Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 313
Filter
1.
Virulence ; 15(1): 2387181, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39101682

ABSTRACT

Infectious bursal disease (IBD) is a widespread problem in the poultry industry, and vaccination is the primary preventive method. However, moderately virulent vaccines may damage the bursa, necessitating the development of a safe and effective vaccine. The Newcastle disease virus (NDV) has been explored as a vector for vaccine development. In this study, reverse genetic technology was used to obtain three recombinant viruses, namely, rClone30-VP2L (P/M)-chGM-CSF (NP), rClone30-chGM-CSF (P/M)-VP2L (NP), and rClone30-VP2L-chGM-CSF (P/M). Animal experiments showed that the three biological adjuvant bivalent vaccines effectively increased anti-NDV and anti-infectious bursal disease virus (IBDV) titres, enhancing both humoral and cellular immune responses in chickens without leading to any harm. Amongst the three biological adjuvant bivalent vaccines, the rClone30-chGM-CSF (P/M)-VP2L (NP) group had higher levels of anti-NDV antibodies at 14 days after the first immunization and stimulated a greater humoral immune response in 7-10 days. While, the rClone30-VP2L (P/M)-chGM-CSF (NP) group was the most effective in producing a higher level of IBDV antibody response. In conclusion, these three vaccines can induce immune responses more rapidly and effectively, streamline production processes, be cost-effective, and provide a new avenue for the development of Newcastle disease (ND) and IBD bivalent vaccines.


Subject(s)
Antibodies, Viral , Birnaviridae Infections , Chickens , Infectious bursal disease virus , Newcastle Disease , Newcastle disease virus , Poultry Diseases , Viral Vaccines , Animals , Viral Vaccines/immunology , Poultry Diseases/prevention & control , Poultry Diseases/virology , Poultry Diseases/immunology , Birnaviridae Infections/prevention & control , Birnaviridae Infections/immunology , Birnaviridae Infections/veterinary , Newcastle disease virus/immunology , Newcastle disease virus/genetics , Infectious bursal disease virus/immunology , Infectious bursal disease virus/genetics , Newcastle Disease/prevention & control , Newcastle Disease/immunology , Antibodies, Viral/blood , Immunity, Humoral , Adjuvants, Immunologic/administration & dosage , Adjuvants, Vaccine , Immunity, Cellular , Vaccination
2.
Vaccine ; 42(24): 126081, 2024 Oct 24.
Article in English | MEDLINE | ID: mdl-38944579

ABSTRACT

Infectious bursal disease virus (IBDV) is an acute and highly infectious RNA virus known for its immunosuppressive capabilities, chiefly inflicting rapid damage to the bursa of Fabricius (BF) of chickens. Current clinical control of IBDV infection relies on vaccination. However, the emergence of novel variant IBDV (nVarIBDV) has posed a threat to the poultry industry across the globe, underscoring the great demand for innovative and effective vaccines. Our previous studies have highlighted the critical role of IBDV VP5 as an apoptosis-inducer in host cells. In this study, we engineered IBDV mutants via a reverse genetic system to introduce amino acid mutations in VP5. We found that the mutant IBDV-VP5/3m strain caused reduced host cell mortality, and that strategic mutations in VP5 reduced IBDV replication early after infection, thereby delaying cell death. Furthermore, inoculation of chickens with IBDV-VP5/3m effectively reduced damage to BF and induced neutralizing antibody production comparable to that of parental IBDV WT strain. Importantly, vaccination with IBDV-VP5/3m protected chickens against challenges with nVarIBDV, an emerging IBDV variant strain in China, reducing nVarIBDV loads in BF while alleviating bursal atrophy and splenomegaly, suggesting that IBDV-VP5/3m might serve as a novel vaccine candidate that could be further developed as an effective vaccine for clinical control of IBD. This study provides a new clue to the development of novel and effective vaccines.


Subject(s)
Birnaviridae Infections , Chickens , Infectious bursal disease virus , Poultry Diseases , Vaccines, Attenuated , Viral Vaccines , Animals , Amino Acids , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Birnaviridae Infections/prevention & control , Birnaviridae Infections/veterinary , Birnaviridae Infections/immunology , Bursa of Fabricius/virology , Bursa of Fabricius/immunology , Bursa of Fabricius/pathology , Infectious bursal disease virus/genetics , Infectious bursal disease virus/immunology , Mutation , Poultry Diseases/prevention & control , Poultry Diseases/virology , Poultry Diseases/immunology , Vaccines, Attenuated/immunology , Vaccines, Attenuated/genetics , Viral Nonstructural Proteins , Viral Structural Proteins/genetics , Viral Structural Proteins/immunology , Viral Vaccines/immunology , Viral Vaccines/genetics , Virus Replication
3.
Appl Microbiol Biotechnol ; 108(1): 397, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922350

ABSTRACT

Functional M cells are differentiated by receptor activator of NF-κB ligand (RANKL) and capture of luminal antigens to initiate immune responses. We aimed to use postbiotic-based recombinant chicken RANKL (cRANKL) to promote M cell differentiation and test the efficacy of oral vaccines. Chicks were divided into three groups that were administered phosphate-buffered saline (PBS), cell extracts of wild-type Lactococcus lactis subsp. lactis IL1403 (WT_CE), or cell extracts of recombinant L. lactis expressing cRANKL (cRANKL_CE). The expression of the M cell marker was measured, and the gut microbiome was profiled. The efficiency of the infectious bursal disease (IBD) vaccine was tested after 12 consecutive days of administering cRANKL_CE. The chickens that were administered cRANKL_CE (p = 0.038) had significantly higher Annexin A5 (ANXA5) mRNA expression levels than those in the PBS group (PBS vs. WT_CE, p = 0.657). In the gut microbiome analysis, no significant changes were observed. However, the relative abundance of Escherichia-Shigella was negatively correlated (r = - 0.43, p = 0.019) with ANXA5 mRNA expression in Peyer's patches. cRANKL_CE/IBD (p = 0.018) had significantly higher IBD-specific faecal IgA levels than PBS/IBD (PBS/IBD vs. WT_CE/IBD, p = 0.217). Postbiotic-based recombinant cRANKL effectively improved the expression of M cell markers and the efficiency of oral vaccines. No significant changes were observed in the gut microbiome after administration of postbiotic-based recombinant cRANKL. This strategy can be used for the development of feed additives and adjuvants. KEY POINTS: • Postbiotic-based recombinant cRANKL enhanced the expression of ANXA5 in chicken. • The relative abundance of Escherichia-Shigella was negatively correlated with ANXA5 expression. • Postbiotic-based recombinant cRANKL effectively improved the efficiency of oral vaccine.


Subject(s)
Chickens , Gastrointestinal Microbiome , Lactococcus lactis , RANK Ligand , Recombinant Proteins , Animals , Chickens/immunology , Administration, Oral , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Lactococcus lactis/immunology , RANK Ligand/immunology , RANK Ligand/genetics , RANK Ligand/metabolism , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Recombinant Proteins/administration & dosage , Birnaviridae Infections/prevention & control , Birnaviridae Infections/immunology , Birnaviridae Infections/veterinary , Poultry Diseases/prevention & control , Poultry Diseases/immunology , Poultry Diseases/microbiology , Infectious bursal disease virus/immunology , Infectious bursal disease virus/genetics , Cell Differentiation , Peyer's Patches/immunology
4.
Res Vet Sci ; 174: 105293, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754221

ABSTRACT

Recently, several attempts have been made to replace egg-based with cell-based vaccines to prevent and control Infectious Bursal Disease Virus (IBDV). This study aimed to evaluate a new fish cell line (M99) for culturing and replicating IBDV. After observing complete cytopathic effects (CPE) on the M99 cell line, virus titers were determined using the TCID50 test, and the presence of the virus was confirmed using an RT-PCR test. Subsequently, 135 broiler chickens (14 days old) were randomly divided into three equal groups for immune response measurements: G1: immunized with a commercial vaccine, G2: immunized with an experimental vaccine, and G3: control. Antibody responses, bursal index, and histopathological evaluations were examined on different days after immunization. Based on the results, CPE of the virus was noticeable from the first passage, becoming complete by the third passage. The infectious titer of the virus was log106.9. Antibody titer measured 21 days after immunization in both vaccinated groups were significantly differed from the control group (p < 0.05). The results obtained from examining the bursal index and histopathological evaluations showed no significant difference between the studied groups at different times. Overall, this research is the first report on the successful cultivation of infectious bursal virus on a permanent cell line of fish origin, with the advantages of tolerance to a wide temperature range (26-40 degrees Celsius). Therefore, this cell line has potential for use to attenuate, cultivate, and adapt other pathogens to cold temperatures in future studies.


Subject(s)
Birnaviridae Infections , Chickens , Infectious bursal disease virus , Poultry Diseases , Viral Vaccines , Virus Replication , Infectious bursal disease virus/immunology , Animals , Viral Vaccines/immunology , Chickens/virology , Birnaviridae Infections/veterinary , Birnaviridae Infections/virology , Birnaviridae Infections/prevention & control , Birnaviridae Infections/immunology , Cell Line , Poultry Diseases/virology , Poultry Diseases/prevention & control , Poultry Diseases/immunology , Fishes/virology
5.
Poult Sci ; 103(7): 103797, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38713990

ABSTRACT

Previous studies here have demonstrated that the rabbit sacculus rotundus-derived antimicrobial peptides (RSRP) could alter the intestinal mucosal immune responses in specific-pathogen-free (SPF) chickens, however, the protective effects of RSRP on chickens against infection remain questionable. In the present study, eighty SPF chickens were randomly divided into five groups and challenged with very virulent infectious bursal disease virus (vvIBDV) to determine the protective effects and its underlying mechanism of RSRP. Histopathology examination found that vvIBDV-infection caused severe damage in the bursa of Fabricius, especially the bursal lymphoid follicles underwent severe necrosis, depletion, hemorrhage, and edema. Unexpectedly, RSRP intervention significantly reduced the necrosis and depletion of lymphoid follicles in the vvIBDV-infected chickens. Moreover, RSRP treatment significantly decreased the expression of Bax (P < 0.01) as well as remarkably promoted the expression of Bcl-2 (P < 0.01), concomitantly alleviated the excessive apoptosis in the immune organs such as the bursa of Fabricius during vvIBDV infection. Notably, consistent with our previous reports that increased mast cell activation and degranulation in the bursa after vvIBDV infection, RSRP administration considerably reduced the mast cell density and the expression of tryptase, a marker for activated mast cells. Collectively, the present study indicates that rabbit sacculus rotundus-derived antimicrobial peptides could effectively protect the major immune organs including the bursa of Fabricius from the damage caused by vvIBDV infection, which provides the possibility and a promising perspective for the future application of antimicrobial peptides for poultry production.


Subject(s)
Birnaviridae Infections , Chickens , Infectious bursal disease virus , Poultry Diseases , Animals , Birnaviridae Infections/veterinary , Birnaviridae Infections/virology , Birnaviridae Infections/prevention & control , Infectious bursal disease virus/physiology , Poultry Diseases/virology , Poultry Diseases/prevention & control , Poultry Diseases/immunology , Rabbits , Specific Pathogen-Free Organisms , Bursa of Fabricius/drug effects , Bursa of Fabricius/virology , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/administration & dosage , Random Allocation
6.
Vet Microbiol ; 292: 110053, 2024 May.
Article in English | MEDLINE | ID: mdl-38502979

ABSTRACT

Infectious bursal disease virus (IBDV) caused an acute and highly contagious infectious disease characterized by severe immunosuppression, causing considerable economic losses to the poultry industry globally. Although this disease was well-controlled under the widely use of commercial vaccines in the past decades, the novel variant IBDV strains emerged recently because of the highly immunized-selection pressure in the field, posting new threats to poultry industry. Here, we reported novel variant IBDV is responsible for a disease outbreak, and assessed the epidemic and pathogenicity of IBDV in this study. Moreover, we constructed a challenge model using Fowl adenovirus serotype 4 (FAdV-4) to study on the immunosuppressive effect. Our findings underscore the importance of IBDV surveillance, and provide evidence for understanding the pathogenicity of IBDV.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Poultry Diseases , Animals , Chickens , Virulence , Birnaviridae Infections/prevention & control , Birnaviridae Infections/veterinary , Vaccination/veterinary , Poultry , Adenoviridae
7.
Poult Sci ; 103(4): 103552, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38422756

ABSTRACT

The novel variant IBDV (nVarIBDV, genotype A2dB1), characterized by bursal atrophy of fabricius and decreased lymphocytes, has been emerging on a large scale in Asia (including China) since late 2018. nVarIBDV is a new threat to the poultry industry, yet the currently licensed commercial vaccines, including the live viral vector vaccine, IBDV immune complex vaccine or VP2 subunit vaccine, are ineffective against nVarIBDV infection. In this study, specific-pathogen-free (SPF) chickens and broilers divided into 3 groups were vaccinated with the live viral vector vaccine, the VP2 subunit vaccine or the IBDV immune complex vaccine at 1 day-old, respectively. The SPF chickens received a secondary vaccination with the live B87 strain vaccine at 11-day-old. The bursa/body weight ratio, histopathology lesion of the bursa, and the differentiation between infected and vaccinated animals (DIVA) by qRT-PCR confirmed that the live viral vector vaccine or immune complex vaccine plus live B87 strain booster could provide at least 80% protection against the FJ2019-01 strain of nVarIBDV in SPF chickens. The broilers also received a secondary vaccination using a live W2512 G-61 strain vaccine at 14-day-old, and analyses showed that the VP2 subunit vaccine or immune complex vaccine plus the live W2512 G-61 strain booster also provided more than 80% protection against the FJ2019-01 strain of nVarIBDV. Unfortunately, the live viral vector vaccine plus live W2512 G-61 strain booster provided poor to moderate protection against FJ2019-01 in broilers. These findings suggest that combining commercial vaccines with rational booster immunization can effectively protect chickens against an nVarIBDV challenge.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Poultry Diseases , Viral Vaccines , Animals , Chickens , Immunization, Secondary/veterinary , Antigen-Antibody Complex , Birnaviridae Infections/prevention & control , Birnaviridae Infections/veterinary , Vaccines, Attenuated , Vaccines, Subunit , Antibodies, Viral , Bursa of Fabricius/pathology
8.
Vaccine ; 42(2): 332-338, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38065771

ABSTRACT

Newcastle disease (ND) and infectious bursal disease (IBD) pose significant threats to the chicken industry, causing substantial economic losses. Currently, immunization through vaccination is the most effective strategy to prevent ND and IBD but currently used traditional vaccines, including inactivated or attenuated vaccines, face challenges in achieving a balance between immunogenicity and safety. To develop a green and efficient novel vaccine for ND and IBD, we developed a bivalent chimeric virus-like particle vaccine (ND-IBD cVLPs) displaying the ND virus (NDV) HN protein and the IBD virus (IBDV) VP2 protein based on the ND VLPs carrier platform and insect baculovirus expression system. This study aimed to evaluate the immunogenicity and protective efficacy of ND-IBD cVLPs in specific pathogen-free chickens. Chickens were immunized with 50 µg of purified ND-IBD cVLPs at 7 days old, boosted at 21 days old, and challenged at 42 days old. The results demonstrated that ND-IBD cVLPs stimulated highly effective hemagglutination inhibition antibody levels against NDV HN protein and enzyme-linked immunosorbent assay antibody levels against the IBDV VP2 protein. Furthermore, ND-IBD cVLPs provided complete protection against virulent NDV and IBDV challenges and mitigated pathological damage to the lung caused by NDV infection and the bursa of Fabricius caused by IBDV infection. These findings suggest that ND-IBD cVLPs hold promise as a safe and efficient novel vaccine candidate for the effective prevention of ND and IBD, extending the development of a foreign protein delivery platform of ND VLPs.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Newcastle Disease , Poultry Diseases , Vaccines, Virus-Like Particle , Viral Vaccines , Animals , Chickens , HN Protein , Antibodies, Viral , Newcastle disease virus/genetics , Newcastle Disease/prevention & control , Birnaviridae Infections/prevention & control , Birnaviridae Infections/veterinary
9.
Vet Microbiol ; 288: 109950, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38101079

ABSTRACT

Newcastle disease (ND) and infectious bursal disease (IBD) are two viral infectious diseases that are extremely damaging to the poultry industry and are widespread throughout the world. It is necessary to develop a safe and effective vaccine against IBD and ND because vaccination is an effective preventive measure. It has been discovered that recombinant proteins expressed by an expression system in which a fragment of mammalian Immunoglobulin G (IgG) Fragment crystallizable (Fc) is linked to a segment of a gene have antibody-like properties that increase the exogenous protein's serum half-life. Heavy chain constant region 3 and heavy chain constant region 4 (CH3-CH4) of Avian Immunoglobulin Y (IgY) is structurally very similar to mammalian Ig G Fc. In this study, a bivalent vaccine rClone30-VP2L-CH3-CH4-GMCSF was developed by using NDV rClone30-chGM-CSF vector to produce VP2L-CH3-CH4 fusion protein. The vaccine has been given to 14-day-old specific pathogen free (SPF) free chickens to test whether it has the potential to prevent IBD and ND. Anti-IBDV and anti-NDV antibody levels in serum were evaluated using ELISA and HI, respectively, and the contents of CD4+ T, CD8+ T, and B cells in leukocytes were determined via flow cytometry. The contents and mRNA transcription levels of four inflammatory factors, IL-1ß, IL-4, IFN-γ and chGM-CSF, were detected by ELISA and real-time PCR respectively. The results showed that after vaccination with the rClone30-VP2L-CH3-CH4-GMCSF vaccine, the levels of anti NDV and anti IBDV antibodies in chickens were significantly higher than those of the rClone30 vaccine and commercial vaccines. Meanwhile, the contents and transcription levels of inflammatory factors in chickens inoculated with rClone30-VP2L-CH3-CH4-GMCSF were significantly increased, and the proliferation response of B cells, CD4+ and CD8+ T cells was also stronger. However, the rClone30-VP2L-CH3-CH4-GMCSF vaccine had no significant advantage over the rClone30-VP2L-GMCSF vaccine in any of the above-mentioned features. In summary, rClone30-VP2L-CH3-CH4-GMCSF can stimulate the body to produce a stronger immune response, showing its potential to be considered as vaccine against IBD and ND, but the addition of CH3-CH4 did not improve the vaccine's immune effect as expected. The research lays the foundation for developing vaccines for other infectious viral diseases and avoids a unrealistic vaccine optimization method.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Newcastle Disease , Poultry Diseases , Viral Vaccines , Animals , Chickens , Newcastle disease virus/genetics , Vaccines, Combined , Specific Pathogen-Free Organisms , CD8-Positive T-Lymphocytes , Antibodies, Viral , Newcastle Disease/prevention & control , Birnaviridae Infections/prevention & control , Birnaviridae Infections/veterinary , Mammals
10.
Viruses ; 15(11)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-38005855

ABSTRACT

OBJECTIVES: Infectious bursal disease virus (IBDV) is a highly contagious, acutely infectious agent that causes immunosuppression in chickens. We expressed IBDV VP2 proteins in Escherichia coli (E. coli) to develop an effective virus-like-particles (VLPs) vaccine and evaluated its immunogenicity. METHODS: The VLPs produced in E. coli were used as an immunogen mixed with a water-in-mineral-oil adjuvant (MontanideTM ISA 71 VG, ISA 71 RVG) or a white oil (7#) adjuvant. VLPs without an adjuvant, commercial subunit vaccine, inactivated vaccine, and attenuated vaccine were used as controls. These test vaccines were intramuscularly injected into 19-day-old SPF chickens, which were challenged with the IBDV virulent strain at 30 days after vaccination. RESULTS: The adjuvants boosted antibody production, and the adjuvant groups (except white oil) produced higher antibody levels than the non-adjuvanted controls and the commercial vaccine groups. In terms of cellular immunity, the VLPs plus adjuvant combinations produced higher levels of cytokines, IL-2, IL-4, and IFN-γ than the controls. CONCLUSION: IBDV VLPs plus the ISA 71 RVG adjuvant can be used as an optimal vaccine combination for improving the immune efficacy of IBD subunit vaccines, which can protect against the virulent strain.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Poultry Diseases , Vaccines, Virus-Like Particle , Viral Vaccines , Animals , Chickens , Escherichia coli/genetics , Antibodies, Viral , Antibody Formation , Adjuvants, Immunologic , Birnaviridae Infections/prevention & control , Birnaviridae Infections/veterinary
11.
Avian Pathol ; 52(5): 351-361, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37439655

ABSTRACT

Avian influenza H9N2 is one of the most commonly circulating viruses in numerous Egyptian poultry farms. The Asian lineage H9N2 exhibits an immunosuppressive effect, and its pathogenicity is amplified when it co-infects with other pathogens, especially with the immunosuppressive infectious bursal disease virus (IBDV), resulting in increased mortality rates. Both vaccines and field infection can exacerbate the pathogenicity of H9N2, particularly in the bursa of Fabricius, causing more significant lymphoid depletion. To comprehend the impact of the IBD vaccine on the viral and pathogenic effect of H9N2 infection in specific pathogen-free chicks (SPF), the experiment was designed as four groups; group 1 served as the negative control, group 2 received (228E) IBD vaccine, group 3 was challenged with H9N2, and group-4 was vaccinated by the IBD vaccine then challenged with H9N2. The clinical signs, relative immune organs weights and histopathological lesion scores were recorded. The tracheal and cloacal H9N2 viral shedding were also measured. Group 4 exhibited a significant decrease (P ≤ 0.05) in the relative bursal weight and an increase in the bursal lesion score when compared with groups 1 and 3 at 4 and 8 days post-challenge (dpc). The tracheal lesion score of group-4 recorded a significant increase when compared with groups 1 and 3. The renal lesion score of group 4 achieved a significant increase when compared with 1 and 3 at 8 dpc. Also, group 4 recorded a significant increase in H9N2 shedding in comparison with groups 1 and 3. Consequently, our study concluded that routine vaccination with the IBD intermediate plus vaccine exacerbates the silent infection of H9N2 resulting in outbreaks.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Poultry Diseases , Viral Vaccines , Animals , Chickens , Poultry , Vaccines, Attenuated , Viral Vaccines/adverse effects , Birnaviridae Infections/veterinary , Birnaviridae Infections/prevention & control
12.
Arch Virol ; 168(8): 200, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37402042

ABSTRACT

Infectious bursal disease virus (IBDV) causes an acute and highly contagious infectious disease characterized by severe immunosuppression, causing great economic losses to the poultry industry globally. Over the past 30 years, this disease has been well controlled through vaccination and strict biosafety measures. However, novel variant IBDV strains have emerged in recent years, posing a new threat to the poultry industry. Our previous epidemiological survey showed that few novel variant IBDV strains had been isolated from chickens immunized with the attenuated live vaccine W2512-, suggesting that this vaccine is efficacious against novel variant strains. Here, we report the protective effect of the W2512 vaccine against novel variant strains in SPF chickens and commercial yellow-feathered broilers. We found that W2512 causes severe atrophy of the bursa of Fabricius in SPF chickens and commercial yellow-feathered broilers, induces high levels of antibodies against IBDV, and protects chickens from infection with the novel variant strains via a placeholder effect. This study highlights the protective effect of commercial attenuated live vaccines against the novel IBDV variant and provides guidance for the prevention and control of this disease.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Poultry Diseases , Viral Vaccines , Animals , Chickens , Viral Vaccines/genetics , Birnaviridae Infections/prevention & control , Birnaviridae Infections/veterinary , Vaccines, Attenuated/genetics , Antibodies, Viral , Bursa of Fabricius
13.
Viruses ; 15(7)2023 06 27.
Article in English | MEDLINE | ID: mdl-37515141

ABSTRACT

The novel variant IBDV (nVarIBDV, especially genotype A2dB1) mainly affects broilers in China. It causes an infection characterized by the atrophy of the bursa, a decrease in the level of lymphocytes, proliferation of fibrous tissue around the follicle, and severe atrophy of the follicle in the bursa. Poultry vaccinated with live IBDV vaccines do not have the challenge present with bursa atrophy, which is misdiagnosed for nVarIBDV because of the lack of other gross clinical symptoms. The present study sought to explore the potential and reliability of the real-time TaqMan analysis method for the detection and discrimination of the nVarIBDV genotype from that of the non-nVarIBDV, especially in live vaccine strains. This method will help monitor vaccinated poultry to control and manage infection with the nVarIBDV IBDVs. The nucleotide polymorphism in the 5'-UTR region and the vp5/vp2 overlapping region of the segment A sequences of IBDV were used to establish a one-step real-time TaqMan reverse transcription polymerase chain reaction (RT-PCR) method in this study. The results showed that the method accurately distinguished the nVarIBDV and non-nVarIBDV strains (especially live vaccine strains), and there were no cross-reactions with the infectious bronchitis virus (IBV), Newcastle disease virus (NDV), avian influenza virus (AIV), infectious laryngotracheitis virus (ILTV), fowlpox virus (FPV), Mycoplasma gallisepticum (M. gallisepticum), Mycoplasma synoviae (M. synoviae), and IBDV-negative field samples. The method showed a linear dynamic range between 102 and 107 DNA copies/reaction, with an average R2 of 0.99 and an efficiency of 93% for nVarIBDV and an average R2 of 1.00 and an efficiency of 94% for non-nVarIBDV. The method was also used for the detection of 84 clinical bursae of chickens vaccinated with the live vaccine. The results showed that this method accurately distinguished the nVarIBDV and non-nVarIBDV strains (vaccine strains), compared with a strategy based on the sequence analysis of HVRs at the vp2 gene or the reverse transcription PCR (RT-PCR) for the vp5 gene. These findings showed that this one-step real-time TaqMan RT-PCR method provides a rapid, sensitive, specific, and simple approach for detection of infections caused by nVarIBDV and is a useful clinical diagnostic tool for identifying and distinguishing nVarIBDV from non-nVarIBDV, especially live vaccine strains.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Poultry Diseases , Animals , Chickens , Infectious bursal disease virus/genetics , Reverse Transcriptase Polymerase Chain Reaction , Reverse Transcription , Reproducibility of Results , Real-Time Polymerase Chain Reaction , Birnaviridae Infections/diagnosis , Birnaviridae Infections/prevention & control , Birnaviridae Infections/veterinary
14.
Int J Mol Sci ; 24(9)2023 May 04.
Article in English | MEDLINE | ID: mdl-37175960

ABSTRACT

Infectious bursal disease virus (IBDV) is an immunosuppressive pathogen causing enormous economic losses to the poultry industry across the globe. As a double-stranded RNA virus, IBDV undergoes genetic mutation or recombination in replication during circulation among flocks, leading to the generation and spread of variant or recombinant strains. In particular, the recent emergence of variant IBDV causes severe immunosuppression in chickens, affecting the efficacy of other vaccines. It seems that the genetic mutation of IBDV during the battle against host response is an effective strategy to help itself to survive. Therefore, a comprehensive understanding of the viral genome diversity will definitely help to develop effective measures for prevention and control of infectious bursal disease (IBD). In recent years, considerable progress has been made in understanding the relation of genetic mutation and genomic recombination of IBDV to its pathogenesis using the reverse genetic technique. Therefore, this review focuses on our current genetic insight into the IBDV's genetic typing and viral genomic variation.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Poultry Diseases , Viral Vaccines , Animals , Chickens , Infectious bursal disease virus/genetics , Viral Vaccines/genetics , Genomics , Birnaviridae Infections/prevention & control , Poultry Diseases/genetics , Poultry Diseases/prevention & control
15.
Vaccine ; 41(18): 2893-2904, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37012117

ABSTRACT

Vaccines are an essential tool for the control of viral infections in domestic animals. We generated recombinant vector herpesvirus of turkeys (vHVT) vaccines expressing computationally optimized broadly reactive antigen (COBRA) H5 of avian influenza virus (AIV) alone (vHVT-AI) or in combination with virus protein 2 (VP2) of infectious bursal disease virus (IBDV) (vHVT-IBD-AI) or fusion (F) protein of Newcastle disease virus (NDV) (vHVT-ND-AI). In vaccinated chickens, all three vHVT vaccines provided 90-100% clinical protection against three divergent clades of high pathogenicity avian influenza viruses (HPAIVs), and significantly decreased number of birds and oral viral shedding titers at 2 days post-challenge compared to shams. Four weeks after vaccination, most vaccinated birds had H5 hemagglutination inhibition antibody titers, which significantly increased post-challenge. The vHVT-IBD-AI and vHVT-ND-AI vaccines provided 100% clinical protection against IBDVs and NDV, respectively. Our findings demonstrate that multivalent HVT vector vaccines were efficacious for simultaneous control of HPAIV and other viral infections.


Subject(s)
Birnaviridae Infections , Herpesviridae , Infectious bursal disease virus , Influenza A virus , Influenza in Birds , Newcastle Disease , Poultry Diseases , Viral Vaccines , Animals , Newcastle disease virus/genetics , Newcastle Disease/prevention & control , Chickens , Turkeys , Virulence , Vaccines, Synthetic/genetics , Birnaviridae Infections/prevention & control , Birnaviridae Infections/veterinary , Herpesvirus 1, Meleagrid/genetics , Vaccines, Combined , Poultry Diseases/prevention & control
16.
Vet Microbiol ; 281: 109746, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37075663

ABSTRACT

At present, stress-induced immunosuppression is still a hidden threat that leads to immunization failure and outbreaks of poultry diseases, and causes huge economic losses to the modern poultry industry. However, the molecular mechanisms of stress-induced immunosuppression affecting viral vaccine immunity are still poorly understood. Here, we identified circAKIRIN2 as a conserved circular transcript in chicken, and explored its expression patterns in different immune states by quantitative real-time PCR (qRT-PCR), then conducted bioinformatics analysis. The results showed that circAKIRIN2 actively participated in the process of stress-induced immunosuppression affecting the immune response to infectious bursal disease virus (IBDV) vaccine. The key time points for circAKIRIN2 involving in the process were 2 day post immunization (dpi), 5 dpi, and 28 dpi, especially at the acquired immune stage. The important tissues that responded to the process included the heart, liver, and lung, all of which changed significantly. In addition, circAKIRIN2 as a competing endogenous RNA (ceRNA) sponging zinc finger and BTB domain containing 20 (ZBTB20) was a potential molecular mechanism for regulating immune functions in the process. In conclusion, circAKIRIN2 is a key regulatory factor for stress-induced immunosuppression affecting the IBDV vaccine immune response, and this study can provide a new perspective for exploring the molecular regulatory mechanisms of stress-induced immunosuppression affecting immune response.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Poultry Diseases , Viral Vaccines , Animals , Chickens , Infectious bursal disease virus/genetics , RNA, Circular , Immunosuppression Therapy/veterinary , Immunity , Birnaviridae Infections/prevention & control , Birnaviridae Infections/veterinary
17.
Fish Shellfish Immunol ; 132: 108457, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36455780

ABSTRACT

Infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV) are typical pathogens of rainbow trout Oncorhynchus mykiss, and the concurrent infection of the two viruses is very common among modern trout hatcheries, which has caused huge economic losses to the rainbow trout farming industry. To prevent and control the spread of IHNV and IPNV in juvenile trout simultaneously, in this study a bivalent recombinant adenovirus vaccine with IHNV Glycoprotein (G) and IPNV VP2 genes was developed. After immunizing juvenile trout with this bivalent vaccine via the immersion route, the expression levels of IHNV G and IPNV VP2 and the representative immune genes in vaccinated and control rainbow trout were tested to evaluate the correlation of immune responses with the expression of viral genes. The neutralizing antibody level induced by this bivalent vaccine as well as the protection efficacy of the vaccine against IHNV and IPNV was also evaluated. The results showed that IHNV G and IPNV VP2 were successfully expressed in juvenile trout, and all the innate and adaptive immune genes were up-regulated. This indicated that the level of the innate and adaptive immune responses were significantly increased, which might be induced by the high expression of the two viral proteins. Compared with the controls, high levels of neutralizing antibodies against IHNV and IPNV were induced in the vaccinated trout. Besides, the bivalent recombinant adenovirus vaccine showed high protection rate against IHNV, with the relative percent survival (RPS) of 81.25%, as well as against IPNV, with the RPS of 78.95%. Taken together, our findings clearly demonstrated that replication-defective adenovirus can be developed as a qualified vector for fish vaccines and IHNV G and IPNV VP2 were two suitable antigenic genes that could induce effective immune protection against these two pathogens. This study provided new insights into developing bivalent vectored vaccines and controlling the spread of IHNV and IPNV simultaneously in juvenile trout.


Subject(s)
Adenovirus Vaccines , Birnaviridae Infections , Fish Diseases , Infectious hematopoietic necrosis virus , Infectious pancreatic necrosis virus , Oncorhynchus mykiss , Rhabdoviridae Infections , Viral Vaccines , Animals , Infectious pancreatic necrosis virus/physiology , Infectious hematopoietic necrosis virus/physiology , Vaccines, Synthetic , Adenoviridae/genetics , Rhabdoviridae Infections/prevention & control , Rhabdoviridae Infections/veterinary , Birnaviridae Infections/prevention & control , Birnaviridae Infections/veterinary
18.
Br Poult Sci ; 64(2): 176-184, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36469700

ABSTRACT

1. The purpose of this study was to create ALP1-VP2-PLGA nanoparticle (AVPN) and to study the immunogenicity of AVPN. AVPN was prepared and observed by scanning and transmission electron microscopies.2. Chickens were divided into five groups and vaccinated with normal saline, VP2 protein, ALP1 and VP2 protein, AVPN or PLGA, respectively. After 28 days, the immune organ indexes were calculated; specific antibody levels in blood were detected by enzyme-linked immunosorbent assay (ELISA). Additionally, the spleen and bursa of Fabricius were determined by HE staining, immunological cytokine mRNA levels in bursa of Fabricius were detected by qPCR andchicken body weight was determined.3. The results indicated that AVPN was a spherical nanoparticle with a diameter of about 85 nm. It increased bursal indexes and IBDV-specific antibody levels and promoted the expression of IL-2 mRNA in blood and TNF-α and IgG mRNA in bursa of Fabricius. This promoted growth.4. This study suggested that AVPN can increase immunogenicity of VP2 protein, and it could possibly be used as an IBDV subunit vaccine.


Subject(s)
Amomum , Birnaviridae Infections , Infectious bursal disease virus , Poultry Diseases , Animals , Chickens , Infectious bursal disease virus/genetics , Bursa of Fabricius , Antibodies, Viral , Polylactic Acid-Polyglycolic Acid Copolymer , Birnaviridae Infections/prevention & control , Birnaviridae Infections/veterinary
19.
J Immunol Res ; 2022: 5392033, 2022.
Article in English | MEDLINE | ID: mdl-36285182

ABSTRACT

Infectious bursal disease (IBD) is an immunosuppressive and economically important disease of young chickens caused by infectious bursal disease virus (IBDV). The National Veterinary Institute (Bishoftu, Ethiopia) produces intermediate IBDV vaccine using primary chicken embryo fibroblast (CEF) cells, a method with technical and economical cumbersome. This study assessed the safety, immunogenicity, and efficacy of DF-1 cell line-adapted IBDV LC-75 vaccine strain in reference to the CEF-based vaccine. Confluent monolayer of DF-1 cells was infected with IBDV and cells with cytopathic effects were passaged until 3rd passage. Viral growth was confirmed using a one-step RT-PCR targeting IBDV VP2 gene. Viral titer increased from 1st passage through 3rd passage. Safety was assessed in 30 specific-pathogen-free chickens (15 chickens/group) injected with 10-fold field dose of each vaccine intraocularly and monitored for 21 days. For immunogenicity and efficacy, 60 specific-pathogen-free chickens were grouped into 3 (20 chickens/group). First and 2nd group received DF-1 cell and CEF-based IBDV vaccines, respectively. The 3rd group served as unvaccinated control. Antibody response was measured using iELISA. Chickens were challenged 4 weeks postvaccination with very virulent IBDV (vvIBDV) intraocularly and followed-up for 10 days. Vaccination did not cause any adverse reactions during the 21 days of follow-up. In addition, both vaccines induced higher antibody titer 14 and 24 days-post-vaccination as compared to unvaccinated controls (p < 0.05). Moreover, DF-1 and CEF-based IBDV LC-75 vaccines rendered a complete protection against vvIBDV. Contrarily, morbidity and mortality in unvaccinated chickens was 50% and 30%, respectively. The results indicated that DF-1 and CEF cell-based IBDV vaccines are comparably immunogenic and efficacious. Therefore, DF-1 cell-line can be considered an affordable and convenient alternative to the CEF-based approach. The suitability of DF-1 cells to grow other IBDV strains and safety of these vaccines on bursa of Fabricius should further be investigated.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Poultry Diseases , Viral Vaccines , Chick Embryo , Animals , Infectious bursal disease virus/genetics , Chickens , Bursa of Fabricius/chemistry , Poultry Diseases/prevention & control , Antibodies, Viral/analysis , Birnaviridae Infections/prevention & control , Birnaviridae Infections/veterinary , Fibroblasts , Cell Line
20.
Vet Rec ; 191(10): e1840, 2022 11.
Article in English | MEDLINE | ID: mdl-36073006

ABSTRACT

BACKGROUND: Since 2018, atrophy of the bursa has been found among vaccinated chickens with high antibody titres against infectious bursal disease virus (IBDV) in Fujian, China, suggesting poor vaccine efficacy against circulating IBDV strains. METHODS: Novel IBDV strains were isolated, and vp2 and vp1 genes were sequenced and used to carry out phylogenetic analysis. Pathogenicity was investigated using 21-day-old specific pathogen-free (SPF) chickens. In addition, the effectiveness of current commercial vaccines used in China was evaluated against the isolated novel IBDV strains. RESULTS: Six IBDV isolates were successfully obtained, which formed an independent cluster and belonged to genotype A2dB1, based on phylogenetic analysis of the vp2 and vp1 genes. The pathogenicity of the novel IBDV FJ2019-01 isolate in 21-day-old SPF chickens was characterised by severe atrophy of the bursa and a largely decreased number of lymphocytes, atrophy of the follicle and broadening of mesenchyme in the bursa 3-23 days after infection. Unfortunately, all vaccinated chickens with high antibody titres against IBDV also developed atrophy and largely decreased lymphocytes in the bursa, as in the unvaccinated birds challenged with FJ2019-01. Furthermore, high viral loads of FJ2019-01 were detected in the bursa of all vaccinated chickens. CONCLUSIONS: These findings suggest that current commercial IBDV vaccines used in China did not provide protection against novel IBDV variants.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Poultry Diseases , Viral Vaccines , Animals , Infectious bursal disease virus/genetics , Birnaviridae Infections/prevention & control , Birnaviridae Infections/veterinary , Phylogeny , Chickens , Bursa of Fabricius/pathology , Poultry Diseases/prevention & control , Atrophy/pathology , Atrophy/veterinary , Antibodies, Viral
SELECTION OF CITATIONS
SEARCH DETAIL