Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.673
Filter
1.
Transl Vis Sci Technol ; 13(5): 2, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38696181

ABSTRACT

Purpose: Currently, no solution exists to restore natural eyelid kinematics for patients with complete eyelid paralysis due to loss of function of both the levator palpebrae superioris and orbicularis oculi. These rare cases are prone to complications of chronic exposure keratopathy which may lead to corneal blindness. We hypothesized that magnetic force could be used to fully automate eyelid movement in these cases through the use of eyelid-attached magnets and a spectacle-mounted magnet driven by a programmable motor (motorized magnetic levator prosthesis [MMLP]). Methods: To test this hypothesis and establish proof of concept, we performed a finite element analysis (FEA) for a prototype MMLP to check the eyelid-opening force generated by the device and verified the results with experimental measurements in a volunteer with total bidirectional eyelid paralysis. The subject was then fitted with a prototype to check the performance of the device and its success. Results: With MMLP, eye opening was restored to near normal, and blinking was fully automated in close synchrony with the motor-driven polarity reversal, with full closure on the blink. The device was well tolerated, and the participant was pleased with the comfort and performance. Conclusions: FEA simulation results conformed to the experimentally observed trend, further supporting the proof of concept and design parameters. This is the first viable approach in human patients with proof of concept for complete reanimation of a bidirectionally paretic eyelid. Further study is warranted to refine the prototype and determine the feasibility and safety of prolonged use. Translational Relevance: This is first proof of concept for our device for total bidirectional eyelid paralysis.


Subject(s)
Blinking , Eyelids , Proof of Concept Study , Humans , Blinking/physiology , Eyelids/physiopathology , Eyelid Diseases/physiopathology , Eyelid Diseases/therapy , Oculomotor Muscles/physiopathology , Finite Element Analysis , Biomechanical Phenomena , Prostheses and Implants , Prosthesis Design , Magnets , Male
2.
Ophthalmic Plast Reconstr Surg ; 40(3): 336-339, 2024.
Article in English | MEDLINE | ID: mdl-38738711

ABSTRACT

PURPOSE: To investigate the relationship between the kinematics of spontaneous blinks and the anterior area of the levator palpebrae superioris muscle in patients with Graves orbitopathy (GO). METHODS: This is a case-control study. The authors measured the margin reflex distance of the upper eyelid (margin reflex distance 1), the kinematics of spontaneous blinks, and the anterior area of levator palpebrae superioris muscle in CT coronal scans of patients with Graves upper eyelid retraction (GO) and a control group. The eye with the greatest margin reflex distance 1 was selected for analysis in each group. RESULTS: A total of 68 participants were included, with 36 in the GO group and 32 in the control group. In the GO group, the mean margin reflex distance 1 measured 6.5 mm, while in the control group, it was 3.9 mm. Almost all parameters related to the closing phase of spontaneous blinking activity, including amplitude, velocity, blinking rate, and interblink time, did not differ between the two groups. However, the effectiveness of the blink's amplitude (ratio of blink amplitude to margin reflex distance 1) and the main sequence (relationship between amplitude and velocity) were significantly reduced in the GO group compared with the control group. The area of the levator palpebrae superioris muscle was significantly larger in GO than in controls, with 71.4% of patients' muscles outside of the maximum range of the controls. CONCLUSIONS: In patients with GO, there is a reduction in blinking effectiveness, also known as blink lagophthalmos, which is a factor in the common occurrence of ocular surface symptoms. The increase in velocity with amplitude is also reduced in GO.


Subject(s)
Blinking , Eyelids , Graves Ophthalmopathy , Oculomotor Muscles , Humans , Blinking/physiology , Female , Graves Ophthalmopathy/physiopathology , Graves Ophthalmopathy/complications , Graves Ophthalmopathy/diagnosis , Male , Middle Aged , Oculomotor Muscles/physiopathology , Adult , Case-Control Studies , Eyelids/physiopathology , Eyelid Diseases/physiopathology , Eyelid Diseases/diagnosis , Aged , Tomography, X-Ray Computed , Lagophthalmos
4.
Clin Neurophysiol ; 162: 165-173, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642482

ABSTRACT

OBJECTIVE: The current study examined the efficacy of the facial corticobulbar motor evoked potentials (FCoMEPs) and blink reflex (BR) on predicting postoperative facial nerve function during cerebellopontine angle (CPA) tumor surgery. METHODS: Data from 110 patients who underwent CPA tumor resection with intraoperative FCoMEPs and BR monitoring were retrospectively reviewed. The association between the amplitude reduction ratios of FCoMEPs and BR at the end of surgery and postoperative facial nerve function was determined. Subsequently, the optimal threshold of FCoMEPs and BR for predicting postoperative facial nerve dysfunction were determined by receiver operating characteristic curve analysis. RESULTS: Valid BR was record in 103 of 110 patients, whereas only 43 patients successfully recorded FCoMEP in orbicularis oculi muscle. A reduction over 50.3% in FCoMEP (O. oris) amplitude was identified as a predictor of postoperative facial nerve dysfunction (sensitivity, 77.1%; specificity, 83.6%). BR was another independent predictor of postoperative facial nerve deficit with excellent predictive performance, especially eyelid closure function. Its optimal cut-off value for predicting long-term postoperative eyelid closure dysfunction was was 51.0% (sensitivity, 94.4%; specificity, 94.4%). CONCLUSIONS: BR can compensate for the deficiencies of the FCoMEPs. The combination of BR and FCoMEPs can be used in CPA tumor surgery. SIGNIFICANCE: The study first proposed an optimal cut-off value of BR amplitude deterioration (50.0%) for predicting postoperative eyelid closure deficits in patients undergoing CPA tumor surgery.


Subject(s)
Blinking , Evoked Potentials, Motor , Humans , Male , Female , Blinking/physiology , Middle Aged , Adult , Evoked Potentials, Motor/physiology , Aged , Retrospective Studies , Facial Nerve/physiopathology , Predictive Value of Tests , Cerebellopontine Angle/surgery , Cerebellopontine Angle/physiopathology , Young Adult , Neuroma, Acoustic/surgery , Neuroma, Acoustic/physiopathology , Intraoperative Neurophysiological Monitoring/methods , Adolescent , Cerebellar Neoplasms/surgery , Cerebellar Neoplasms/physiopathology , Postoperative Complications/physiopathology , Postoperative Complications/diagnosis
5.
Sci Rep ; 14(1): 9794, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684721

ABSTRACT

Face perception is a major topic in vision research. Most previous research has concentrated on (holistic) spatial representations of faces, often with static faces as stimuli. However, faces are highly dynamic stimuli containing important temporal information. How sensitive humans are regarding temporal information in dynamic faces is not well understood. Studies investigating temporal information in dynamic faces usually focus on the processing of emotional expressions. However, faces also contain relevant temporal information without any strong emotional expression. To investigate cues that modulate human sensitivity to temporal order, we utilized muted dynamic neutral face videos in two experiments. We varied the orientation of the faces (upright and inverted) and the presence/absence of eye blinks as partial dynamic cues. Participants viewed short, muted, monochromic videos of models vocalizing a widely known text (National Anthem). Videos were played either forward (in the correct temporal order) or backward. Participants were asked to determine the direction of the temporal order for each video, and (at the end of the experiment) whether they had understood the speech. We found that face orientation, and the presence/absence of an eye blink affected sensitivity, criterion (bias) and reaction time: Overall, sensitivity was higher for upright compared to inverted faces, and in the condition where an eye blink was present compared to the condition without an eye blink. Reaction times were mostly faster in the conditions with higher sensitivity. A bias to report inverted faces as 'backward' observed in Experiment I, where upright and inverted faces were presented randomly interleaved within each block, was absent when presenting upright and inverted faces in different blocks in Experiment II. Language comprehension results revealed that there was higher sensitivity when understanding the speech compared to not understanding the speech in both experiments. Taken together, our results showed higher sensitivity with upright compared to inverted faces, suggesting that the perception of dynamic, task-relevant information was superior with the canonical orientation of the faces. Furthermore, partial information coming from eye blinks, in addition to mouth movements, seemed to play a significant role in dynamic face perception, both when faces were presented upright and inverted. We suggest that studying the perception of facial dynamics beyond emotional expressions will help us to better understand the mechanisms underlying the temporal integration of facial information from different -partial and holistic- sources, and that our results show how different strategies, depending on the available information, are employed by human observers when judging the temporal order of faces.


Subject(s)
Facial Recognition , Humans , Female , Male , Facial Recognition/physiology , Adult , Young Adult , Reaction Time/physiology , Facial Expression , Blinking/physiology , Photic Stimulation/methods , Emotions/physiology , Face/physiology , Cues
6.
PLoS Comput Biol ; 20(4): e1011277, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38574161

ABSTRACT

According to the motor learning theory by Albus and Ito, synaptic depression at the parallel fibre to Purkinje cells synapse (pf-PC) is the main substrate responsible for learning sensorimotor contingencies under climbing fibre control. However, recent experimental evidence challenges this relatively monopolistic view of cerebellar learning. Bidirectional plasticity appears crucial for learning, in which different microzones can undergo opposite changes of synaptic strength (e.g. downbound microzones-more likely depression, upbound microzones-more likely potentiation), and multiple forms of plasticity have been identified, distributed over different cerebellar circuit synapses. Here, we have simulated classical eyeblink conditioning (CEBC) using an advanced spiking cerebellar model embedding downbound and upbound modules that are subject to multiple plasticity rules. Simulations indicate that synaptic plasticity regulates the cascade of precise spiking patterns spreading throughout the cerebellar cortex and cerebellar nuclei. CEBC was supported by plasticity at the pf-PC synapses as well as at the synapses of the molecular layer interneurons (MLIs), but only the combined switch-off of both sites of plasticity compromised learning significantly. By differentially engaging climbing fibre information and related forms of synaptic plasticity, both microzones contributed to generate a well-timed conditioned response, but it was the downbound module that played the major role in this process. The outcomes of our simulations closely align with the behavioural and electrophysiological phenotypes of mutant mice suffering from cell-specific mutations that affect processing of their PC and/or MLI synapses. Our data highlight that a synergy of bidirectional plasticity rules distributed across the cerebellum can facilitate finetuning of adaptive associative behaviours at a high spatiotemporal resolution.


Subject(s)
Cerebellum , Computer Simulation , Conditioning, Eyelid , Models, Neurological , Neuronal Plasticity , Neuronal Plasticity/physiology , Animals , Cerebellum/physiology , Conditioning, Eyelid/physiology , Purkinje Cells/physiology , Blinking/physiology , Conditioning, Classical/physiology , Synapses/physiology , Computational Biology , Mice , Cerebellar Cortex/physiology
7.
eNeuro ; 11(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38627063

ABSTRACT

Trace eyeblink conditioning (TEBC) has been widely used to study associative learning in both animals and humans. In this paradigm, conditioned responses (CRs) to conditioned stimuli (CS) serve as a measure for retrieving learned associations between the CS and the unconditioned stimuli (US) within a trial. Memory consolidation, that is, learning over time, can be quantified as an increase in the proportion of CRs across training sessions. However, how hippocampal oscillations differentiate between successful memory retrieval within a session and consolidation across TEBC training sessions remains unknown. To address this question, we recorded local field potentials (LFPs) from the rat dorsal hippocampus during TEBC and investigated hippocampal oscillation dynamics associated with these two functions. We show that transient broadband responses to the CS were correlated with memory consolidation, as indexed by an increase in CRs across TEBC sessions. In contrast, induced alpha (8-10 Hz) and beta (16-20 Hz) band responses were correlated with the successful retrieval of the CS-US association within a session, as indexed by the difference in trials with and without CR.


Subject(s)
Conditioning, Eyelid , Hippocampus , Memory Consolidation , Mental Recall , Rats, Long-Evans , Hippocampus/physiology , Male , Conditioning, Eyelid/physiology , Animals , Memory Consolidation/physiology , Mental Recall/physiology , Association Learning/physiology , Rats , Conditioning, Classical/physiology , Blinking/physiology
8.
J Neurophysiol ; 131(5): 797-806, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38533969

ABSTRACT

Learning outcome is modified by the degree to which the subject responds and pays attention to specific stimuli. Our recent research suggests that presenting stimuli in contingency with a specific phase of the cardiorespiratory rhythm might expedite learning. Specifically, expiration-diastole (EXP-DIA) is beneficial for learning trace eyeblink conditioning (TEBC) compared with inspiration-systole (INS-SYS) in healthy young adults. The aim of this study was to investigate whether the same holds true in healthy elderly adults (n = 50, aged >70 yr). Participants were instructed to watch a silent nature film while TEBC trials were presented at either INS-SYS or EXP-DIA (separate groups). Learned responses were determined as eyeblinks occurring after the tone conditioned stimulus (CS), immediately preceding the air puff unconditioned stimulus (US). Participants were classified as learners if they made at least five conditioned responses (CRs). Brain responses to the stimuli were measured by electroencephalogram (EEG). Memory for the film and awareness of the CS-US contingency were evaluated with a questionnaire. As a result, participants showed robust brain responses to the CS, acquired CRs, and reported awareness of the CS-US relationship to a variable degree. There was no difference between the INS-SYS and EXP-DIA groups in any of the above. However, when only participants who learned were considered, those trained at EXP-DIA (n = 11) made more CRs than those trained at INS-SYS (n = 13). Thus, learned performance could be facilitated in those elderly who learned. However, training at a specific phase of cardiorespiratory rhythm did not increase the proportion of participants who learned.NEW & NOTEWORTHY We trained healthy elderly individuals in trace eyeblink conditioning, either at inspiration-systole or at expiration-diastole. Those who learned exhibited more conditioned responses when trained at expiration-diastole rather than inspiration-systole. However, there was no difference between the experimental groups in the proportion of individuals who learned or did not learn.


Subject(s)
Conditioning, Eyelid , Humans , Male , Aged , Female , Conditioning, Eyelid/physiology , Electroencephalography , Aged, 80 and over , Heart Rate/physiology , Blinking/physiology , Conditioning, Classical/physiology
9.
Clin Neurophysiol ; 161: 17-26, 2024 May.
Article in English | MEDLINE | ID: mdl-38432185

ABSTRACT

OBJECTIVE: Both blinking and walking are altered in Parkinson's disease and both motor outputs have been shown to be linked in healthy subjects. Additionally, studies suggest an involvement of basal ganglia activity and striatal dopamine in blink generation. We investigated the role of the basal ganglia circuitry on spontaneous blinking and if this role is dependent on movement state and striatal dopamine. METHODS: We analysed subthalamic nucleus (STN) activity in seven chronically implanted patients for deep brain stimulation (DBS) with respect to blinks and movement state (resting state and unperturbed walking). Neurophysiological recordings were combined with individual molecular brain imaging assessing the dopamine reuptake transporter (DAT) density for the left and right striatum separately. RESULTS: We found a significantly higher blink rate during walking compared to resting. The blink rate during walking positively correlated with the DAT density of the left caudate nucleus. During walking only, spontaneous blinking was followed by an increase in the right STN beta power and a bilateral subthalamic phase reset in the low frequencies. The right STN blink-related beta power modulation correlated negatively with the DAT density of the contralateral putamen. The left STN blink-related beta power correlated with the DAT density of the putamen in the less dopamine-depleted hemisphere. Both correlations were specific to the walking condition and to beta power following a blink. CONCLUSION: Our findings show that spontaneous blinking is related to striatal dopamine and has a frequency specific deployment in the STN. This correlation depends on the current movement state such as walking. SIGNIFICANCE: This work indicates that subcortical activity following a motor event as well as the relationship between dopamine and motor events can be dependent on the motor state. Accordingly, disease related changes in brain activity should be assessed during natural movement.


Subject(s)
Beta Rhythm , Blinking , Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Walking , Humans , Subthalamic Nucleus/physiopathology , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Male , Middle Aged , Walking/physiology , Female , Blinking/physiology , Aged , Beta Rhythm/physiology , Dopamine Plasma Membrane Transport Proteins/metabolism
10.
Clin Neurophysiol ; 161: 59-68, 2024 May.
Article in English | MEDLINE | ID: mdl-38447495

ABSTRACT

Blinking is a motor act characterized by the sequential closing and opening of the eyelids, which is achieved through the reciprocal activation of the orbicularis oculi and levator palpebrae superioris muscles. This stereotyped movement can be triggered reflexively, occur spontaneously, or voluntarily initiated. During each type of blinking, the neural control of the antagonistic interaction between the orbicularis oculi and levator palpebrae superioris muscles is governed by partially overlapping circuits distributed across cortical, subcortical, and brainstem structures. This paper provides a comprehensive overview of the anatomical and physiological foundations underlying the neural control of blinking. We describe the infra-nuclear apparatus, as well as the supra-nuclear control mechanisms, i.e., how cortical, subcortical, and brainstem structures regulate and coordinate the different types of blinking.


Subject(s)
Blinking , Humans , Blinking/physiology , Animals , Brain Stem/physiology , Eyelids/physiology
11.
Ophthalmic Physiol Opt ; 44(4): 704-717, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38546401

ABSTRACT

PURPOSE: To investigate differences in key clinical parameters between asymptomatic and highly symptomatic soft contact lens (CL) wearers after 14 h of wear. METHODS: In this pilot investigation, Phase 1 identified asymptomatic (CLDEQ-8 score ≤ 7) and highly symptomatic (CLDEQ-8 score ≥ 20) subjects after fitting with nelfilcon A CLs. Phase 2 investigated the following over a single nelfilcon A CL-wearing day (14 ± 2 h): blinking characteristics, tear meniscus height (TMH), non-invasive tear break-up time (NIBUT), tear film osmolarity and eyelid margin staining. Parameters for the two groups were compared using linear mixed models and post-hoc testing. The relationship between comfort scores and the clinical parameters was also investigated. RESULTS: Overall, 161 and 42 subjects were enrolled into Phase 1 and 2, respectively. Twenty-five asymptomatic and 17 symptomatic subjects completed Phase 2. Lower eyelid TMH was decreased after 14 h in symptomatic compared with asymptomatic subjects (least square mean [LSM] difference -0.04 mm, 95% CI: -0.07, -0.01). Osmolarity was lower in symptomatic than in asymptomatic subjects at fitting (LSM difference -9.89, 95% CI: -18.91, -0.86). Upper eyelid margin staining was greater after 14 h in symptomatic than in asymptomatic subjects (LSM difference 0.53, 95% CI: 0.01, 1.05) and greater after 14 h than baseline in the symptomatic group (LSM difference 0.61, 95% CI: 0.16, 1.07). There was a significant relationship between comfort and upper eyelid margin staining (r = -0.40, 95% CI: -0.63, -0.11) and blink rate (r = -0.31, 95% CI: -0.57, -0.003). CONCLUSION: The potential parameters most effective in differentiating asymptomatic from symptomatic wearers were upper eyelid margin staining and lower TMH. The parameter with the strongest relationship to comfort was upper eyelid margin staining, where higher comfort scores were associated with lower levels of staining.


Subject(s)
Blinking , Contact Lenses, Hydrophilic , Tears , Humans , Contact Lenses, Hydrophilic/adverse effects , Male , Female , Adult , Tears/metabolism , Tears/physiology , Pilot Projects , Blinking/physiology , Young Adult , Osmolar Concentration , Dry Eye Syndromes/diagnosis , Dry Eye Syndromes/etiology , Dry Eye Syndromes/physiopathology , Eyelids
12.
Ophthalmic Physiol Opt ; 44(4): 718-726, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38551074

ABSTRACT

PURPOSE: To compare the ocular effects of exposure to a low-humidity environment with and without contact lens (CL) wear using various non-invasive tests. METHODS: Fourteen habitual soft CL wearers were exposed to controlled low humidity (5% relative humidity [RH]) in an environmental chamber for 90 min on two separate occasions. First, when wearing their habitual spectacles and then, on a separate visit, when wearing silicone hydrogel CLs that were fitted specifically for this purpose. All participants had adapted to the new CL prior to data collection. Three non-invasive objective measurements were taken at each visit: blinking rate, objective ocular scatter (measured using the objective scatter index) and ocular surface cooling rate (measured using a long-wave infrared thermal camera). At each visit, measurements were taken before the exposure in comfortable environmental conditions (RH: 45%), and after exposure to environmental stress (low humidity, RH: 5%). RESULTS: CL wearers showed increased blinking rate (p < 0.005) and ocular scatter (p = 0.03) but similar cooling rate of the ocular surface (p = 0.08) when compared with spectacle wear in comfortable environmental conditions. The exposure to low humidity increased the blinking rate significantly with both types of corrections (p = 0.01). Interestingly, ocular scatter (p = 0.96) and cooling rate (p = 0.73) were not significantly different before and after exposure to low humidity. There were no significant two-way interactions between correction and exposure in any of the measurements. CONCLUSIONS: CLs significantly increased the blinking rate, which prevented a quick degradation of the tear film integrity as it was refreshed more regularly. It is hypothesised that the increased blinking rate in CL wearers aids in maintaining ocular scatter quality and cooling rate when exposed to a low-humidity environment. These results highlight the importance of blinking in maintaining tear film stability.


Subject(s)
Blinking , Humidity , Humans , Pilot Projects , Blinking/physiology , Adult , Male , Female , Young Adult , Contact Lenses, Hydrophilic , Tears/physiology , Contact Lenses
13.
Cornea ; 43(6): 751-756, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38285962

ABSTRACT

PURPOSE: The aim of this study was to investigate the factors influencing dry eye disease (DED)-related ocular symptoms in participants with short fluorescein tear break-up time (FTBUT). METHODS: This cross-sectional study included 82 participants with short FTBUT (<10 seconds). Examinations included Ocular Surface Disease Index (OSDI), FTBUT, average noninvasive tear break-up time (NIBUTave), lid wiper epitheliopathy, lipid layer thickness, blink rate, partial blink, tear meniscus height, and meibomian gland (MG) evaluation which included ratio of residual MG area (RMGA) and MG grade in tarsal plates. One-way analysis of variance was used to detect differences between symptomatic tear film instability group (FTBUT <5 s, OSDI ≥13), asymptomatic tear film instability group (FTBUT <5 s, OSDI <13), and control group (FTBUT ≥5 s, OSDI <13). A bivariate correlation, partial correlation, and multiple linear regression analyses were used to identify major factors. Only the right eye was included. RESULTS: Among the participants with FTBUT <5 seconds, symptomatic group showed less upper RMGA ( P < 0.001) and NIBUTave ( P = 0.010). OSDI was negatively associated with upper RMGA ( r = -0.450, P < 0.001) and NIBUTave ( r = -0.414, P = 0.001), and positively associated with upper MG grade ( r = 0.277, P = 0.027). Linear regression analysis showed that the upper RMGA significantly affected OSDI (B = -41.895, P = 0.001), while not significantly correlated with age, upper MG grade, and NIBUTave. CONCLUSIONS: The upper RMGA might be the main factor affecting DED-related discomfort in participants with unstable tear film, indicating an early ocular change in DED.


Subject(s)
Dry Eye Syndromes , Meibomian Glands , Tears , Humans , Tears/metabolism , Tears/physiology , Dry Eye Syndromes/physiopathology , Dry Eye Syndromes/diagnosis , Dry Eye Syndromes/etiology , Dry Eye Syndromes/metabolism , Cross-Sectional Studies , Male , Female , Middle Aged , Meibomian Glands/diagnostic imaging , Meibomian Glands/physiopathology , Meibomian Glands/pathology , Adult , Blinking/physiology , Aged , Fluorescent Dyes , Fluorescein/metabolism
14.
Invest Ophthalmol Vis Sci ; 63(2): 4, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35103749

ABSTRACT

Purpose: Herpes stromal keratitis (HSK) represents a spectrum of pathologies which is caused by herpes simplex virus type 1 (HSV-1) infection and is considered a leading cause of infectious blindness. HSV-1 infects corneal sensory nerves and establishes latency in the trigeminal ganglion (TG). Recently, retraction of sensory nerves and replacement with "unsensing" sympathetic nerves was identified as a critical contributor of HSK in a mouse model where corneal pathology is caused by primary infection. This resulted in the loss of blink reflex, corneal desiccation, and exacerbation of inflammation leading to corneal opacity. Despite this, it was unclear whether inflammation associated with viral reactivation was sufficient to initiate this cascade of events. Methods: We examined viral reactivation and corneal pathology in a mouse model with recurrent HSK by infecting the cornea with HSV-1 (McKrae) and transferring (intravenous [IV]) human sera to establish primary infection without discernible disease and then exposed the cornea to UV-B light to induce viral reactivation. Results: UV-B light induced viral reactivation from latency in 100% of mice as measured by HSV-1 antigen deposition in the cornea. Further, unlike conventional HSK models, viral reactivation resulted in focal retraction of sensory nerves and corneal opacity. Dependent on CD4+ T cells, inflammation foci were innervated by sympathetic nerves. Conclusions: Collectively, our data reveal that sectoral corneal sensory nerve retraction and replacement of sympathetic nerves were involved in the progressive pathology that is dependent on CD4+ T cells after viral reactivation from HSV-1 latency in the UV-B induced recurrent HSK mouse model.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Corneal Stroma/injuries , Eye Infections, Viral/pathology , Herpes Simplex/pathology , Immunity, Cellular , Keratitis, Herpetic/pathology , Sympathetic Nervous System/pathology , Animals , Blinking/physiology , Corneal Stroma/pathology , Corneal Stroma/virology , Disease Models, Animal , Eye Infections, Viral/immunology , Eye Infections, Viral/virology , Female , Herpes Simplex/immunology , Herpes Simplex/virology , Herpesvirus 1, Human , Keratitis, Herpetic/immunology , Keratitis, Herpetic/virology , Male , Mice , Trigeminal Ganglion/immunology , Trigeminal Ganglion/pathology
15.
J Neurosci ; 42(1): 69-80, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34759032

ABSTRACT

When presented with a periodic stimulus, humans spontaneously adjust their movements from reacting to predicting the timing of its arrival, but little is known about how this sensorimotor adaptation changes across development. To investigate this, we analyzed saccade behavior in 114 healthy humans (ages 6-24 years) performing the visual metronome task, who were instructed to move their eyes in time with a visual target that alternated between two known locations at a fixed rate, and we compared their behavior to performance in a random task, where target onsets were randomized across five interstimulus intervals (ISIs) and thus the timing of appearance was unknown. Saccades initiated before registration of the visual target, thus in anticipation of its appearance, were labeled predictive [saccade reaction time (SRT) < 90 ms] and saccades that were made in reaction to its appearance were labeled reactive (SRT > 90 ms). Eye-tracking behavior including saccadic metrics (e.g., peak velocity, amplitude), pupil size following saccade to target, and blink behavior all varied as a function of predicting or reacting to periodic targets. Compared with reactive saccades, predictive saccades had a lower peak velocity, a hypometric amplitude, smaller pupil size, and a reduced probability of blink occurrence before target appearance. The percentage of predictive and reactive saccades changed inversely from ages 8-16, at which they reached adult-levels of behavior. Differences in predictive saccades for fast and slow target rates are interpreted by differential maturation of cerebellar-thalamic-striatal pathways.SIGNIFICANCE STATEMENT From the first moments of life, humans are exposed to rhythm (i.e., mother's heartbeat in utero), but the timeline of brain development to promote the identification and anticipation of a rhythmic stimulus, known as temporal prediction, remains unknown. Here, we used saccade reaction time (SRT) in the visual metronome task to differentiate between temporally predictive and reactive responses to a target that alternated at a fixed rate in humans aged 6-24. Periods of age-related change varied little by target rate, with matured predictive performance evident by mid-adolescence for fast and slow rates. A strong correlation among saccade, pupil, and blink responses during target prediction provides evidence of oculomotor coordination and dampened noradrenergic neuronal activity when generating rhythmic motor responses.


Subject(s)
Adaptation, Physiological/physiology , Blinking/physiology , Reaction Time/physiology , Saccades/physiology , Adolescent , Child , Female , Humans , Male , Photic Stimulation , Pupil , Young Adult
16.
PLoS One ; 16(12): e0261463, 2021.
Article in English | MEDLINE | ID: mdl-34919586

ABSTRACT

Pupillometry, thanks to its strong relationship with cognitive factors and recent advancements in measuring techniques, has become popular among cognitive or neural scientists as a tool for studying the physiological processes involved in mental or neural processes. Despite this growing popularity of pupillometry, the methodological understanding of pupillometry is limited, especially regarding potential factors that may threaten pupillary measurements' validity. Eye blinking can be a factor because it frequently occurs in a manner dependent on many cognitive components and induces a pulse-like pupillary change consisting of constriction and dilation with substantive magnitude and length. We set out to characterize the basic properties of this "blink-locked pupillary response (BPR)," including the shape and magnitude of BPR and their variability across subjects and blinks, as the first step of studying the confounding nature of eye blinking. Then, we demonstrated how the dependency of eye blinking on cognitive factors could confound, via BPR, the pupillary responses that are supposed to reflect the cognitive states of interest. By building a statistical model of how the confounding effects of eye blinking occur, we proposed a probabilistic-inference algorithm of de-confounding raw pupillary measurements and showed that the proposed algorithm selectively removed BPR and enhanced the statistical power of pupillometry experiments. Our findings call for attention to the presence and confounding nature of BPR in pupillometry. The algorithm we developed here can be used as an effective remedy for the confounding effects of BPR on pupillometry.


Subject(s)
Blinking/physiology , Eye Movements/physiology , Physical Examination/methods , Pupil/physiology , Adult , Algorithms , Cognition/physiology , Female , Humans , Young Adult
17.
PLoS One ; 16(10): e0258233, 2021.
Article in English | MEDLINE | ID: mdl-34618845

ABSTRACT

The study determined the frequency of dry eye, its clinical subtypes and risk factors among pregnant women. This study was a hospital-based cross-sectional study of pregnant women visiting the antenatal clinic of the University of Cape Coast hospital. Clinical dry eye tests were performed along with the administration of a symptom questionnaire. Frequencies, chi-square analysis and logistic regression analyses were conducted to determine the frequency of dry eye disease, its clinical subtypes and associated factors. The prevalence of dry eye disease among the cohort of pregnant women was 82/201 (40.8% 95% confidence interval 34.3%-47.3%). Among the 82 pregnant women with dry eye disease, the frequencies of the clinical subtypes of dry eye were: evaporative dry eye [15/82(18.3%; 95% CI, 12.2%-25.2%)], aqueous deficient dry eye [10/82(12.2.%; 95% CI, 7.3%-18.3)], mixed dry eye [6/82(7.3%; 95% CI, 3.7%-11.0%)], and unclassified dry eye [51/82(62.2%; 95% CI, 52.4%-72.0%)]. Binary logistic regression analysis showed that the following factors were not significantly associated with dry eye: age, BMI, lipid profile, prolactin level, testosterone level, ocular protection index and blink rate. Only gestational age was significantly associated with dry eye disease in pregnancy. In conclusion, the current study showed that dry eye disease occurs frequently in pregnant women ranging from the first to the third trimester and it is associated with increasing gestational age. The evaporative dry eye was more common compared to the aqueous deficient dry eye, but most dry eye could not be classified.


Subject(s)
Dry Eye Syndromes/classification , Adolescent , Adult , Blinking/physiology , Cross-Sectional Studies , Female , Fluorescein/metabolism , Humans , Logistic Models , Multivariate Analysis , Pregnancy , Young Adult
18.
PLoS One ; 16(10): e0258322, 2021.
Article in English | MEDLINE | ID: mdl-34624051

ABSTRACT

The blink rate increases if a person indulges in a conversation compared to quiet rest. Since various factors were suggested to explain this increase, the present series of studies tested the influence of different motor activities, cognitive processes and auditory input on the blink behavior but at the same time minimized visual stimulation as well as social influences. Our results suggest that neither cognitive demands without verbalization, nor isolated lip, jaw or tongue movements, nor auditory input during vocalization or listening influence our blinking behavior. In three experiments, we provide evidence that complex facial movements during unvoiced speaking are the driving factors that increase blinking. If the complexity of the motor output increased such as during the verbalization of speech, the blink rate rose even more. Similarly, complex facial movements without cognitive demands, such as sucking on a lollipop, increased the blink rate. Such purely motor-related influences on blinking advise caution particularly when using blink rates assessed during patient interviews as a neurological indicator.


Subject(s)
Blinking/physiology , Motor Activity/physiology , Speech/physiology , Adult , Auditory Perception/physiology , Cognition/physiology , Female , Humans , Male , Task Performance and Analysis , Young Adult
19.
Invest Ophthalmol Vis Sci ; 62(13): 21, 2021 10 04.
Article in English | MEDLINE | ID: mdl-34698773

ABSTRACT

Purpose: To test whether an acute corneal injury activates a proinflammatory reflex, involving corneal sensory nerves expressing substance P (SP), the hypothalamus, and the sympathetic nervous system. Methods: C57BL6/N (wild-type [WT]) and SP-depleted B6.Cg-Tac1tm1Bbm/J (TAC1-KO) mice underwent bilateral corneal alkali burn. One group of WT mice received oxybuprocaine before alkali burn. One hour later, hypothalamic neuronal activity was assessed in vivo by magnetic resonance imaging and ex vivo by cFOS staining. Some animals were followed up for 14 days to evaluate corneal transparency and inflammation. Tyrosine hydroxylase (TH), neurokinin 1 receptor (NK1R), and neuronal nitric oxide synthase (nNOS) expression was assessed in brain sections. Sympathetic neuron activation was evaluated in the superior cervical ganglion (SCG). CD45+ leukocytes were quantified in whole-mounted corneas. Noradrenaline (NA) was evaluated in the cornea and bone marrow. Results: Alkali burn acutely induced neuronal activation in the trigeminal ganglion, paraventricular hypothalamus, and lateral hypothalamic area (PVH and LHA), which was significantly lower in TAC1-KO mice (P < 0.05). Oxybuprocaine application similarly reduced neuronal activation (P < 0.05). TAC1-KO mice showed a reduced number of cFOS+/NK1R+/TH+ presympathetic neurons (P < 0.05) paralleled by higher nNOS expression (P < 0.05) in both PVH and LHA. A decrease in activated sympathetic neurons in the SCG and NA levels in both cornea/bone marrow and reduced corneal leukocyte infiltration (P < 0.05) in TAC1-KO mice were found. Finally, 14 days after injury, TAC1-KO mice showed reduced corneal opacity and inflammation (P < 0.05). Conclusions: Our findings suggest that stimulation of corneal sensory nerves containing SP activates presympathetic neurons located in the PVH and LHA, leading to sympathetic activation, peripheral release of NA, and corneal inflammation.


Subject(s)
Blinking/physiology , Burns, Chemical/complications , Cornea/innervation , Corneal Injuries/complications , Keratitis/physiopathology , Trigeminal Ganglion/physiopathology , Animals , Burns, Chemical/pathology , Burns, Chemical/physiopathology , Cornea/diagnostic imaging , Cornea/physiopathology , Corneal Injuries/pathology , Corneal Injuries/physiopathology , Disease Models, Animal , Keratitis/diagnosis , Keratitis/etiology , Male , Mice , Mice, Inbred C57BL
20.
Neuron ; 109(18): 2981-2994.e5, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34534455

ABSTRACT

The role of the cerebellum in predictive motor control and coordination has been thoroughly studied during movements of a single body part. In the real world, however, actions are often more complex. Here, we show that a small area in the rostral anterior interpositus nucleus (rAIN) of the mouse cerebellum is responsible for generating a predictive motor synergy that serves to protect the eye by precisely coordinating muscles of the eyelid, neck, and forelimb. Within the rAIN region, we discovered a new functional category of neurons with unique properties specialized for control of motor synergies. These neurons integrated inhibitory cutaneous inputs from multiple parts of the body, and their activity was correlated with the vigor of the defensive motor synergy on a trial-by-trial basis. We propose that some regions of the cerebellum are organized in poly-somatotopic "action maps" to reduce dimensionality and simplify motor control during ethologically relevant behaviors.


Subject(s)
Blinking/physiology , Cerebellar Nuclei/chemistry , Cerebellar Nuclei/physiology , Extremities/physiology , Movement/physiology , Animals , Cerebellar Nuclei/cytology , Cerebellum/chemistry , Cerebellum/cytology , Cerebellum/physiology , Forecasting , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Optogenetics/methods , Video Recording/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...