Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.046
Filter
1.
Yi Chuan ; 46(5): 421-430, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38763776

ABSTRACT

Inner Mongolia cashmere goat is an excellent livestock breed formed through long-term natural selection and artificial breeding, and is currently a world-class dual-purpose breed producing cashmere and meat. Multi trait animal model is considered to significantly improve the accuracy of genetic evaluation in livestock and poultry, enabling indirect selection between traits. In this study, the pedigree, genotype, environment, and phenotypic records of early growth traits of Inner Mongolia cashmere goats were used to build multi trait animal model., Then three methods including ABLUP, GBLUP, and ssGBLUP wereused to estimate the genetic parameters and genomic breeding values of early growth traits (birth weight, weaning weight, average daily weight gain before weaning, and yearling weight). The accuracy and reliability of genomic estimated breeding value are further evaluated using the five fold cross validation method. The results showed that the heritability of birth weight estimated by three methods was 0.13-0.15, the heritability of weaning weight was 0.13-0.20, heritability of daily weight gain before weaning was 0.11-0.14, and the heritability of yearling weight was 0.09-0.14, all of which belonged to moderate to low heritability. There is a strong positive genetic correlation between weaning weight and daily weight gain before weaning, daily weight gain before weaning and yearling weight, with correlation coefficients of 0.77-0.79 and 0.56-0.67, respectively. The same pattern was found in phenotype correlation among traits. The accuracy of the estimated breeding values by ABLUP, GBLUP, and ssGBLUP methods for birth weight is 0.5047, 0.6694, and 0.7156, respectively; the weaning weight is 0.6207, 0.6456, and 0.7254, respectively; the daily weight gain before weaning was 0.6110, 0.6855, and 0.7357 respectively; and the yearling weight was 0.6209, 0.7155, and 0.7756, respectively. In summary, the early growth traits of Inner Mongolia cashmere goats belong to moderate to low heritability, and the speed of genetic improvement is relatively slow. The genetic improvement of other growth traits can be achieved through the selection of weaning weight. The ssGBLUP method has the highest accuracy and reliability in estimating genomic breeding value of early growth traits in Inner Mongolia cashmere goats, and is significantly higher than that from ABLUP method, indicating that it is the best method for genomic breeding of early growth weight in Inner Mongolia cashmere goats.


Subject(s)
Breeding , Goats , Animals , Goats/genetics , Goats/growth & development , Phenotype , Genomics/methods , Female , Male , Birth Weight/genetics , Models, Genetic
2.
J Med Invest ; 71(1.2): 129-133, 2024.
Article in English | MEDLINE | ID: mdl-38735708

ABSTRACT

The Y chromosome is classified into haplogroups (A-T) based on a combination of several DNA polymorphisms. Japanese men are mainly classified into haplogroups C, D, and O, which have been further subdivided. The distribution of Y-chromosome haplogroups varies by ethnicity. The phylogenetic age, origin, and migration also differ. I hypothesized that Y chromosome haplogroups may be associated with height and/or weight at birth. An association analysis of height and weight at birth with Y chromosome haplogroups was performed in 288 Japanese men. Men belonging to haplogroup O1b2 were significantly associated with short stature at birth (beta = -1.88, standard error (SE) = 0.55, P = 0.00076), and those belonging to D1a2a-12f2b were significantly associated with increased birth weight (beta = 174, SE = 64, P = 0.0069). Y chromosome haplogroups are associated with physical birth characteristics in modern Japanese men. J. Med. Invest. 71 : 129-133, February, 2024.


Subject(s)
Birth Weight , Chromosomes, Human, Y , Haplotypes , Adult , Humans , Male , Birth Weight/genetics , Body Height/genetics , Chromosomes, Human, Y/genetics , East Asian People/genetics , Japan
3.
Fetal Pediatr Pathol ; 43(3): 234-245, 2024.
Article in English | MEDLINE | ID: mdl-38743580

ABSTRACT

BACKGROUND: The aim of this study was to investigate the methylenetetrahydrofolate reductase (MTHFR) 677 C > T gene polymorphism in term infants born small (SGA), appropriate (AGA), and large for gestational age (LGA). METHODS: The study comprised 165 newborns with SGA, LGA and AGA. Genomic DNA was isolated from the peripheral blood. Samples were genotyped for MTHFR 677 C > T gene polymorphisms using PCR-RFLP. RESULTS: There was a statistically significant difference between the genotype and their allelic distribution of AGA, SGA, and LGA. The newborns carrying the TT genotype had higher birth weight than those carrying the CC and CT genotypes. The frequency of MTHFR 677 TT genotype and T allele was significantly higher and was found to be linked with a higher risk in LGA than in the AGA group. CONCLUSIONS: The MTHFR 677 C > T gene polymorphism can be used as a genetic marker in Turkish LGA newborns, but not in SGA.


Subject(s)
Birth Weight , Infant, Small for Gestational Age , Methylenetetrahydrofolate Reductase (NADPH2) , Polymorphism, Single Nucleotide , Humans , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Infant, Newborn , Female , Male , Birth Weight/genetics , Genotype , Gestational Age , Gene Frequency , Turkey
4.
Genet Sel Evol ; 56(1): 33, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698321

ABSTRACT

BACKGROUND: Recursive models are a category of structural equation models that propose a causal relationship between traits. These models are more parameterized than multiple trait models, and they require imposing restrictions on the parameter space to ensure statistical identification. Nevertheless, in certain situations, the likelihood of recursive models and multiple trait models are equivalent. Consequently, the estimates of variance components derived from the multiple trait mixed model can be converted into estimates under several recursive models through LDL' or block-LDL' transformations. RESULTS: The procedure was employed on a dataset comprising five traits (birth weight-BW, weight at 90 days-W90, weight at 210 days-W210, cold carcass weight-CCW and conformation-CON) from the Pirenaica beef cattle breed. These phenotypic records were unequally distributed among 149,029 individuals and had a high percentage of missing data. The pedigree used consisted of 343,753 individuals. A Bayesian approach involving a multiple-trait mixed model was applied using a Gibbs sampler. The variance components obtained at each iteration of the Gibbs sampler were subsequently used to estimate the variance components within three distinct recursive models. CONCLUSIONS: The LDL' or block-LDL' transformations applied to the variance component estimates achieved from a multiple trait mixed model enabled inference across multiple sets of recursive models, with the sole prerequisite of being likelihood equivalent. Furthermore, the aforementioned transformations simplify the handling of missing data when conducting inference within the realm of recursive models.


Subject(s)
Models, Genetic , Animals , Cattle/genetics , Bayes Theorem , Phenotype , Breeding/methods , Breeding/standards , Birth Weight/genetics , Pedigree , Quantitative Trait, Heritable
5.
BMC Pregnancy Childbirth ; 24(1): 238, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575863

ABSTRACT

BACKGROUND: The causal relationship between maternal smoking in pregnancy and reduced offspring birth weight is well established and is likely due to impaired placental function. However, observational studies have given conflicting results on the association between smoking and placental weight. We aimed to estimate the causal effect of newly pregnant mothers quitting smoking on their placental weight at the time of delivery. METHODS: We used one-sample Mendelian randomization, drawing data from the Avon Longitudinal Study of Parents and Children (ALSPAC) (N = 690 to 804) and the Norwegian Mother, Father and Child Cohort Study (MoBa) (N = 4267 to 4606). The sample size depends on the smoking definition used for different analyses. The analysis was performed in pre-pregnancy smokers only, due to the specific role of the single-nucleotide polymorphism (SNP) rs1051730 (CHRNA5 - CHRNA3 - CHRNB4) in affecting smoking cessation but not initiation. RESULTS: Fixed effect meta-analysis showed a 182 g [95%CI: 29,335] higher placental weight for pre-pregnancy smoking mothers who continued smoking at the beginning of pregnancy, compared with those who stopped smoking. Using the number of cigarettes smoked per day in the first trimester as the exposure, the causal effect on placental weight was 11 g [95%CI: 1,21] per cigarette per day. Similarly, smoking at the end of pregnancy was causally associated with higher placental weight. Using the residuals of birth weight regressed on placental weight as the outcome, we showed evidence of lower offspring birth weight relative to the placental weight, both for continuing smoking at the start of pregnancy as well as continuing smoking throughout pregnancy (change in z-score birth weight adjusted for z-score placental weight: -0.8 [95%CI: -1.6,-0.1]). CONCLUSION: Our results suggest that continued smoking during pregnancy causes higher placental weights.


Subject(s)
Mendelian Randomization Analysis , Placenta , Child , Female , Pregnancy , Humans , Birth Weight/genetics , Cohort Studies , Longitudinal Studies , Smoking/adverse effects
6.
Lipids Health Dis ; 23(1): 97, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566047

ABSTRACT

BACKGROUND: Observational studies have suggested an association between birth weight and type 2 diabetes mellitus, but the causality between them has not been established. We aimed to obtain the causal relationship between birth weight with T2DM and quantify the mediating effects of potential modifiable risk factors. METHODS: Two-step, two-sample Mendelian randomization (MR) techniques were applied using SNPs as genetic instruments for exposure and mediators. Summary data from genome-wide association studies (GWAS) for birth weight, T2DM, and a series of fatty acids traits and their ratios were leveraged. The inverse variance weighted (IVW) method was the main analysis approach. In addition, the heterogeneity test, horizontal pleiotropy test, Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) test, and leave-one-out analysis were carried out to assess the robustness. RESULTS: The IVW method showed that lower birth weight raised the risk of T2DM (ß: -1.113, 95% CI: -1.573 ∼ -0.652). Two-step MR identified 4 of 17 candidate mediators partially mediating the effect of lower birth weight on T2DM, including ratio of polyunsaturated fatty acids to monounsaturated fatty acids (proportion mediated: 7.9%), ratio of polyunsaturated fatty acids to total fatty acids (7.2%), ratio of omega-6 fatty acids to total fatty acids (8.1%) and ratio of linoleic acid to total fatty acids ratio (6.0%). CONCLUSIONS: Our findings supported a potentially causal effect of birth weight against T2DM with considerable mediation by modifiable risk factors. Interventions that target these factors have the potential to reduce the burden of T2DM attributable to low birth weight.


Subject(s)
Diabetes Mellitus, Type 2 , Fatty Acids , Humans , Diabetes Mellitus, Type 2/genetics , Birth Weight/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Fatty Acids, Monounsaturated
7.
Clin Oral Investig ; 28(3): 194, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441677

ABSTRACT

OBJECTIVES: This study aims to comprehensively investigate the potential genetic link between periodontitis and adverse pregnancy outcomes using a two-sample Mendelian Randomization approach. MATERIALS AND METHODS: We employed robust genetic instruments for chronic periodontitis as exposure data from the FinnGen database. Data encompassing various pregnancy stage outcomes, including pre-pregnancy conditions (irregular menstruation, endometriosis, abnormal reproductive bleeding, and female infertility), pregnancy complications (hemorrhage, spontaneous miscarriage, and abnormalities in products), and post-pregnancy factors (single spontaneous delivery, labor duration, and birth weight of the child), were obtained from the UK Biobank. The random-effects inverse-variance weighted (IVW) method was utilized to compute primary estimates while diligently assessing potential directional pleiotropy and heterogeneity. RESULTS: Our findings indicate a negative association between periodontitis and labor duration (odds ratio [OR] = 0.999; 95% confidence interval [CI]: 0.999 to 1.000; P = 0.017). Individuals with periodontitis are more likely to deliver lower-weight infants (OR = 0.983; 95% CI: 0.972 to 0.995; P = 0.005). We found no evidence of pleiotropy or heterogeneity in aforementioned two associations. We did not observe casual links with pre-pregnancy conditions and pregnancy complications. CONCLUSIONS: This Mendelian Randomization study underscores the genetic influence of periodontitis on specific adverse pregnancy outcomes, particularly concerning labor duration and lower birth weight deliveries. CLINICAL RELEVANCE: Our study emphasizes the critical importance of maintaining periodontal health during pregnancy and offers genetic evidence supporting these associations. Further investigation is required to delve deeper into the specific underlying mechanisms.


Subject(s)
Chronic Periodontitis , Pregnancy Complications , Child , Infant , Pregnancy , Humans , Female , Birth Weight/genetics , Mendelian Randomization Analysis , UK Biobank
8.
Hum Reprod ; 39(4): 792-800, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38384258

ABSTRACT

STUDY QUESTION: Does fetal genetically determined birth weight associate with the timing of puberty? SUMMARY ANSWER: Lower fetal genetically determined birth weight was causally associated with an earlier onset of puberty, independent of the indirect effects of the maternal intrauterine environment. WHAT IS KNOWN ALREADY: Previous Mendelian randomization (MR) studies have indicated a potential causal link between birth weight, childhood BMI, and the onset of puberty. However, they did not distinguish between genetic variants that have a direct impact on birth weight through the fetal genome (referred to as fetal genetic effects) and those that influence birth weight indirectly by affecting the intrauterine environment (known as maternal genetic effects). It is crucial to emphasize that previous studies were limited because they did not account for the potential bias caused by unaddressed correlations between maternal and fetal genetic effects. Additionally, the proportion of birth weight variation explained by the fetal genome is considerably larger than that of the maternal genome. STUDY DESIGN, SIZE, DURATION: We performed two-sample MR analyses to investigate the causal effect of fetal genetically determined birth weight on puberty timing using summary data from large-scale genome-wide association studies (GWASs) in individuals of European ancestry. PARTICIPANTS/MATERIALS, SETTING, METHODS: From the two most recent GWASs specifically centered on birth weight, which included 406 063 individuals and 423 683 individuals (63 365 trios) respectively, we identified genetic variants associated with fetal genetically determined birth weight, while adjusting for maternal genetic effects. We identified genetic variants associated with childhood BMI from an independent GWAS involving 21 309 European participants. On this basis, we employed two-sample MR techniques to examine the possible causal effects of fetal genetically determined birth weight on puberty timing using a large-scale GWAS of puberty timing (including 179 117 females of European ancestry). Furthermore, we employed advanced analytical methods, specifically MR mediation and MR-Cluster, to enhance our comprehension of the causal relationship between birth weight determined by fetal genetics and the timing of puberty. We also explored the pathways through which childhood BMI might act as a mediator in this relationship. MAIN RESULTS AND THE ROLE OF CHANCE: In the univariable MR analysis, a one SD decrease in fetal genetically determined birth weight (∼ 418 g) was associated with a 0.16 (95% CI [0.07-0.26]) years earlier onset of puberty. The multivariable MR analysis including fetal genetically determined birth weight and childhood BMI in relation to puberty timing provided compelling evidence that birth weight had a direct influence on the timing of puberty. Lower birth weight (one SD) was associated with an earlier onset of puberty, with a difference of 0.23 (95% CI [0.05-0.42]) years. We found little evidence to support a mediating role of childhood BMI between birth weight and puberty timing (-0.07 years, 95% CI [-0.20 to 0.06]). LIMITATIONS, REASONS FOR CAUTION: Our data came from European ancestry populations, which may restrict the generalizability of our results to other populations. Moreover, our analysis could not investigate potential non-linear relationships between birth weight and puberty timing due to limitations in genetic summary data. WIDER IMPLICATIONS OF THE FINDINGS: Findings from this study suggested that low birth weight, determined by the fetal genome, contributes to early puberty, and offered supporting evidence to enhance comprehension of the fetal origins of disease hypothesis. STUDY FUNDING/COMPETING INTEREST(S): C.Z. was funded by the Sichuan Province Science and Technology Program [grant number 2021JDR0189]. J.Z. was supported by grants from the National Natural Science Foundation of China [grant number 82373588]. No other authors declare any sources of funding. The authors have no conflicts of interest. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Genome-Wide Association Study , Puberty , Pregnancy , Female , Humans , Birth Weight/genetics , Puberty/genetics , Prenatal Care , Human Genetics
9.
Commun Biol ; 7(1): 175, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347176

ABSTRACT

Epidemiological studies have robustly linked lower birth weight to later-life disease risks. These observations may reflect the adverse impact of intrauterine growth restriction on a child's health. However, causal evidence supporting such a mechanism in humans is largely lacking. Using Mendelian Randomization and 36,211 genotyped mother-child pairs from the FinnGen study, we assessed the relationship between intrauterine growth and five common health outcomes (coronary heart disease (CHD), hypertension, statin use, type 2 diabetes and cancer). We proxied intrauterine growth with polygenic scores for maternal effects on birth weight and took into account the transmission of genetic variants between a mother and a child in the analyses. We find limited evidence for contribution of normal variation in maternally influenced intrauterine growth on later-life disease. Instead, we find support for genetic pleiotropy in the fetal genome linking birth weight to CHD and hypertension. Our study illustrates the opportunities that data from genotyped parent-child pairs from a population-based biobank provides for addressing causality of maternal influences.


Subject(s)
Diabetes Mellitus, Type 2 , Hypertension , Humans , Birth Weight/genetics , Diabetes Mellitus, Type 2/genetics , Genotype , Mother-Child Relations
10.
Genes (Basel) ; 15(2)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38397206

ABSTRACT

The aim of this study was to estimate across-country genetic correlations for calving traits (birth weight, calving ease) in the Limousine breed. Correlations were estimated for eight populations (Czech Republic, joint population of Denmark, Finland, and Sweden, France, Great Britain, Ireland, Slovenia, Switzerland, and Estonia). An animal model on raw performance accounting for across-country interactions (AMACI) was used. (Co)variance components were estimated for pairwise combinations of countries. Fixed and random effects were defined by each country according to its national genetic evaluation system. The average across-country genetic correlation for the direct genetic effect was 0.85 for birth weight (0.69-0.96) and 0.75 for calving ease (0.62-0.94). The average correlation for the maternal genetic effect was 0.57 for birth weight and 0.61 for calving ease. After the estimation of genetic parameters, the weighted bending procedure was used to compute the full Interbeef genetic correlation matrix. After bending, direct genetic correlations ranged from 0.62 to 0.84 (with an average of 0.73) for birth weight and from 0.58 to 0.82 (with an average of 0.68) for calving ease.


Subject(s)
Birth Weight , Animals , Birth Weight/genetics , Models, Animal , Sweden , United Kingdom , Czech Republic
11.
Diabetes Obes Metab ; 26(4): 1443-1453, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38240050

ABSTRACT

AIM: To assess the sex- and time-specific causal effects of obesity-related anthropometric traits on glycaemic traits. MATERIALS AND METHODS: We used univariate and multivariate Mendelian randomization to assess the causal associations of anthropometric traits (gestational variables, birth weight, childhood body mass index [BMI], BMI, waist-to-hip ratio [WHR], BMI-adjusted WHR [WHRadj BMI]) with fasting glucose and insulin in Europeans from the Early Growth Genetics Consortium (n ≤ 298 142), the UK Biobank, the Genetic Investigation of Anthropometric Traits Consortium (n ≤ 697 734; females: n ≤ 434 794; males: n ≤ 374 754) and the Meta-Analyses of Glucose and Insulin-related traits Consortium (n ≤ 151 188; females: n ≤ 73 089; males: n ≤ 67 506), adjusting for maternal genetic effects, smoking, alcohol consumption, and age at menarche. RESULTS: We observed a null association for gestational variables, a negative association for birth weight, and positive associations for childhood BMI and adult traits (BMI, WHR, and WHRadj BMI). In female participants, increased birth weight causally decreased fasting insulin (betaIVW , -0.07, 95% confidence interval [CI] -0.11 to -0.03; p = 1.92 × 10-3 ), but not glucose levels, which was annulled by adjusting for age at menarche. In male participants, increased birth weight causally decreased fasting glucose (betainverse-variance-weighted (IVW) , -0.07, 95% CI -0.11 to -0.03; p = 3.22 × 10-4 ), but not insulin levels. In time-specific analyses, independent effects of birth weight were absent in female participants, and were more pronounced in male participants. Independent effects of childhood BMI were attenuated in both sexes; independent effects of adult traits differed by sex. CONCLUSIONS: Our findings provide evidence for causal and independent effects of sex- and time-specific anthropometric traits on glycaemic variables, and highlight the importance of considering multiple obesity exposures at different time points in the life course.


Subject(s)
Mendelian Randomization Analysis , Obesity , Adult , Humans , Male , Female , Birth Weight/genetics , Obesity/epidemiology , Obesity/genetics , Obesity/complications , Body Mass Index , Insulin/genetics , Glucose , Genome-Wide Association Study , Polymorphism, Single Nucleotide
12.
BMC Pregnancy Childbirth ; 24(1): 65, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225564

ABSTRACT

BACKGROUND: Observational studies and randomized controlled trials have found evidence that higher maternal circulating cortisol levels in pregnancy are associated with lower offspring birth weight. However, it is possible that the observational associations are due to residual confounding. METHODS: We performed two-sample Mendelian Randomisation (MR) using a single genetic variant (rs9989237) associated with morning plasma cortisol (GWAS; sample 1; N = 25,314). The association between this maternal genetic variant and offspring birth weight, adjusted for fetal genotype, was obtained from the published EGG Consortium and UK Biobank meta-analysis (GWAS; sample 2; N = up to 406,063) and a Wald ratio was used to estimate the causal effect. We also performed an alternative analysis using all GWAS reported cortisol variants that takes account of linkage disequilibrium. We also tested the genetic variant's effect on pregnancy cortisol and performed PheWas to search for potential pleiotropic effects. RESULTS: The estimated effect of maternal circulating cortisol on birth weight was a 50 gram (95% CI, -109 to 10) lower birth weight per 1 SD higher log-transformed maternal circulating cortisol levels, using a single variant. The alternative analysis gave similar results (-33 grams (95% CI, -77 to 11)). The effect of the cortisol variant on pregnancy cortisol was 2-fold weaker than in the original GWAS, and evidence was found of pleiotropy. CONCLUSIONS: Our findings provide some evidence that higher maternal morning plasma cortisol causes lower birth weight. Identification of more independent genetic instruments for morning plasma cortisol are necessary to explore the potential bias identified.


Subject(s)
Hydrocortisone , Mendelian Randomization Analysis , Female , Humans , Pregnancy , Birth Weight/genetics , Causality , Genome-Wide Association Study , Genotype , Mendelian Randomization Analysis/methods , Polymorphism, Single Nucleotide , Infant, Newborn
13.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38085934

ABSTRACT

Despite the benefits of crossbreeding on animal performance, genetic evaluation of sheep in the U.S. does not directly incorporate records from crossbred lambs. Crossbred animals may be raised in different environments as compared to purebreds. Systemic factors such as age of dam and birth and rearing type may, therefore, affect purebred and crossbred performance differently. Furthermore, crossbred performance may benefit from heterozygosity, and genetic and environmental variances may be heterogeneous in different breeds and their crosses. Such issues must be accounted for in a combined (purebred and crossbred) genetic evaluation. The objectives of this study were to i) determine the effect of dam age and birth type on birth weight, and dam age and birth-rearing type on weaning weight, in purebred and crossbred lambs, ii) test for heterogeneous genetic and environmental variances in those weights, and iii) assess the impact of including weights on crossbred progeny on sire estimated breeding values (EBV). Performance records were available on purebred Columbia and Suffolk lambs. Crossbred information was available on lambs sired by Suffolk, Columbia or Texel rams mated to Columbia, Suffolk, or crossbred ewes. A multiple-trait animal model was fitted in which weights from Columbia, Suffolk, or crossbred lambs were considered different traits. At birth, there were 4,160, 2,356, and 5,273 Columbia, Suffolk, and crossbred records, respectively, with means (SD) of 5.14 (1.04), 5.32 (1.14), and 5.43 (1.23) kg, respectively. At weaning, on average at 122 (12) d, there were 2,557, 980, and 3,876 Columbia, Suffolk, and crossbred records, respectively, with corresponding means of 39.8 (7.2), 40.3 (7.9), and 39.6 (8.0) kg. Dam age had a large positive effect on birth and weaning weight in pure and crossbred lambs. At birth, however, the predicted effect was larger in crossbred and Suffolk lambs. While an increase in a number of lambs born and reared had a strong and negative influence on birth and weaning weight, the size of the effect did not differ across-breed types. Environmental variances were similar at birth and weaning, but additive variances differed among breed types for both weights. Combining purebred and crossbred information in the evaluation not only improved predictions of genetic merit in purebred sires but also allowed for direct comparisons of sires of different breeds. Breeders thus can benefit from an additional tool for making selection decisions.


Combining multiple breeds in a genetic evaluation allows for their direct comparison. However, differences in management and other systematic effects among breeds may affect the evaluation. Estimates of genetic merit of sires may also be biased by heterosis in crossbred progeny. We examined genetic and environmental factors that affect the efficacy of a multi-breed genetic evaluation. Birth and weaning weights of Columbia, Suffolk, and their cross, were available. Depending on the breed type, the systematic effects of dam age and either birth or birth-rearing type on weights differed. Separately for birth and weaning, weights were defined as a different trait for each breed type. A multi-breed, multi-trait model was fitted that accounted for systematic effects unique to a breed type, and heterosis. Estimated direct and maternal heritabilities were moderate. Genetic correlations between breeds were moderate to high. Estimates of genetic merit of Columbia and Suffolk sires were unaffected by bias due to heterosis and environmental effects when crossbred lambs were included in a purebred or a combined Columbia, Suffolk, and crossbred evaluation. For direct across-breed comparisons, breed type-specific adjustments for systematic effects are necessary when combining weight data on pure and crossbred lambs in a joint genetic evaluation.


Subject(s)
Red Meat , Reproduction , Sheep/genetics , Animals , Male , Female , Weaning , Birth Weight/genetics , Sheep, Domestic/genetics , Crosses, Genetic
14.
Eur Heart J ; 45(6): 443-454, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-37738114

ABSTRACT

BACKGROUND AND AIMS: Low birth weight is a common pregnancy complication, which has been associated with higher risk of cardiometabolic disease in later life. Prior Mendelian randomization (MR) studies exploring this question do not distinguish the mechanistic contributions of variants that directly influence birth weight through the foetal genome (direct foetal effects), vs. variants influencing birth weight indirectly by causing an adverse intrauterine environment (indirect maternal effects). In this study, MR was used to assess whether birth weight, independent of intrauterine influences, is associated with cardiovascular disease risk and measures of adverse cardiac structure and function. METHODS: Uncorrelated (r2 < .001), genome-wide significant (P < 5 × 10-8) single nucleotide polymorphisms were extracted from genome-wide association studies summary statistics for birth weight overall, and after isolating direct foetal effects only. Inverse-variance weighted MR was utilized for analyses on outcomes of atrial fibrillation, coronary artery disease, heart failure, ischaemic stroke, and 16 measures of cardiac structure and function. Multiple comparisons were accounted for by Benjamini-Hochberg correction. RESULTS: Lower genetically-predicted birth weight, isolating direct foetal effects only, was associated with an increased risk of coronary artery disease (odds ratio 1.21, 95% confidence interval 1.06-1.37; P = .031), smaller chamber volumes, and lower stroke volume, but higher contractility. CONCLUSIONS: The results of this study support a causal role of low birth weight in cardiovascular disease, even after accounting for the influence of the intrauterine environment. This suggests that individuals with a low birth weight may benefit from early targeted cardiovascular disease prevention strategies, independent of whether this was linked to an adverse intrauterine environment during gestation.


Subject(s)
Brain Ischemia , Coronary Artery Disease , Stroke , Pregnancy , Female , Humans , Birth Weight/genetics , Genome-Wide Association Study , Brain Ischemia/genetics , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide/genetics
15.
Int J Epidemiol ; 53(1)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37831898

ABSTRACT

BACKGROUND: Single nucleotide polymorphisms in the human leukocyte antigen (HLA) region in both maternal and fetal genomes have been robustly associated with birthweight (BW) in previous genetic association studies. However, no study to date has partitioned the association between BW and classical HLA alleles into maternal and fetal components. METHODS: We used structural equation modelling (SEM) to estimate the maternal and fetal effects of classical HLA alleles on BW. Our SEM leverages the data structure of the UK Biobank (UKB), which includes ∼270 000 participants' own BW and/or the BW of their firstborn child. RESULTS: We show via simulation that our model yields asymptotically unbiased estimates of the maternal and fetal allelic effects on BW and appropriate type I error rates, in contrast to simple regression models. Asymptotic power calculations show that we have sufficient power to detect moderate-sized maternal or fetal allelic effects of common HLA alleles on BW in the UKB. Applying our SEM to imputed classical HLA alleles and own and offspring BW from the UKB replicated the previously reported association at the HLA-C locus and revealed strong evidence for maternal (HLA-A*03:01, B*35:01, B*39:06, P <0.001) and fetal allelic effects (HLA-B*39:06, P <0.001) of non-HLA-C alleles on BW. CONCLUSIONS: Our model yields asymptotically unbiased estimates, appropriate type I error rates and appreciable power to estimate maternal and fetal effects on BW. These novel allelic associations between BW and classical HLA alleles provide insight into the immunogenetics of fetal growth in utero.


Subject(s)
Family , HLA Antigens , Child , Humans , Birth Weight/genetics , Latent Class Analysis , HLA Antigens/genetics , Polymorphism, Single Nucleotide , Alleles
16.
Aging (Albany NY) ; 15(23): 14066-14085, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38095641

ABSTRACT

Obesity, birth weight and lifestyle factors have been found associated with the risk of frailty in observational studies, but whether these associations are causal is uncertain. We conducted a two-sample Mendelian randomization study to investigate the associations. Genetic instruments associated with the exposures at the genome-wide significance level (p < 5 × 10-8) were selected from corresponding genome-wide association studies (n = 143,677 to 703,901 individuals). Summary-level data for the frailty index were obtained from the UK Biobank (n = 164,610) and Swedish TwinGene (n = 10,616). The ß of the frailty index was 0.15 (p = 3.88 × 10-9) for 1 standard deviation increase in the prevalence of smoking initiation, 0.19 (p = 3.54 × 10-15) for leisure screen time, 0.13 (p = 5.26 × 10-7) for body mass index and 0.13 (p = 1.80 × 10-4) for waist circumference. There was a suggestive association between genetically predicted higher birth weight and moderate-to-vigorous intensity physical activity with the decreased risk of the frailty index. We observed no causal association between genetically predicted age of smoking initiation and alcoholic drinks per week with the frailty index. This study supports the causal roles of smoking initiation, leisure screen time, overall obesity, and abdominal obesity in frailty. The possible association between higher birth weight, proper physical activity and a decreased risk of frailty needs further confirmation.


Subject(s)
Frailty , Humans , Birth Weight/genetics , Frailty/epidemiology , Frailty/genetics , Frailty/complications , Mendelian Randomization Analysis , Genome-Wide Association Study , Obesity/epidemiology , Obesity/genetics , Obesity/complications , Body Mass Index , Life Style , Polymorphism, Single Nucleotide
17.
PLoS One ; 18(12): e0289460, 2023.
Article in English | MEDLINE | ID: mdl-38096270

ABSTRACT

The progression of genetic selection techniques to enhance farm animal performance traits is guided by the present level of genetic variation and maternal impact in each trait, as well as the genetic association between traits. This study was conducted on a population of Mecheri sheep maintained from 1980 to 2018 at Mecheri Sheep Research Station, Pottaneri, India, to determine variance and covariance components, as well as genetic parameters for various production performance traits. A total of 2616 lambs, produced by 1044 dams and 226 sires, were examined in the study and the production traits of Mecheri sheep assessed include birth weight (BW), weaning weight (WW), six-month weight (SMW), nine-month weight (NMW), and yearling weight (YW). The Bayesian approach, using the Gibbs sampler, analyzed six animal models with different combinations of additive direct and maternal additive effects. Direct genetics, maternal genetics, and residual effects models were the major contributors to total phenotypic variation for all the production traits studied. Direct heritability estimates of birth weight, WW, SMW, NMW, and YW were 0.25, 0.20, 0.12, 0.14, and 0.13, respectively. The maternal heritability estimated for BW, WW, SMW, NMW, and YW were 0.17, 0.10, 0.12, 0.14, and 0.14, respectively. The maternal effects had a major impact on the pre-weaning production traits. The genetic correlations estimated between different pairs of production traits studied ranged from 0.19 to 0.93. The body weight at birth exhibited a higher genetic relationship with weaning weight than post-weaning growth characteristics, and the genetic correlation between weaning weight and post-weaning attributes was moderate to high (0.52 to 0.72). Based on the additive genetic variance in weaning weight and the correlation estimates of weaning weight with post-weaning traits, weaning weight was proposed as a selection criterion for improving growth traits in Mecheri sheep.


Subject(s)
Animals, Domestic , Sheep/genetics , Animals , Bayes Theorem , Birth Weight/genetics , Phenotype , Models, Animal , Body Weight/genetics
18.
Cardiovasc Diabetol ; 22(1): 338, 2023 12 12.
Article in English | MEDLINE | ID: mdl-38087288

ABSTRACT

BACKGROUND: Previous observational studies have documented an inverse association of birthweight with myocardial infarction (MI) but a positive association with atrial fibrillation (AF). However, the causality of these associations and the underlying mediating pathways remain unclear. We aimed to investigate the causal effects of birthweight, incorporating both fetal and maternal genetic effects, on MI and AF, and identify potential mediators in their respective pathways. METHODS: We performed Mendelian randomization (MR) analyses using genome-wide association study summary statistics for birthweight (N = 297,356 for own birthweight and 210,248 for offspring birthweight), MI (Ncase=61,000, Ncontrol=577,000), AF (Ncase=60,620, Ncontrol=970,216), and 52 candidate mediators (N = 13,848-1,295,946). Two-step MR was employed to identify and assess the mediation proportion of potential mediators in the associations of birthweight with MI and AF, respectively. As a complement, we replicated analyses for fetal-specific birthweight and maternal-specific birthweight. RESULTS: Genetically determined each 1-SD lower birthweight was associated with a 40% (95% CI: 1.22-1.60) higher risk of MI, whereas each 1-SD higher birthweight was causally associated with a 29% (95% CI: 1.16-1.44) higher risk of AF. Cardiometabolic factors, including lipids and lipoproteins, glucose and insulin, blood pressure, and fatty acids, each mediated 4.09-23.71% of the total effect of birthweight on MI, followed by body composition and strength traits (i.e., appendicular lean mass, height, and grip strength) and socioeconomic indicators (i.e., education and household income), with the mediation proportion for each factor ranging from 8.08 to 16.80%. By contrast, appendicular lean mass, height, waist circumference, childhood obesity, and body mass index each mediated 15.03-45.12% of the total effect of birthweight on AF. Both fetal-specific birthweight and maternal-specific birthweight were inversely associated with MI, while only fetal-specific birthweight was positively associated with AF. Psychological well-being and lifestyle factors conferred no mediating effect in either association. CONCLUSIONS: Cardiometabolic factors mainly mediated the association between lower birthweight and MI, while body composition and strength traits mediated the association between higher birthweight and AF. These findings provide novel evidence for the distinct pathogenesis of MI and AF and advocate adopting a life-course approach to improving fetal development and subsequent causal mediators to mitigate the prevalence and burden of cardiovascular diseases.


Subject(s)
Atrial Fibrillation , Myocardial Infarction , Pediatric Obesity , Humans , Atrial Fibrillation/diagnosis , Atrial Fibrillation/epidemiology , Atrial Fibrillation/genetics , Birth Weight/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Myocardial Infarction/diagnosis , Myocardial Infarction/epidemiology , Myocardial Infarction/genetics , Polymorphism, Single Nucleotide
19.
Trop Anim Health Prod ; 56(1): 15, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38105297

ABSTRACT

The aim of this study is to establish linear measurements of local goat kids at birth and their factors of variation, as well as their possible correlations with birth weight. Additionally, the study analyses statistical models and barymetric functions to predict birth weight of kids based on their morphometric data. The database includes data on 128 goat kids born to 89 goats and 9 bucks in the experimental goat herd at the El GORDHAB station of IRA. Average BW, withers height (L1), heart girth (L2), rump height (L3), and body length (L4) of all kids were 2.45kg, 32.66cm,30.56cm, 33.41cm, and 31.21cm respectively. Results show that in general, local goat kids are small in size and weight at birth, which varies depending on sex, dam age, and type of birth. Highest and positive correlation coefficient value between birth weight and heart girth were observed (r = 0.95). The coefficient of determination (R2) for heart girth (0.78) was higher than other body measurements in single trait evaluation indicating it as the best trait for the predication of birth weight. The most appropriate combination of body measurements (R2 = 0.82) was observed between height at withers and heart girth for predication of birth weight estimation. Developing a system for recording birth weight based on easily obtainable body measurements could be a useful approach for rural areas. Result join the study objective by conceiving feasible genetic improvement plans for agropastoral herds by establishing individual phenotypes estimation even when the classical animal management does not already allowed.


Subject(s)
Goats , Animals , Birth Weight/genetics , Goats/genetics , Phenotype , Body Weight
20.
RMD Open ; 9(4)2023 11.
Article in English | MEDLINE | ID: mdl-37963678

ABSTRACT

BACKGROUND: Based on Barker's hypothesis, some studies investigated the associations between birth weight and several disorders. Apart from issues with statistical power and well-known shortcomings of the observational study design, there are no studies accounting for changes in weight-related body size over the life course regarding rheumatoid arthritis, psoriasis, psoriatic arthritis and multiple sclerosis. METHODS: Using genetic information of up to 806 834 participants, this study investigated the associations between time-varying weight-related body size from birth to adulthood and the mentioned autoimmune diseases. Performing Mendelian randomisation (MR), the radial inverse-variance weighted approach was used iteratively in primary analyses. Robustness of the results was confirmed in several sensitivity analyses. Potential time-dependent mediation mechanisms were identified through network-clustering and assessed using multivariable MR. RESULTS: Genetically predicted birth weight (fetal effect) was positively associated with rheumatoid arthritis (OR 1.44; 95% CI 1.17 to 1.77; Padj =0.005) but not with psoriasis, psoriatic arthritis or multiple sclerosis. This association was found to be mediated by body mass index (BMI) in adulthood (OR 1.45; 95% CI 1.14 to 1.84; Padj =0.019) rather than childhood. The direct effect of birth weight attenuated (OR 1.19; 95% CI 0.88 to 1.62); Padj =1) after adjustment for time-varying BMI. CONCLUSION: Increased birth weight appears to be a risk factor for later manifestation of rheumatoid arthritis due to both fetal genetic components and high BMI persisting into adulthood. Approaches to prevent and minimise the risk of rheumatoid arthritis could include preventing obesity in adults with high birth weight.


Subject(s)
Arthritis, Psoriatic , Arthritis, Rheumatoid , Multiple Sclerosis , Psoriasis , Adult , Child , Humans , Arthritis, Rheumatoid/etiology , Arthritis, Rheumatoid/genetics , Birth Weight/genetics , Life Change Events , Multiple Sclerosis/etiology , Multiple Sclerosis/genetics , Psoriasis/etiology , Psoriasis/genetics , Mendelian Randomization Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...