell Cycle Proteins/metabolism , Chickens/virology , Infectious bursal disease virus/chemistry , Infectious bursal disease virus/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Viral Structural Proteins/chemistry , Viral Structural Proteins/metabolism
15.
Viruses ; 15(10)2023 10 03.
Article in English | MEDLINE | ID: mdl-37896821

ABSTRACT

Outbreaks of the immunosuppressive infectious bursal disease (IBD) are frequently reported worldwide, despite the vaccination regimes. A 2009 Californian IBD outbreak caused by rA and rB isolates was described as very virulent (vv) IBD virus (IBDV); however, molecular factors beyond this virulence were not fully uncovered. Therefore, segments of both isolates were amplified, successfully cloned, whole genome sequenced by Next Generation Sequencing, genotyped, and the leading virulence factors were entirely investigated in terms of phylogenetic and amino acid analysis and protein modeling for positive selection orientation and interaction analysis. rA and rB isolates displayed the highest amino acid identity (97.84-100%) with Genotype 3 strains. Interestingly, rA and rB contained all virulence hallmarks of hypervariable (HVR), including 222A, 242I, 249Q, 256I, 284A, 286T, 294I, 299S, and 318G, as well as the serine-rich heptapeptide sequence. Moreover, we pinpointed the A3B2 genotype of rA and rB, predominant in non-reassortants, and we highlighted the absence of recombination events. Furthermore, gene-wise phylogenetic analysis showed the entire genes of rA and rB clustered with the vvIBDVs and emphasized their share in IBDV virulence. VP5 showed a virulence marker, MLSL (amino acid sequence). VP2 encountered three significant novel mutations apart from the HVR, including G163E in rA and Y173C and V178A in rB, all residing within interacting motifs. VP4 contained 168Y, 173N, 203S, and 239D characteristic for the vv phenotype. A235V mutation was detected at the dsRNA binding domain of VP3. In VP1, the TDN triplet and the mutation (V4I) were detected, characteristic of hypervirulence occurring at the N-terminus responsible for protein priming. Although selection analysis revealed seven sites, codon 222 was the only statistically significant selection site. The VP2 modeling of rA and rB highlighted great structure fitness, with 96.14% Ramachandran favored positioning including the 222A, i.e., not influencing the structure stability. The 222A was found to be non-interface surface residue, associated with no interaction with the attachment-mediated ligand motif. Our findings provide pivotal insights into the evolution and underlying virulence factors and will assist in the development of control strategies via sequence-based continuous monitoring for the early detection of novel vv strains.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Poultry Diseases , Animals , Virulence/genetics , Phylogeny , Incidence , Disease Outbreaks , Whole Genome Sequencing , Virulence Factors , Amino Acids/genetics , Chickens , Birnaviridae Infections/epidemiology , Birnaviridae Infections/veterinary , Viral Structural Proteins/genetics , Viral Structural Proteins/chemistry
16.
Vet Res ; 54(1): 101, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37904195

ABSTRACT

Infectious bursal disease (IBD) is an avian viral disease caused in chickens by infectious bursal disease virus (IBDV). IBDV strains (Avibirnavirus genus, Birnaviridae family) exhibit different pathotypes, for which no molecular marker is available yet. The different pathotypes, ranging from sub-clinical to inducing immunosuppression and high mortality, are currently determined through a 10-day-long animal experiment designed to compare mortality and clinical score of the uncharacterized strain with references strains. Limits of this protocol lie within standardization and the extensive use of animal experimentation. The aim of this study was to establish a predictive model of viral pathotype based on a minimum number of early parameters measured during infection, allowing faster pathotyping of IBDV strains with improved ethics. We thus measured, at 2 and 4 days post-infection (dpi), the blood concentrations of various immune and coagulation related cells, the uricemia and the infectious viral load in the bursa of Fabricius of chicken infected under standardized conditions with a panel of viruses encompassing the different pathotypes of IBDV. Machine learning algorithms allowed establishing a predictive model of the pathotype based on early changes of the blood cell formula, whose accuracy reached 84.1%. Its accuracy to predict the attenuated and strictly immunosuppressive pathotypes was above 90%. The key parameters for this model were the blood concentrations of B cells, T cells, monocytes, granulocytes, thrombocytes and erythrocytes of infected chickens at 4 dpi. This predictive model could be a second option to traditional IBDV pathotyping that is faster, and more ethical.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Poultry Diseases , Animals , Chickens , Bursa of Fabricius , B-Lymphocytes , Blood Cell Count/veterinary , Birnaviridae Infections/veterinary
17.
Poult Sci ; 102(12): 103129, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37879167

ABSTRACT

Immunosuppressive diseases cause great losses in the poultry industry, increasing the susceptibility to infections by other pathogens and promoting a suboptimal response to vaccination. Among them, infectious bursal disease virus (IBDV) arises as one of the most important around the world. IBDV infects immature B lymphocytes, affecting the immune status of birds and facilitating infections by other pathogens such as avian infectious bronchitis virus (IBV). Although it has been reported that the interaction between these viruses increases IBV clinical signs, there are no actual studies about the interaction between regional circulating isolates that validate this statement. In this context, the objective of our work was to evaluate the effect of the interaction between local isolates of IBDV (belonging to genogroup 4) and IBV (lineage GI-16) in chickens. Thus, specific pathogen-free chickens were orally inoculated with IBDV genogroup (G) 4 or with PBS at 5 d of age. At 14-days postinoculation (dpi) the animals were intratracheally inoculated with a GI-16 IBV or with PBS. At multiple time points, groups of birds were euthanized and different parameters such as histological damage, viral load, lymphocyte populations and specific antibodies were evaluated. The success of IBDV infection was confirmed by the severity of bursal atrophy, viral detection, and presence of anti-IBDV antibodies. In IBV-infected animals, the presence of viral genome was detected in both kidney and bursa. The coinfected animals showed higher degree of lymphocyte infiltration in kidney, higher rate of animals with IBV viral genome in bursa at 28 dpi, and a clear decrease in antibody response against IBV at 28, 35, and 40 dpi. The results indicate that the infection with the local isolate of IBDV affects the immune status of the chickens, causing major severe damage, in response to IBV infection, which could consequently severely affect the local poultry industry.


Subject(s)
Birnaviridae Infections , Coinfection , Infectious bronchitis virus , Infectious bursal disease virus , Poultry Diseases , Animals , Chickens , Coinfection/veterinary , Antibodies, Viral , Birnaviridae Infections/veterinary , Bursa of Fabricius , Specific Pathogen-Free Organisms
18.
Fish Shellfish Immunol ; 142: 109116, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37758098

ABSTRACT

Infectious pancreatic necrosis virus (IPNV) is the pathogen of infectious pancreatic necrosis (IPN), which can cause high mortality in salmonids, harm the healthy development of salmon-trout aquaculture, and lead to huge economic losses. However, in China, there is currently neither a commercially available vaccine to prevent IPNV infection nor antiviral drugs to treat IPNV infection. The genome of IPNV consists of two segments of dsRNA named A and B. Segment B encodes the RNA-dependent RNA-polymerase (RdRp) VP1 which is essential for viral RNA replication and is therefore considered an important target for the development of antiviral drugs. In this study, we investigate whether 2'-C-methylcytidine (2CMC), a nucleoside analog which target viral polymerases, has an inhibitory effect on IPNV both in vitro and in vivo. The results show that 2CMC inhibits IPNV infection by inhibiting viral RNA replication rather than viral internalization or attachment. In vivo experiment results showed that 2CMC could inhibit viral RNA replication and reduce viral load in rainbow trout (Oncorhynchus mykiss). In our study, we have revealed that 2CMC has a potent inhibitory effect against IPNV infection. Our data suggest that 2CMC is an attractive anti-IPNV drug candidate which will be highly valuable for the development of potential therapeutics for IPNV.


Subject(s)
Birnaviridae Infections , Fish Diseases , Infectious pancreatic necrosis virus , Oncorhynchus mykiss , Animals , RNA , Antiviral Agents/pharmacology
19.
Vet Immunol Immunopathol ; 264: 110658, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37748249

ABSTRACT

The infectious bursal disease virus (IBDV) causes an acute and highly contagious immunosuppressive response in young chickens by targeting B lymphocytes in immune organs. Changes in regulatory T-cell ratio and apoptosis have been demonstrated during IBDV infection in these cells. The possible change in CD19 expression as the precursor of B cells after IBDV replication was detected in this study. Raji cells were infected with an IBDV isolate at MOIs of 1.0 and 3.0. The viral kinetics were determined using the characteristic virus-induced CPE, cell viability, and infectious titer. Induction of apoptosis and also changes in the CD19 expression within the virus infection were assessed by flow cytometry. The Raji cells were found to be susceptible to IBDV infection by producing marked CPEs dependent on MOI. The infectivity titers were determined in intra- and extracellular samples at the defined hours. The kinetics of early IBDV replication in Raji cells were nearly identical for both MOIs, but a significant difference in the infectivity titer was observed at 48 hpi. The quick apoptotic events were observed to be significantly higher in MOI 3.0, which was correlated with the lower virus titer. A significant CD19 expression change in the IBDV-infected Raji cells was revealed. The results suggested that Raji cells mimic the IBDV replication in lymphoid organs and the virus replication is related to CD19 expression frequencies in the lymphoid cells.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Poultry Diseases , Animals , Chickens , B-Lymphocytes , Lymphocytes , Virus Replication , Birnaviridae Infections/veterinary
20.
Arch Virol ; 168(8): 200, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37402042

ABSTRACT

Infectious bursal disease virus (IBDV) causes an acute and highly contagious infectious disease characterized by severe immunosuppression, causing great economic losses to the poultry industry globally. Over the past 30 years, this disease has been well controlled through vaccination and strict biosafety measures. However, novel variant IBDV strains have emerged in recent years, posing a new threat to the poultry industry. Our previous epidemiological survey showed that few novel variant IBDV strains had been isolated from chickens immunized with the attenuated live vaccine W2512-, suggesting that this vaccine is efficacious against novel variant strains. Here, we report the protective effect of the W2512 vaccine against novel variant strains in SPF chickens and commercial yellow-feathered broilers. We found that W2512 causes severe atrophy of the bursa of Fabricius in SPF chickens and commercial yellow-feathered broilers, induces high levels of antibodies against IBDV, and protects chickens from infection with the novel variant strains via a placeholder effect. This study highlights the protective effect of commercial attenuated live vaccines against the novel IBDV variant and provides guidance for the prevention and control of this disease.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Poultry Diseases , Viral Vaccines , Animals , Chickens , Viral Vaccines/genetics , Birnaviridae Infections/prevention & control , Birnaviridae Infections/veterinary , Vaccines, Attenuated/genetics , Antibodies, Viral , Bursa of Fabricius
SELECTION OF CITATIONS
SEARCH DETAIL
...