Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.828
Filter
1.
Environ Int ; 186: 108642, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38608384

ABSTRACT

Parkinson's disease (PD) is a complex neurodegenerative disorder influenced by genetic factors and environmental exposures. Polychlorinated biphenyls (PCBs), a group of synthetic organic compounds, have been identified as potential environmental risk factors for neurodegenerative diseases, including PD. We explored PCB-induced neurotoxicity mechanisms using iPSC-derived dopaminergic neurons and assessed their transcriptomic responses to varying PCB concentrations (0.01 µM, 0.5 µM, and 10 µM). Specifically, we focused on PCB-180, a congener known for its accumulation in human brains. The exposure durations were 24 h and 74 h, allowing us to capture both short-term and more prolonged effects on gene expression patterns. We observed that PCB exposure led to the suppression of oxidative phosphorylation, synaptic function, and neurotransmitter release, implicating these pathways in PCB-induced neurotoxicity. In our comparative analysis, we noted similarities in PCB-induced changes with other PD-related compounds like MPP+ and rotenone. Our findings also aligned with gene expression changes in human blood derived from a population exposed to PCBs, highlighting broader inflammatory responses. Additionally, molecular patterns seen in iPSC-derived neurons were confirmed in postmortem PD brain tissues, validating our in vitro results. In conclusion, our study offers novel insights into the multifaceted impacts of PCB-induced perturbations on various cellular contexts relevant to PD. The use of iPSC-derived dopaminergic neurons allowed us to decipher intricate transcriptomic alterations, bridging the gap between in vitro and in vivo findings. This work underscores the potential role of PCB exposure in neurodegenerative diseases like PD, emphasizing the need to consider both systemic and cell specific effects.


Subject(s)
Dopaminergic Neurons , Parkinson Disease , Polychlorinated Biphenyls , Transcriptome , Polychlorinated Biphenyls/toxicity , Dopaminergic Neurons/drug effects , Humans , Transcriptome/drug effects , Blood Cells/drug effects , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Environmental Pollutants/toxicity
2.
Int J Mol Sci ; 24(7)2023 Mar 26.
Article in English | MEDLINE | ID: mdl-37047231

ABSTRACT

The evidence supporting the biological plausibility of the association of permethrin and malathion with hematological cancer is limited and contradictory; thus, further studies are needed. This study aimed to investigate whether in vitro exposure to 0.1 µM permethrin and malathion at 0, 24, 48 and 72 h after cell culture initiation induced changes in the gene expression and DNA methylation in mononuclear cells from bone marrow and peripheral blood (BMMCs, PBMCs). Both pesticides induced several gene expression modifications in both tissues. Through gene ontology analysis, we found that permethrin deregulates ion channels in PBMCs and BMMCs and that malathion alters genes coding proteins with nucleic acid binding capacity, which was also observed in PBMCs exposed to permethrin. Additionally, we found that both insecticides deregulate genes coding proteins with chemotaxis functions, ion channels, and cytokines. Several genes deregulated in this study are potentially associated with cancer onset and development, and some of them have been reported to be deregulated in hematological cancer. We found that permethrin does not induce DNA hypermethylation but can induce hypomethylation, and that malathion generated both types of events. Our results suggest that these pesticides have the potential to modify gene expression through changes in promoter DNA methylation and potentially through other mechanisms that should be investigated.


Subject(s)
Bone Marrow Cells , DNA Methylation , Gene Expression , Insecticides , Malathion , Organophosphates , Permethrin , Gene Expression/drug effects , DNA Methylation/drug effects , Hematopoiesis/drug effects , Hematopoiesis/genetics , Permethrin/toxicity , Malathion/toxicity , Insecticides/toxicity , Organophosphates/toxicity , Bone Marrow Cells/drug effects , Blood Cells/drug effects , Humans , Male , Young Adult , Cells, Cultured
3.
Inflamm Res ; 71(3): 331-341, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35157090

ABSTRACT

OBJECTIVE AND DESIGN: Perturbations of peripheral T cell homeostasis and dysregulation of the immune response to SARS-CoV-2, especially in severely ill patients, were observed. The aim of this study was to analyze the cytokine producing ability of peripheral blood cells from severely ill COVID-19 patients upon non-specific in vitro stimulation with phytohemagglutinin (PHA). Possible associations of cytokine levels with patients' age and gender, glucocorticosteroid therapy, as well as the trend of the inflammatory process at the time of sampling (increased or decreased) were also analyzed. SUBJECTS AND METHODS: The study included 23 COVID-19 patients and 17 healthy control subjects. The concentrations of selected Th1/Th2/Th9/Th17/Th22 cytokines were determined using a multi-analyte flow assay kit. RESULTS: Our results showed that peripheral blood cells from severely ill COVID-19 patients had a much reduced ability to produce cytokines in comparison to healthy controls. When inflammation was raised, blood cells produced more IL-6 and IL-17, which led to increases of some Th17/Th1 and Th17/Th2 ratios, skewing towards the Th17 type of response. The methylprednisolone used in the treatment of patients with COVID-19 influences the production of several cytokines in dose dependent manner. CONCLUSION: Our results indicate that the stage of the inflammatory process at the time of sampling and the dose of the applied glucocorticosteroid therapy might influence cytokine producing ability upon non-specific stimulation of T cells in vitro.


Subject(s)
COVID-19/blood , Cytokines/blood , SARS-CoV-2 , Adult , Aged , Anti-Inflammatory Agents/therapeutic use , Blood Cells/drug effects , Blood Cells/metabolism , Cells, Cultured , Female , Glucocorticoids/therapeutic use , Humans , Male , Methylprednisolone/therapeutic use , Middle Aged , Mitogens/pharmacology , Phytohemagglutinins/pharmacology , COVID-19 Drug Treatment
4.
Biomed Chromatogr ; 36(2): e5266, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34648200

ABSTRACT

Podophyllotoxin (POD), a natural lignan distributed in podophyllum species, possesses significant antitumor and antiviral activities. But POD often causes serious side effects, such as myelosuppression, gastrointestinal toxicity, neurotoxicity, hepatic and renal dysfunction, and even death, which not only hinder its clinical application but also threaten the patient's health. Therefore, an effective treatment against POD-induced toxicity is important. Our preliminary study found that the total saponins from the stems and leaves of Panax quinquefolius L. (PQS) could significantly reduce the death of mice caused by POD. To reveal how PQS can alleviate POD-induced toxicity, further study was needed. Peripheral blood cell analysis, diarrhea score, and histological examination demonstrated that PQS could relieve myelosuppression and gastrointestinal side effects induced by POD. Then, metabolomics was performed to investigate the possible protective mechanism of PQS on POD-induced myelosuppression and gastrointestinal toxicity. Metabolomics analysis showed that metabolic changes caused by POD could be reversed by PQS to some extent; 23 metabolites altered significantly after POD exposure, and 11 metabolites significantly reversed by PQS pretreatment. Metabolic pathway analysis suggested that PQS might exhibit its protective effects by rebalancing disordered arginine, glutamine, and unsaturated fatty acid metabolism.


Subject(s)
Lipid Metabolism/drug effects , Panax/chemistry , Podophyllotoxin/toxicity , Protective Agents/pharmacology , Saponins/pharmacology , Animals , Blood Cells/drug effects , Blood Cells/metabolism , Chromatography, High Pressure Liquid , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/pathology , Male , Mass Spectrometry , Metabolome/drug effects , Metabolomics , Mice , Mice, Inbred ICR , Plant Leaves/chemistry
5.
J Drug Target ; 30(3): 244-258, 2022 03.
Article in English | MEDLINE | ID: mdl-34415804

ABSTRACT

Ferroptosis is an iron-dependent cell death pathway and participates in various diseases. Current evidence suggests that ferroptosis can obviously affect the function of blood cells. This paper aims to elaborate the role of ferroptosis in blood cells and related diseases. First, abnormal ferroptosis damages the developing red blood cells by breaking systemic iron homeostasis, leading to erythropoiesis suppression and anaemia. Ferroptosis mediates neutrophils recruitment and neutrophil extracellular trap formation (NETosis). In T-cells, ferroptosis induces a novel point of synergy between immunotherapy and radiotherapy. Additionally, ferroptosis may mediate B cells differentiation, antibody responses and lymphoma. Nevertheless, increased ferroptosis can ameliorate acute myeloid leukaemia and T-cell leukaemia/lymphoma by inducing iron-dependent cancer cells death. Besides, ferroptosis activates platelets by increasing P-selectin, thus causing thromboembolism. Ferroptosis mediates virus infection and parasite infection by driving T-cell death and preventing T-cell immunity. Interestingly, ferroptosis is also considered as a critical player in COVID-19 infections, while targetting ferroptosis may also improve thromboembolism and prognosis in patients with COVID-19 infection. Overall, the crucial role of ferroptosis in blood cells will show a new therapeutic potential in blood cell-related diseases.HighlightsFerroptosis shows a new therapeutic potential for blood cell-related diseases.Ferroptosis damages erythropoiesis and thus induces anaemia.Ferroptosis induces platelet activation and leads to thromboembolism.Ferroptosis regulates T-cell and B-cell immunity, which participant in infectious diseases.Inversely, ferroptosis ameliorates acute myeloid leukaemia and T-cell leukaemia.


Subject(s)
Blood Cells/drug effects , Blood Cells/metabolism , COVID-19/therapy , Drug Delivery Systems , Ferroptosis/drug effects , SARS-CoV-2 , Humans
6.
Sci Rep ; 11(1): 23128, 2021 11 30.
Article in English | MEDLINE | ID: mdl-34848781

ABSTRACT

In transplantation, livers are transported to recipients using static cold storage (SCS), whereby livers are exposed to cold ischemic injury that contribute to post-transplant risk factors. We hypothesized that flushing organs during procurement with cold preservation solutions could influence the number of donor blood cells retained in the allograft thereby exacerbating cold ischemic injury. We present the results of rat livers that underwent 24 h SCS after being flushed with a cold University of Wisconsin (UW) solution versus room temperature (RT) lactated ringers (LR) solution. These results were compared to livers that were not flushed prior to SCS and thoroughly flushed livers without SCS. We used viability and injury metrics collected during normothermic machine perfusion (NMP) and the number of retained peripheral cells (RPCs) measured by histology to compare outcomes. Compared to the cold UW flush group, livers flushed with RT LR had lower resistance, lactate, AST, and ALT at 6 h of NMP. The number of RPCs also had significant positive correlations with resistance, lactate, and potassium levels and a negative correlation with energy charge. In conclusion, livers exposed to cold UW flush prior to SCS appear to perform worse during NMP, compared to RT LR flush.


Subject(s)
Blood Cells/drug effects , Blood Cells/pathology , Liver/pathology , Organ Preservation/methods , Perfusion/methods , Adenosine , Allografts , Allopurinol , Animals , Cold Ischemia/adverse effects , Cold Temperature , Gastroenterology , Glutathione , Insulin , Liver Transplantation , Organ Preservation Solutions/pharmacology , Raffinose , Rats , Rats, Sprague-Dawley , Ringer's Lactate , Tissue Donors
7.
Int J Mol Sci ; 22(20)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34681781

ABSTRACT

In this paper, we examined the effects of melittin, a bee venom membrane-active peptide, on mitochondrial respiration and cell viability of healthy human lymphocytes (HHL) and Jurkat cells, as well as on lymphoblasts from acute human T cell leukemia. The viability of melittin-treated cells was related to changes in O2 consumption and in the respiratory control index (RCI) of mitochondria isolated from melittin-pretreated cells as well as of mitochondria first isolated from cells and then directly treated with melittin. It was shown that melittin is three times more cytotoxic to Jurkat cells than to HHL, but O2 consumption and RCI values of mitochondria from both cell types were equally affected by melittin when melittin was directly added to mitochondria. To elucidate the molecular mechanism of melittin's cytotoxicity to healthy and cancer cells, the effects of melittin on lipid-packing and on the dynamics in model plasma membranes of healthy and cancer cells, as well as of the inner mitochondrial membrane, were studied by EPR spin probes. The affinity of melittin binding to phosphatidylcholine, phosphatidylserine, phosphatidic acid and cardiolipin, and binding sites of phospholipids on the surface of melittin were studied by 31P-NMR, native PAGE and AutoDock modeling. It is suggested that the melittin-induced decline of mitochondrial bioenergetics contributes primarily to cell death; the higher cytotoxicity of melittin to cancer cells is attributed to its increased permeability through the plasma membrane.


Subject(s)
Lymphocytes/drug effects , Melitten/pharmacology , Mitochondria/drug effects , Mitochondrial Membranes/drug effects , Bee Venoms/chemistry , Blood Cells/drug effects , Blood Cells/metabolism , Cell Respiration/drug effects , Cells, Cultured , Humans , Jurkat Cells , Lipid Bilayers/chemistry , Lymphocytes/metabolism , Melitten/isolation & purification , Mitochondria/physiology , Mitochondrial Membranes/metabolism , Mitochondrial Membranes/ultrastructure , Models, Biological , Permeability/drug effects
8.
Bull Exp Biol Med ; 171(5): 651-655, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34618261

ABSTRACT

We studied the effect of an experimental synthetic organoselenium compound 2,6-dipyridinium- 9-selenabicyclo[3.3.1]nonane dibromide (974zh) on the cell composition of the red bone marrow and peripheral blood in white mice. The study drug co-administered with Yersinia pestis EV vaccine strain (103 CFU) potentiated maturation and migration of mature neutrophils from the bone marrow into the circulation. Reducing the dose of the live vaccine and the anti-inflammatory properties of the study drug made it possible to reduce the allergic reaction during the vaccination process.


Subject(s)
Lymphopoiesis/drug effects , Organoselenium Compounds/pharmacology , Vaccination , Vaccines, Attenuated/pharmacology , Yersinia pestis/immunology , Animals , Animals, Outbred Strains , Blood Cell Count , Blood Cells/drug effects , Blood Cells/immunology , Blood Cells/pathology , Bone Marrow/drug effects , Bone Marrow/immunology , Mice , Vaccines, Attenuated/immunology , Vaccines, Attenuated/therapeutic use
9.
Epigenomics ; 13(20): 1619-1636, 2021 10.
Article in English | MEDLINE | ID: mdl-34670402

ABSTRACT

Background: Per- and polyfluoroalkyl substances (PFASs) are persistent chemicals that firefighters encounter. Epigenetic modifications, including DNA methylation, could serve as PFASs toxicity biomarkers. Methods: With a sample size of 197 firefighters, we quantified the serum concentrations of nine PFASs, blood leukocyte DNA methylation and epigenetic age indicators via the EPIC array. We examined the associations between PFASs with epigenetic age, site- and region-specific DNA methylation, adjusting for confounders. Results: Perfluorohexane sulfonate, perfluorooctanoate (PFOA) and the sum of branched isomers of perfluorooctane sulfonate (Sm-PFOS) were associated with accelerated epigenetic age. Branched PFOA, linear PFOS, perfluorononanoate, perfluorodecanoate and perfluoroundecanoate were associated with differentially methylated loci and regions. Conclusion: PFASs concentrations are associated with accelerated epigenetic age and locus-specific DNA methylation. The implications for PFASs toxicity merit further investigation.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Firefighters , Hazardous Substances/adverse effects , Occupational Exposure/adverse effects , Biomarkers , Blood Cells/drug effects , Blood Cells/metabolism , DNA Methylation/drug effects , Disease Susceptibility/epidemiology , Disease Susceptibility/etiology , Epigenesis, Genetic/drug effects , Female , Health Impact Assessment , Humans , Male , Public Health Surveillance , Risk Assessment
10.
J Hematol Oncol ; 14(1): 162, 2021 10 09.
Article in English | MEDLINE | ID: mdl-34627328

ABSTRACT

CAR T cell therapy has shown dramatic clinical success in relapsed or refractory B-ALL and other hematological malignancies. However, the loss of specific antigens, cell fratricide, T cell aplasia, and normal T cell separation are challenges in treating T cell leukemia/lymphoma with CAR T therapy. CD99 is a promising antigen to target T-ALL and AML as it is strongly expressed on the majority of T-ALL and AML. Here, we isolated a low-affinity CD99 (12E7) antibody, which specifically recognizes leukemia cells over normal blood cells. Moreover, T cells transduced with an anti-CD99-specific CAR that contained the 12E7 scFv expanded with minor fratricide and without normal blood cells toxicity. We observed that our anti-CD99 CAR T cells showed robust cytotoxicity specifically against CD99+ T-ALL cell lines and primary tumor cells in vitro and significantly prolonged cell line-derived xenografts (CDXs) or patient-derived xenografts (PDXs) models survival in vivo. Together, our results demonstrate that anti-CD99 CAR T cells could specifically recognize and efficiently eliminate CD99+ leukemia cells.


Subject(s)
12E7 Antigen/immunology , Immunotherapy, Adoptive/methods , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Receptors, Chimeric Antigen/therapeutic use , 12E7 Antigen/antagonists & inhibitors , Animals , Blood Cells/drug effects , Cell Line, Tumor , Humans , Immunotherapy, Adoptive/adverse effects , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Receptors, Chimeric Antigen/immunology
11.
Int J Biol Macromol ; 191: 714-726, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34571130

ABSTRACT

In situ hydrogel has attracted widely attention in hemostasis due to its ability to match irregular defects, but its application is limited by insufficient mechanical strength and long gelation time. Although some specifical in situ chemically cross-linked hydrogels could be fast formed and exhibit high mechanical strength, they unable to absorb blood. Hence their applications were further limited in emergency hemostasis usage. In this study, a robust hydrogel formed by hydration of powders was developed using multiple hydrogen bonds crosslinking. Here, catechol groups modified ε-polylysine (PL-CAT) and polyacrylamide (PAAM) were used to construct the PL-CAT/PAAM hydrogel. This hydrogel could be formed within 7 s to adhere and seal bleeding sites. The catechol groups endowed the hydrogel outstanding adhesive strength, which was 3.5 times of fibrin glue. Besides, the mechanical performance of in-situ PL-CAT/PAAM hydrogel was explored and the results showed that the hydrogel exhibited high compressive strength (0.47 MPa at 85% strain). Most importantly, the blood loss of wound treated with PL-CAT/PAAM hydrogel powders was 1/7 of untreated group, indicating the hydrogel's excellent hemostatic effect. And the cytotoxicity studies indicated that the PL-CAT/PAAM hydrogel had low toxicity. To summarize, this hydrogel could be a potential hemostatic material in emergency situations.


Subject(s)
Acrylic Resins/chemistry , Adhesives/chemical synthesis , Catechols/chemistry , Hemostatics/chemical synthesis , Hydrogels/chemical synthesis , Polylysine/chemistry , Adhesives/pharmacology , Animals , Blood Cells/drug effects , Cell Line , Cells, Cultured , Fibroblasts/drug effects , Hemostatics/pharmacology , Hydrogels/pharmacology , Hydrogen Bonding , Mice , Rats , Tensile Strength
12.
Biomed Pharmacother ; 139: 111718, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34243619

ABSTRACT

BACKGROUND: The field bean (Vicia faba) is a valuable fodder plant of the Fabaceae family, grown as a main crop for its seed yield. Its phytochemical profile is characterized by the presence of a range of compounds with various biological activities. PURPOSE: The present study investigates the phytochemical profile of the extract from mature seeds of Vicia faba var. minor and examines its impact on preventing oxidative damage to various lipids, protein and DNA molecules in vitro. METHODS: Human plasma was treated with H2O2/Fe (an OH. donor) to induce oxidative damage to lipids and proteins, and the plant extract was then added. As oxidative stress may influence the biological activity of plasma, e.g. coagulation, and influence cardiovascular disease, the study also examined the effect of the plant extract on coagulation and monoamine oxidase activity (MAO, EC 1.4.3.4). RESULTS: The tested extract exerted a protective effect on plasma lipids and proteins treated with H2O2/Fe. However, while it appears to effectively protect the DNA in peripheral blood mononuclear cells from oxidative damage, it did not induce changes in the coagulation process, and significantly reduced MAO activity when applied at 1, 5, and 10 µg/mL. It is possible that the observed antioxidant potential may be due to the complex chemical composition of the extract: the phytochemical profile demonstrated a range of phenolic compounds, including catechins. CONCLUSION: Our findings indicate that extract from mature seeds of V. faba var. minor may be a promising source of antioxidants in multiple applications, including diseases associated with oxidative stress; however, more studies based on in vitro and in vivo models are needed to determine its biological properties.


Subject(s)
Antioxidants/physiology , Blood Cells/drug effects , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Seeds/chemistry , Vicia faba/chemistry , Humans , Leukocytes, Mononuclear/drug effects , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Phenols/pharmacology
13.
Mol Divers ; 25(3): 1585-1596, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34196933

ABSTRACT

Chemical-induced hematotoxicity is an important concern in the drug discovery, since it can often be fatal when it happens. It is quite useful for us to give special attention to chemicals which can cause hematotoxicity. In the present study, we focused on in silico prediction of chemical-induced hematotoxicity with machine learning (ML) and deep learning (DL) methods. We collected a large data set contained 632 hematotoxic chemicals and 1525 approved drugs without hematotoxicity. Computational models were built using several different machine learning and deep learning algorithms integrated on the Online Chemical Modeling Environment (OCHEM). Based on the three best individual models, a consensus model was developed. It yielded the prediction accuracy of 0.83 and balanced accuracy of 0.77 on external validation. The consensus model and the best individual model developed with random forest regression and classification algorithm (RFR) and QNPR descriptors were made available at https://ochem.eu/article/135149 , respectively. The relevance of 8 commonly used molecular properties and chemical-induced hematotoxicity was also investigated. Several molecular properties have an obvious differentiating effect on chemical-induced hematotoxicity. Besides, 12 structural alerts responsible for chemical hematotoxicity were identified using frequency analysis of substructures from Klekota-Roth fingerprint. These results should provide meaningful knowledge and useful tools for hematotoxicity evaluation in drug discovery and environmental risk assessment.


Subject(s)
Cheminformatics/methods , Deep Learning , Drug Discovery/methods , Drug-Related Side Effects and Adverse Reactions , Machine Learning , Algorithms , Blood Cells/drug effects , Databases, Chemical , Humans , Models, Molecular , Quantitative Structure-Activity Relationship , ROC Curve , Reproducibility of Results
14.
Pak J Pharm Sci ; 34(1(Supplementary)): 337-343, 2021 Jan.
Article in English | MEDLINE | ID: mdl-34275859

ABSTRACT

Most clinical investigations about the impact of nanoparticles on cells and tissues show that nanoparticles may enter the human body by means of respiratory tracts. Humans, animals, plants and environments are continually presented to a wide scope of business items containing silver nanoparticles (Ag NPs) in their piece. Ag NPs, utilized in various consumer products as room showers, surface cleaners, wound dressings, food storage containers and many textiles. The current examination planned to explore the defensive role of Avenanthramide-C (Avns) contrary to the lung toxicity initiated by Ag NPs injection in rats. 40 male Wistar rats were separated into 4 groups (Gp1, control; Gp2, Avns; Gp3, Ag NPs; Gp4, Ag NPs+Avns). Current results revealed that; Ag NPs induced a significant depletion in RBCs count, hemoglobin, platelets counts and a significant increase in total WBCs, lung injury, cyclooxygenase-2 (COX2) and TNFα expressions as compared to control. Treatments of Ag NPs with Avenanthramide-C extract (Ag NPs+Avns) improved the lung structure and blood complete pictures as compared to Ag NPs group.


Subject(s)
Blood Cells/drug effects , Lung Injury/pathology , Lung/drug effects , Metal Nanoparticles/adverse effects , Silver/adverse effects , ortho-Aminobenzoates/pharmacology , Animals , Cyclooxygenase 2/drug effects , Cyclooxygenase 2/metabolism , Erythrocyte Count , Hematocrit , Hemoglobins/drug effects , Hemoglobins/metabolism , Leukocyte Count , Lung/pathology , Lung Injury/chemically induced , Platelet Count , Rats , Tumor Necrosis Factor-alpha/drug effects , Tumor Necrosis Factor-alpha/metabolism
15.
Int J Mol Sci ; 22(14)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34299250

ABSTRACT

The 3xTg-AD mouse is a widely used model in the study of Alzheimer's Disease (AD). It has been extensively characterized from both the anatomical and behavioral point of view, but poorly studied at the transcriptomic level. For the first time, we characterize the whole blood transcriptome of the 3xTg-AD mouse at three and six months of age and evaluate how its gene expression is modulated by transcranial direct current stimulation (tDCS). RNA-seq analysis revealed 183 differentially expressed genes (DEGs) that represent a direct signature of the genetic background of the mouse. Moreover, in the 6-month-old 3xTg-AD mice, we observed a high number of DEGs that could represent good peripheral biomarkers of AD symptomatology onset. Finally, tDCS was associated with gene expression changes in the 3xTg-AD, but not in the control mice. In conclusion, this study provides an in-depth molecular characterization of the 3xTg-AD mouse and suggests that blood gene expression can be used to identify new biomarkers of AD progression and treatment effects.


Subject(s)
Alzheimer Disease/genetics , Transcranial Direct Current Stimulation/adverse effects , Transcriptome/genetics , Alzheimer Disease/therapy , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Blood Cells/drug effects , Blood Cells/metabolism , Disease Models, Animal , Gene Expression Profiling/methods , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Exome Sequencing/methods , tau Proteins/metabolism
16.
Int J Mol Sci ; 22(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34071826

ABSTRACT

Major depressive disorder (MDD) is a severe psychiatric condition with key symptoms of low mood and lack of motivation, joy, and pleasure. Recently, the acid sphingomyelinase (ASM)/ceramide system has been implicated in the pathogenesis of MDD. ASM is a lysosomal glycoprotein that catalyzes the hydrolysis of sphingomyelin, an abundant component of membranes, into the bioactive sphingolipid ceramide, which impacts signaling pathways. ASM activity is inhibited by several common antidepressant drugs. Human and murine studies have confirmed that increased ASM activity and ceramide levels are correlated with MDD. To define a molecular marker for treatment monitoring, we investigated the mRNA expression of SMPD1, which encodes ASM, in primary cell culture models, a mouse study, and a human study with untreated MDD patients before and after antidepressive treatment. Our cell culture study showed that a common antidepressant inhibited ASM activity at the enzymatic level and also at the transcriptional level. In a genetically modified mouse line with depressive-like behavior, Smpd1 mRNA expression in dorsal hippocampal tissue was significantly decreased after treatment with a common antidepressant. The large human study showed that SMPD1 mRNA expression in untreated MDD patients decreased significantly after antidepressive treatment. This translational study shows that SMPD1 mRNA expression could serve as a molecular marker for treatment and adherence monitoring of MDD.


Subject(s)
Antidepressive Agents/pharmacology , Biomarkers , Gene Expression Regulation/drug effects , Gene Expression , RNA, Messenger , Sphingomyelin Phosphodiesterase/genetics , Animals , Antidepressive Agents/therapeutic use , Blood Cells/drug effects , Blood Cells/metabolism , Case-Control Studies , Cells, Cultured , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/etiology , Depressive Disorder, Major/metabolism , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Mice , Mice, Transgenic
18.
Parasitol Res ; 120(6): 2135-2148, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33991246

ABSTRACT

Habitat loss, climate change, environmental contaminants, and parasites and pathogens are among the main factors thought to act singly or together in causing amphibian declines. We tested for combined effects of neonicotinoid pesticides and parasites (versus parasites-only) on mortality, growth, and white blood cell profiles of a model amphibian: the northern leopard frog (Rana pipiens). We first exposed infectious stages of frog trematodes (cercariae of Echinostoma spp.) to low and high concentrations of thiamethoxam or clothianidin versus water-only controls. There were no differences in survival of trematode cercariae between treatments. For the main experiment, we exposed tadpoles to clean water versus high concentrations of clothianidin or thiamethoxam for 2 weeks and added trematode cercariae to all tanks after 1 week. Exposure of tadpoles and parasites to high concentrations of thiamethoxam or clothianidin did not affect parasite infection success. Tadpole survival was not different between treatments before or after parasite addition and there were no significant differences in tadpole snout-to-vent lengths or developmental stages between treatments. Tadpoles exposed to thiamethoxam + parasites had smaller widths than parasite-only tadpoles, whereas tadpoles exposed to clothianidin + parasites had higher eosinophil to leukocyte ratios compared to parasite-only tadpoles. Tadpoles of both neonicotinoid + parasite treatments had significantly lower monocyte to leukocyte ratios relative to parasite-only tadpoles. High concentrations of neonicotinoid combined with parasites appear to influence tadpole immune function important for further defense against parasites and pathogens. This work highlights the need for more holistic approaches to ecotoxicity studies, using multiple stressors.


Subject(s)
Blood Cells/drug effects , Neonicotinoids/toxicity , Pesticides/toxicity , Trematoda/pathogenicity , Animals , Blood Cell Count , Blood Cells/pathology , Cercaria/drug effects , Cercaria/pathogenicity , Echinostoma/pathogenicity , Ecotoxicology , Larva/drug effects , Larva/immunology , Larva/parasitology , Rana pipiens , Trematoda/drug effects
19.
Sci Rep ; 11(1): 8226, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33859228

ABSTRACT

Age-related macular degeneration (AMD) is a highly prevalent degenerative disease and a leading cause of vision loss worldwide. Evidence for an inflammatory component in the development of AMD exists, yet the exact mechanisms remain unclear. Bisretinoid N-retinylidene-N-retinylethanolamine (A2E) in retinal pigmental epithelial (RPE) cells, and in extracellular deposits constitutes a hallmark of AMD, but its role in the pathology of AMD is elusive. Here, we tested the hypothesis that A2E is responsible for the heightened inflammatory activity in AMD. To this end, we measured ex vivo mRNA expression of the cytokines TNF-α, IL-6, and IL-10 in whole blood samples after stimulation with A2E in a clinical sample of 27 patients with neovascular AMD and 24 patients with geographic atrophy secondary to AMD. Patients' spouses (n = 30) were included as non-affected controls. After stimulation with A2E, no statistical differences were found in the median expression level of TNF-α, IL-6, IL-10 between the control group, and the neovascular AMD and the geographic atrophy group. Our findings do not support evidence for the hypothesis, that A2E per se contributes to heightened inflammatory activity in AMD.


Subject(s)
Blood Cells/drug effects , Cytokines/metabolism , Macular Degeneration/blood , Retinoids/pharmacology , Aged , Aged, 80 and over , Blood Cells/physiology , Case-Control Studies , Female , Geographic Atrophy/blood , Geographic Atrophy/drug therapy , Geographic Atrophy/metabolism , Geographic Atrophy/pathology , Humans , In Vitro Techniques , Inflammation Mediators/metabolism , Lipopolysaccharides , Macular Degeneration/drug therapy , Macular Degeneration/metabolism , Macular Degeneration/pathology , Male , Retinoids/therapeutic use
20.
BMC Pharmacol Toxicol ; 22(1): 19, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33827703

ABSTRACT

BACKGROUND: Arsenic poisoning affects millions of people. The inorganic forms of arsenic are more toxic. Treatment for arsenic poisoning relies on chelation of extracellularly circulating arsenic molecules by 2,3-dimecaptosuccinic acid (DMSA). As a pharmacological intervention, DMSA is unable to chelate arsenic molecules from intracellular spaces. The consequence is continued toxicity and cell damage in the presence of DMSA. A two-pronged approach that removes extracellular arsenic, while protecting from the intracellular arsenic would provide a better pharmacotherapeutic outcome. In this study, Coenzyme Q10 (CoQ10), which has been shown to protect from intracellular organic arsenic, was administered separately or with DMSA; following oral exposure to sodium meta-arsenite (NaAsO2) - a very toxic trivalent form of inorganic arsenic. The aim was to determine if CoQ10 alone or when co-administered with DMSA would nullify arsenite-induced toxicity in mice. METHODS: Group one represented the control; the second group was treated with NaAsO2 (15 mg/kg) daily for 30 days, the third, fourth and fifth groups of mice were given NaAsO2 and treated with 200 mg/kg CoQ10 (30 days) and 50 mg/kg DMSA (5 days) either alone or in combination. RESULTS: Administration of CoQ10 and DMSA resulted in protection from arsenic-induced suppression of RBCs, haematocrit and hemoglobin levels. CoQ10 and DMSA protected from arsenic-induced alteration of WBCs, basophils, neutrophils, monocytes, eosinophils and platelets. Arsenite-induced dyslipidemia was nullified by administration of CoQ10 alone or in combination with DMSA. Arsenite induced a drastic depletion of the liver and brain GSH; that was significantly blocked by CoQ10 and DMSA alone or in combination. Exposure to arsenite resulted in significant elevation of liver and kidney damage markers. The histological analysis of respective organs confirmed arsenic-induced organ damage, which was ameliorated by CoQ10 alone or when co-administered with DMSA. When administered alone, DMSA did not prevent arsenic-driven tissue damage. CONCLUSIONS: Findings from this study demonstrate that CoQ10 and DMSA separately or in a combination, significantly protect against arsenic-driven toxicity in mice. It is evident that with further pre-clinical and clinical studies, an adjunct therapy that incorporates CoQ10 alongside DMSA may find applications in nullifying arsenic-driven toxicity.


Subject(s)
Antidotes/therapeutic use , Arsenic Poisoning/drug therapy , Arsenites/toxicity , Chelating Agents/therapeutic use , Protective Agents/therapeutic use , Sodium Compounds/toxicity , Succimer/therapeutic use , Ubiquinone/analogs & derivatives , Animals , Arsenic Poisoning/blood , Arsenic Poisoning/metabolism , Arsenic Poisoning/pathology , Blood Cells/drug effects , Brain/drug effects , Brain/metabolism , Brain/pathology , Drug Therapy, Combination , Glutathione/metabolism , Hematocrit , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Mice , Ubiquinone/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...