Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27.615
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1345293, 2024.
Article in English | MEDLINE | ID: mdl-38726343

ABSTRACT

Objective: The activation of platelets in individuals with type 2 diabetes mellitus (T2DM) triggers inflammation and hemodynamic abnormalities, contributing to the development of diabetic kidney disease (DKD). Despite this, research into the relationship between plateletcrit (PCT) levels and DKD is sparse, with inconsistent conclusions drawn regarding the connection between various platelet parameters and DKD. This highlights the necessity for comprehensive, large-scale population studies. Therefore, our objective is to explore the association between PCT levels and various platelet parameters in relation to DKD. Methods: In this cross-sectional study, hematological parameter data were collected from a cohort of 4,302 hospitalized Chinese patients. We analyzed the relationships between PCT, platelet count (PLT), mean platelet volume (MPV), platelet distribution width (PDW), platelet large cell ratio (P-LCR), and DKD, along with the urinary albumin-to-creatinine ratio (UACR), and estimated glomerular filtration rate (eGFR). Receiver operating characteristic (ROC) curve analysis was conducted to evaluate the diagnostic potential of these parameters. Results: DKD patients exhibited significantly higher PCT levels compared to those without DKD. Multivariate regression analysis identified elevated PCT and PLT levels as potential independent risk factors for both DKD and UACR, while lower MPV levels might serve as independent protective factors for eGFR. The areas under the ROC curve for PCT in relation to DKD and UACR (≥30 mg/g) were 0.523 and 0.526, respectively. The area under the ROC curve for PLT in relation to UACR (≥30 mg/g) was 0.523. Conclusion: PCT demonstrates a weak diagnostic value for T2DM patients at risk of developing DKD and experiencing proteinuria, and PLT shows a similarly modest diagnostic utility for detecting proteinuria. These insights contribute to a deeper understanding of the complex dynamics involved in DKD. Additionally, incorporating these markers into routine clinical assessments could enhance risk stratification, facilitating early interventions and personalized management strategies.


Subject(s)
Blood Platelets , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Humans , Cross-Sectional Studies , Male , Female , Diabetic Nephropathies/blood , Diabetic Nephropathies/epidemiology , Diabetic Nephropathies/etiology , Middle Aged , Platelet Count , Prevalence , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/epidemiology , Blood Platelets/metabolism , Blood Platelets/pathology , Aged , Mean Platelet Volume , Glomerular Filtration Rate , Risk Factors , Adult , Biomarkers/blood
2.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732019

ABSTRACT

Thrombosis is the pathological clot formation under abnormal hemodynamic conditions, which can result in vascular obstruction, causing ischemic strokes and myocardial infarction. Thrombus growth under moderate to low shear (<1000 s-1) relies on platelet activation and coagulation. Thrombosis at elevated high shear rates (>10,000 s-1) is predominantly driven by unactivated platelet binding and aggregating mediated by von Willebrand factor (VWF), while platelet activation and coagulation are secondary in supporting and reinforcing the thrombus. Given the molecular and cellular level information it can access, multiscale computational modeling informed by biology can provide new pathophysiological mechanisms that are otherwise not accessible experimentally, holding promise for novel first-principle-based therapeutics. In this review, we summarize the key aspects of platelet biorheology and mechanobiology, focusing on the molecular and cellular scale events and how they build up to thrombosis through platelet adhesion and aggregation in the presence or absence of platelet activation. In particular, we highlight recent advancements in multiscale modeling of platelet biorheology and mechanobiology and how they can lead to the better prediction and quantification of thrombus formation, exemplifying the exciting paradigm of digital medicine.


Subject(s)
Blood Platelets , Hemostasis , Thrombosis , Humans , Thrombosis/metabolism , Blood Platelets/metabolism , Hemostasis/physiology , Platelet Activation , Animals , Platelet Adhesiveness , Platelet Aggregation
3.
Nat Commun ; 15(1): 3297, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740748

ABSTRACT

Despite abundant evidence demonstrating that platelets foster metastasis, anti-platelet agents have low therapeutic potential due to the risk of hemorrhages. In addition, whether platelets can regulate metastasis at the late stages of the disease remains unknown. In this study, we subject syngeneic models of metastasis to various thrombocytopenic regimes to show that platelets provide a biphasic contribution to metastasis. While potent intravascular binding of platelets to tumor cells efficiently promotes metastasis, platelets further support the outgrowth of established metastases via immune suppression. Genetic depletion and pharmacological targeting of the glycoprotein VI (GPVI) platelet-specific receptor in humanized mouse models efficiently reduce the growth of established metastases, independently of active platelet binding to tumor cells in the bloodstream. Our study demonstrates therapeutic efficacy when targeting animals bearing growing metastases. It further identifies GPVI as a molecular target whose inhibition can impair metastasis without inducing collateral hemostatic perturbations.


Subject(s)
Blood Platelets , Neoplasm Metastasis , Platelet Membrane Glycoproteins , Animals , Blood Platelets/metabolism , Blood Platelets/drug effects , Humans , Mice , Platelet Membrane Glycoproteins/metabolism , Platelet Membrane Glycoproteins/genetics , Cell Line, Tumor , Female , Mice, Inbred C57BL
4.
Sci Rep ; 14(1): 10894, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740817

ABSTRACT

This study evaluated the association of atherogenic index of plasma (AIP) with platelet reactivity and clinical outcomes according to acute myocardial infarction (AMI). The composite of 3-year adverse outcomes of all-cause death, myocardial infarction, and cerebrovascular accident was evaluated in 10,735 patients after successful percutaneous coronary intervention with drug-eluting stents. AIP was defined as the base 10 logarithm of the ratio of triglyceride to high-density lipoprotein cholesterol concentration. High platelet reactivity (HPR) was defined as ≥ 252 P2Y12 reactivity unit. An increase of AIP (per-0.1 unit) was related to the decreased risk of HPR [odds ratio (OR) 0.97, 95% confidence interval (CI) 0.96-0.99; P = 0.001] in non-AMI patients, not in AMI patients (OR 0.98, 95% CI 0.96-1.01; P = 0.138). The HPR was associated with the increased risk of composite outcomes in both non-AMI and AMI patients (all-P < 0.05). AIP levels were not independently associated with the risk of composite outcomes in both patients with non-AMI and AMI. In conclusion, an inverse association between AIP and the risk of HPR was observed in patients with non-AMI. This suggests that the association between plasma atherogenicity and platelet reactivity may play a substantial role in the development of AMI.Trial registration: NCT04734028.


Subject(s)
Atherosclerosis , Blood Platelets , Myocardial Infarction , Humans , Myocardial Infarction/blood , Male , Female , Middle Aged , Aged , Blood Platelets/metabolism , Atherosclerosis/blood , Percutaneous Coronary Intervention , Risk Factors , Triglycerides/blood , Cholesterol, HDL/blood , Drug-Eluting Stents , Platelet Activation
5.
Biomed Khim ; 70(2): 99-108, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38711409

ABSTRACT

Platelet functional activity was assessed in healthy volunteers (HV, n=92), patients with stable angina pectoris (SA, n=42) and acute coronary syndrome (ACS, n=73), treated with acetylsalicylic acid (ASA) + clopidogrel and ASA + ticagrelor, respectively. In all HV and patients we have compared parameters of platelet aggregation (maximum light transmission and velocity, Tmax and Vmax) and parameters, characterizing exposure of platelet activation markers, evaluated by flow cytometry. HV platelets were activated by 10 µM, 1 µM TRAP, and 20 µM, 5 µM, 2.5 µM ADP; patient platelets were activated by 10 µM TRAP and by 20 µM and 5 µM ADP. Strong and significant correlations between the aggregation and flow cytometry parameters (the r correlation coefficient from 0.4 up to >0.6) most frequently were registered in HV platelet during activation by 1 µM TRAP and in SA patients during platelet activation by 20 µM and 5 µM ADP. However, in many other cases these correlations were rather weak (r < 0.3) and sometimes statistically insignificant. In HV the differences in PAC-1 binding parameters between platelets activated by 10 µM TRAP (the strongest agonist) and all ADP concentrations were negligible (≤ 10%), while CD62P binding (at all ADP concentrations) and LTA parameters for (5 µM and 2.5 µM ADP) were significantly lower (by 40-60%). Antiplatelet therapy in patients decreased all parameters as compared to HV, but to varying extents. For 10 µM TRAP the MFI index for PAC-1 binding (40-50% decrease) and for both ADP concentrations the Tmax values (60-85% decrease) appeared to be the most sensitive in comparison with the other parameters that decreased to a lesser extent. The data obtained indicate a possibility of inconsistency between different LTA and flow cytometry parameters in assessing platelet activity and efficacy of antiplatelet drugs.


Subject(s)
Acute Coronary Syndrome , Aspirin , Blood Platelets , Clopidogrel , Flow Cytometry , Platelet Aggregation Inhibitors , Platelet Aggregation , Humans , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation/drug effects , Male , Aspirin/pharmacology , Aspirin/therapeutic use , Female , Blood Platelets/drug effects , Blood Platelets/metabolism , Middle Aged , Clopidogrel/pharmacology , Aged , Acute Coronary Syndrome/drug therapy , Acute Coronary Syndrome/blood , Adult , Ticagrelor/pharmacology , Ticagrelor/therapeutic use , Platelet Function Tests/methods , Platelet Activation/drug effects , Angina, Stable/drug therapy , Angina, Stable/blood , Adenosine Diphosphate/pharmacology
6.
Platelets ; 35(1): 2344512, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38722090

ABSTRACT

The last decade has seen increasing use of advanced imaging techniques in platelet research. However, there has been a lag in the development of image analysis methods, leaving much of the information trapped in images. Herein, we present a robust analytical pipeline for finding and following individual platelets over time in growing thrombi. Our pipeline covers four steps: detection, tracking, estimation of tracking accuracy, and quantification of platelet metrics. We detect platelets using a deep learning network for image segmentation, which we validated with proofreading by multiple experts. We then track platelets using a standard particle tracking algorithm and validate the tracks with custom image sampling - essential when following platelets within a dense thrombus. We show that our pipeline is more accurate than previously described methods. To demonstrate the utility of our analytical platform, we use it to show that in vivo thrombus formation is much faster than that ex vivo. Furthermore, platelets in vivo exhibit less passive movement in the direction of blood flow. Our tools are free and open source and written in the popular and user-friendly Python programming language. They empower researchers to accurately find and follow platelets in fluorescence microscopy experiments.


In this paper we describe computational tools to find and follow individual platelets in blood clots recorded with fluorescence microscopy. Our tools work in a diverse range of conditions, both in living animals and in artificial flow chamber models of thrombosis. Our work uses deep learning methods to achieve excellent accuracy. We also provide tools for visualizing data and estimating error rates, so you don't have to just trust the output. Our workflow measures platelet density, shape, and speed, which we use to demonstrate differences in the kinetics of clotting in living vessels versus a synthetic environment. The tools we wrote are open source, written in the popular Python programming language, and freely available to all. We hope they will be of use to other platelet researchers.


Subject(s)
Blood Platelets , Deep Learning , Thrombosis , Blood Platelets/metabolism , Thrombosis/blood , Humans , Image Processing, Computer-Assisted/methods , Animals , Mice , Algorithms
7.
BMC Oral Health ; 24(1): 527, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702671

ABSTRACT

BACKGROUND: This study aimed to assess and compare the concentrations of growth factors, white blood cells (WBCs), and platelets in injectable platelet-rich fibrin (i-PRF) derived from people with healthy periodontal conditions and those with chronic periodontitis. METHODS: Venous blood samples were obtained from 30 patients diagnosed with chronic periodontitis (test group) and 30 participants with healthy periodontal conditions (control group). The i-PRF was then acquired from centrifuged blood. The growth factors (VEGF, IGF-1, TGF-ß1, PDGF-BB and EGF) released from the i-PRF samples were compared between groups with ELISA testing. The amounts of WBCs and platelets were also compared. RESULTS: No significant differences in the concentrations of growth factors were found between the groups (the mean values for the control and test groups were, respectively: IGF: 38.82, 42.46; PDGF: 414.25, 466.28; VEGF: 375.69, 412.18; TGF-ß1: 21.50, 26.21; EGF: 138.62, 154.82). The test group exhibited a significantly higher WBC count than the control group (8.80 vs. 6.60, respectively). However, the platelet count did not show a statistically significant difference between the groups (control group 242.0 vs. test group 262.50). No significant correlation was observed between WBC count and growth factor level in either group. CONCLUSIONS: The growth factor levels in i-PRFs did not exhibit significant difference between the two groups. This suggests that the levels of these growth factors may be unaffected by the periodontal disease.


Subject(s)
Chronic Periodontitis , Insulin-Like Growth Factor I , Intercellular Signaling Peptides and Proteins , Platelet-Rich Fibrin , Transforming Growth Factor beta1 , Vascular Endothelial Growth Factor A , Humans , Chronic Periodontitis/blood , Pilot Projects , Male , Female , Adult , Middle Aged , Vascular Endothelial Growth Factor A/blood , Insulin-Like Growth Factor I/analysis , Intercellular Signaling Peptides and Proteins/blood , Intercellular Signaling Peptides and Proteins/analysis , Transforming Growth Factor beta1/blood , Epidermal Growth Factor/blood , Epidermal Growth Factor/analysis , Leukocyte Count , Becaplermin/blood , Case-Control Studies , Blood Platelets/metabolism , Injections
8.
Neurol India ; 72(2): 285-291, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38691471

ABSTRACT

BACKGROUND: Microparticles (MPs) have been implicated in thrombosis and endothelial dysfunction. Their involvement in early coagulopathy and in worsening of outcomes in isolated severe traumatic brain injury (sTBI) patients remains ill defined. OBJECTIVE: We sought to quantify the circulatory MP subtypes derived from platelets (PMPs; CD42), endothelial cells (EMPs; CD62E), and those bearing tissue factor (TFMP; CD142) and analyze their correlation with early coagulopathy, thrombin generation, and in-hospital mortality. MATERIALS AND METHODS: Prospective screening of sTBI patients was done. Blood samples were collected before blood and fluid transfusion. MP enumeration and characterization were performed using flow cytometry, and thrombin-antithrombin complex (TAT) levels were determined using enzyme-linked immunosorbent assay (ELISA). Circulating levels of procoagulant MPs were compared between isolated sTBI patients and age- and gender-matched healthy controls (HC). Patients were stratified according to their PMP, EMP, and TFMP levels, respectively (high ≥HC median and low < HC median). RESULTS: Isolated sTBI resulted in an increased generation of PMPs (456.6 [228-919] vs. 249.1 [198.9-404.5]; P = 0.01) and EMPs (301.5 [118.8-586.7] vs. 140.9 [124.9-286]; P = 0.09) compared to HCs. Also, 5.3% of MPs expressed TF (380 [301-710]) in HCs, compared to 6.6% MPs (484 [159-484]; P = 0.87) in isolated sTBI patients. Early TBI-associated coagulopathy (TBI-AC) was seen in 50 (41.6%) patients. PMP (380 [139-779] vs. 523.9 [334-927]; P = 0.19) and EMP (242 [86-483] vs. 344 [168-605]; P = 0.81) counts were low in patients with TBI-AC, compared to patients without TBI-AC. CONCLUSION: Our results suggest that enhanced cellular activation and procoagulant MP generation are predominant after isolated sTBI. TBI-AC was associated with low plasma PMPs count compared to the count in patients without TBI-AC. Low PMPs may be involved with the development of TBI-AC.


Subject(s)
Blood Coagulation Disorders , Brain Injuries, Traumatic , Cell-Derived Microparticles , Humans , Brain Injuries, Traumatic/blood , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/mortality , Cell-Derived Microparticles/metabolism , Female , Male , Adult , Blood Coagulation Disorders/etiology , Blood Coagulation Disorders/blood , Middle Aged , Prospective Studies , Thromboplastin/metabolism , Blood Platelets/metabolism , Hospital Mortality , Endothelial Cells/metabolism
9.
Front Immunol ; 15: 1375931, 2024.
Article in English | MEDLINE | ID: mdl-38736892

ABSTRACT

Objective: This study aimed to establish an effective prognostic model based on triglyceride and inflammatory markers, including neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR), and platelet-to-lymphocyte ratio (PLR), to predict overall survival (OS) in patients with nasopharyngeal carcinoma (NPC). Additionally, we aimed to explore the interaction and mediation between these biomarkers in their association with OS. Methods: A retrospective review was conducted on 259 NPC patients who had blood lipid markers, including triglyceride and total cholesterol, as well as parameters of peripheral blood cells measured before treatment. These patients were followed up for over 5 years, and randomly divided into a training set (n=155) and a validation set (n=104). The triglyceride-inflammation (TI) score was developed using the random survival forest (RSF) algorithm. Subsequently, a nomogram was created. The performance of the prognostic model was measured by the concordance index (C-index), time-dependent receiver operating characteristic (ROC) curve, and decision curve analysis (DCA). The interaction and mediation between the biomarkers were further analyzed. Bioinformatics analysis based on the GEO dataset was used to investigate the association between triglyceride metabolism and immune cell infiltration. Results: The C-index of the TI score was 0.806 in the training set, 0.759 in the validation set, and 0.808 in the entire set. The area under the curve of time-dependent ROC of TI score in predicting survival at 1, 3, and 5 years were 0.741, 0.847, and 0.871 respectively in the training set, and 0.811, 0.837, and 0.758 in the validation set, then 0.771, 0.848, and 0.862 in the entire set, suggesting that TI score had excellent performance in predicting OS in NPC patients. Patients with stage T1-T2 or M0 had significantly lower TI scores, NLR, and PLR, and higher LMR compared to those with stage T3-T3 or M1, respectively. The nomogram, which integrated age, sex, clinical stage, and TI score, demonstrated good clinical usefulness and predictive ability, as evaluated by the DCA. Significant interactions were found between triglyceride and NLR and platelet, but triglyceride did not exhibit any medicating effects in the inflammatory markers. Additionally, NPC tissues with active triglyceride synthesis exhibited high immune cell infiltration. Conclusion: The TI score based on RSF represents a potential prognostic factor for NPC patients, offering convenience and economic advantages. The interaction between triglyceride and NLR may be attributed to the effect of triglyceride metabolism on immune response.


Subject(s)
Nasopharyngeal Carcinoma , Nomograms , Triglycerides , Humans , Male , Female , Retrospective Studies , Triglycerides/blood , Nasopharyngeal Carcinoma/mortality , Nasopharyngeal Carcinoma/immunology , Nasopharyngeal Carcinoma/diagnosis , Nasopharyngeal Carcinoma/blood , Middle Aged , Prognosis , Adult , Nasopharyngeal Neoplasms/mortality , Nasopharyngeal Neoplasms/diagnosis , Nasopharyngeal Neoplasms/immunology , Nasopharyngeal Neoplasms/blood , Inflammation/immunology , Inflammation/blood , Aged , Biomarkers, Tumor/blood , ROC Curve , Neutrophils/immunology , Neutrophils/metabolism , Blood Platelets/metabolism , Blood Platelets/immunology , Lymphocytes/immunology , Lymphocytes/metabolism
10.
Signal Transduct Target Ther ; 9(1): 110, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724491

ABSTRACT

Previous studies have shown that low platelet count combined with high plasma total homocysteine (tHcy) increased stroke risk and can be lowered by 73% with folic acid. However, the combined role of other platelet activation parameters and the methylenetetrahydrofolate reductase (MTHFR) C677T genotypes on stroke risk and folic acid treatment benefit remain to be examined. This study aimed to investigate if platelet activation parameters and MTHFR genotypes jointly impact folic acid treatment efficacy in first stroke prevention. Data were derived from the China Stroke Primary Prevention Trial. This study includes a total of 11,185 adult hypertensive patients with relevant platelet activation parameters and MTHFR genotype data. When simultaneously considering both platelet activation parameters (plateletcrit, platelet count, mean platelet volume, platelet distribution width) and MTHFR genotypes, patients with both low plateletcrit (Q1) and the TT genotype had the highest stroke incidence rate (5.6%) in the enalapril group. This subgroup significantly benefited from folic acid treatment, with a 66% reduction in first stroke (HR: 0.34; 95% CI: 0.14-0.82; p = 0.016). Consistently, the subgroup with low plateletcrit (Q1) and the CC/CT genotype also benefited from folic acid treatment (HR: 0.40; 95% CI: 0.23-0.70; p = 0.001). In Chinese hypertensive adults, low plateletcrit can identify those who may greatly benefit from folic acid treatment, in particular, those with the TT genotype, a subpopulation known to have the highest stroke risk.


Subject(s)
Folic Acid , Genotype , Methylenetetrahydrofolate Reductase (NADPH2) , Stroke , Humans , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Folic Acid/administration & dosage , Folic Acid/genetics , Stroke/genetics , Stroke/prevention & control , Male , Female , Middle Aged , Aged , Hypertension/genetics , Platelet Activation/genetics , Platelet Activation/drug effects , China/epidemiology , Blood Platelets/metabolism , Blood Platelets/drug effects , Platelet Count , Adult
11.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732081

ABSTRACT

Flavonoid aglycones are secondary plant metabolites that exhibit a broad spectrum of pharmacological activities, including anti-inflammatory, antioxidant, anticancer, and antiplatelet effects. However, the precise molecular mechanisms underlying their inhibitory effect on platelet activation remain poorly understood. In this study, we applied flow cytometry to analyze the effects of six flavonoid aglycones (luteolin, myricetin, quercetin, eriodictyol, kaempferol, and apigenin) on platelet activation, phosphatidylserine externalization, formation of reactive oxygen species, and intracellular esterase activity. We found that these compounds significantly inhibit thrombin-induced platelet activation and decrease formation of reactive oxygen species in activated platelets. The tested aglycones did not affect platelet viability, apoptosis induction, or procoagulant platelet formation. Notably, luteolin, myricetin, quercetin, and apigenin increased thrombin-induced thromboxane synthase activity, which was analyzed by a spectrofluorimetric method. Our results obtained from Western blot analysis and liquid chromatography-tandem mass spectrometry demonstrated that the antiplatelet properties of the studied phytochemicals are mediated by activation of cyclic nucleotide-dependent signaling pathways. Specifically, we established by using Förster resonance energy transfer that the molecular mechanisms are, at least partly, associated with the inhibition of phosphodiesterases 2 and/or 5. These findings underscore the therapeutic potential of flavonoid aglycones for clinical application as antiplatelet agents.


Subject(s)
Blood Platelets , Flavonoids , Platelet Activation , Platelet Aggregation Inhibitors , Reactive Oxygen Species , Flavonoids/pharmacology , Humans , Platelet Aggregation Inhibitors/pharmacology , Platelet Activation/drug effects , Blood Platelets/metabolism , Blood Platelets/drug effects , Reactive Oxygen Species/metabolism , Apigenin/pharmacology , Quercetin/pharmacology , Luteolin/pharmacology , Signal Transduction/drug effects , Kaempferols/pharmacology , Thrombin/metabolism , Flavanones
12.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732108

ABSTRACT

Platelets are metabolically active, anucleated and small circulating cells mainly responsible for the prevention of bleeding and maintenance of hemostasis. Previous studies showed that platelets mitochondrial content, function, and energy supply change during several diseases such as HIV/AIDS, COVID-19, pulmonary arterial hypertension, and in preeclampsia during pregnancy. These changes in platelets contributed to the severity of diseases and mortality. In our previous studies, we have shown that the seahorse-based cellular stress assay (CSA) parameters are crucial to the understanding of the mitochondrial performance in peripheral blood mononuclear cells (PBMCS). Moreover, the results of CSA parameters were significantly influenced by the PBMC preparation methods. In this study, we assessed the correlation of CSA parameters and intracellular ATP content in platelets and evaluated the effects of platelet preparation methods on the results of CSA parameters and intracellular ATP content. We compared the results of CSA parameters and intracellular ATP content in platelets isolated by density centrifugation with Optiprep and simple centrifugation of blood samples without Optiprep. Platelets isolated by centrifugation with Optiprep showed a higher spare capacity, basal respiration, and maximal respiration than those isolated without Optiprep. There was a clear correlation between basal respiration and maximal respiration, and the whole-ATP content in both isolation methods. Moreover, a positive correlation was observed between the relative spare capacity and whole-cell ATP content. In conclusion, the results of seahorse-based CSA parameters and intracellular ATP content in platelets are markedly influenced by the platelet isolation methods employed. The results of basal respiration and maximal respiration are hallmarks of cellular activity in platelets, and whole-cell ATP content is a potential hint for basic platelet viability. We recommend further studies to evaluate the role of CSA parameters and intracellular ATP content in platelets as biomarkers for the diagnosis and prediction of disease states.


Subject(s)
Adenosine Triphosphate , Blood Platelets , Humans , Blood Platelets/metabolism , Adenosine Triphosphate/metabolism , Adult , Mitochondria/metabolism , Stress, Physiological , Female , Cell Separation/methods , Leukocytes, Mononuclear/metabolism , Male , Middle Aged
13.
Int J Mol Sci ; 25(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38732176

ABSTRACT

Platelets play an important role in hemostasis, and a low platelet count usually increases the risk of bleeding. Conditions in which thrombosis occurs despite low platelet counts are referred to as thrombosis with thrombocytopenia syndrome, including heparin-induced thrombocytopenia, vaccine-induced immune thrombotic thrombocytopenia, paroxysmal nocturnal hemoglobinuria, antiphospholipid syndrome, thrombotic microangiopathy (TMA), and disseminated intravascular coagulation. TMA includes thrombotic thrombocytopenic purpura, Shiga toxin-producing Escherichia coli-associated hemolytic uremic syndrome (HUS), and atypical HUS. Patients with these pathologies present with thrombosis and consumptive thrombocytopenia associated with the activation of platelets and the coagulation system. Treatment varies from disease to disease, and many diseases have direct impacts on mortality and organ prognosis if therapeutic interventions are not promptly implemented. Underlying diseases and the results of physical examinations and general laboratory tests as part of a thorough workup for patients should promptly lead to therapeutic intervention before definitive diagnosis. For some diseases, the diagnosis and initial treatment must proceed in parallel. Utilization of not only laboratory tests but also various scoring systems is important for validating therapeutic interventions based on clinical information.


Subject(s)
Thrombocytopenia , Thrombosis , Humans , Thrombocytopenia/diagnosis , Thrombosis/etiology , Blood Platelets/metabolism , Platelet Count , Heparin/therapeutic use , Thrombotic Microangiopathies/diagnosis , Thrombotic Microangiopathies/etiology , Thrombotic Microangiopathies/blood
14.
Biochem Biophys Res Commun ; 715: 150004, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38678784

ABSTRACT

Megakaryopoiesis and platelet production is a complex process that is underpotential regulation at multiple stages. Many long non-coding RNAs (lncRNAs) are distributed in hematopoietic stem cells and platelets. lncRNAs may play important roles as key epigenetic regulators in megakaryocyte differentiation and proplatelet formation. lncRNA NORAD can affect cell ploidy by sequestering PUMILIO proteins, although its direct effect on megakaryocyte differentiation and thrombopoiesis is still unknown. In this study, we demonstrate NORAD RNA is highly expressed in the cytoplasm during megakaryocyte differentiation. Interestingly, we identified for the first time that NORAD has a strong inhibitory effect on megakaryocyte differentiation and proplatelet formation from cultured megakaryocytes. DUSP6/ERK1/2 pathway is activated in response to NORAD knockdown during megakaryocytopoiesis, which is achieved by sequestering PUM2 proteins. Finally, compared with the wild-type control mice, NORAD knockout mice show a faster platelet recovery after severe thrombocytopenia induced by 6 Gy total body irradiation. These findings demonstrate lncRNA NORAD has a key role in regulating megakaryocyte differentiation and thrombopoiesis, which provides a promising molecular target for the treatment of platelet-related diseases such as severe thrombocytopenia.


Subject(s)
Blood Platelets , Cell Differentiation , Dual Specificity Phosphatase 6 , Megakaryocytes , Mice, Knockout , RNA, Long Noncoding , Thrombopoiesis , Megakaryocytes/metabolism , Megakaryocytes/cytology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , Thrombopoiesis/genetics , Blood Platelets/metabolism , Mice , Dual Specificity Phosphatase 6/metabolism , Dual Specificity Phosphatase 6/genetics , MAP Kinase Signaling System , Thrombocytopenia/genetics , Thrombocytopenia/metabolism , Thrombocytopenia/pathology , Humans , Mice, Inbred C57BL , Cells, Cultured
15.
J Am Heart Assoc ; 13(9): e031819, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38639339

ABSTRACT

BACKGROUND: Although age and body mass index (BMI) significantly affect platelet reactivity units and clinical outcomes after percutaneous coronary intervention, there are limited data on the relationship between high on-treatment platelet reactivity (HPR) and clinical outcomes on age and BMI differences. Thus, we investigated the association of HPR with clinical outcomes according to age and BMI. METHODS AND RESULTS: The study analyzed 11 714 patients who underwent platelet function tests after percutaneous coronary intervention. The primary end point was the occurrence of major adverse cardiac and cerebrovascular events (MACCEs), whereas the secondary end point was major bleeding. HPR was defined as platelet reactivity units ≥252. Patients were categorized by age (<67 years of age or ≥67 years of age) and BMI (≤22.6 kg/m2 or >22.6 kg/m2). Patients <67 years of age with HPR had increases in both MACCEs (adjusted hazard ratio [HR], 1.436 [95% CI, 1.106-1.867]; P=0.007) and major bleeding (adjusted HR, 1.584 [95% CI, 1.095-2.290]; P=0.015) compared with the those with non-HPR, respectively. In patients ≥67 years of age with HPR, there were no differences in MACCEs, but there was a decrease in major bleeding (adjusted HR, 0.721 [95% CI, 0.542-0.959]; P=0.024). Meanwhile, patients with HPR with BMI >22.6 kg/m2 had increases in MACCEs (adjusted HR, 1.387 [95% CI, 1.140-1.688]; P=0.001). No differences were shown in major bleeding. CONCLUSIONS: HPR was linked to an increase in MACCEs or a decrease in major bleeding in patients after percutaneous coronary intervention, depending on age and BMI. This study is the first to observe that clinical outcomes in patients with HPR after percutaneous coronary intervention may vary based on age and BMI. Because the study is observational, the results should be viewed as hypothesis generating and emphasize the need for randomized clinical trials.


Subject(s)
Body Mass Index , Percutaneous Coronary Intervention , Platelet Aggregation Inhibitors , Platelet Function Tests , Humans , Male , Female , Aged , Middle Aged , Age Factors , Platelet Aggregation Inhibitors/therapeutic use , Treatment Outcome , Coronary Artery Disease/blood , Coronary Artery Disease/therapy , Risk Factors , Hemorrhage/chemically induced , Hemorrhage/epidemiology , Retrospective Studies , Blood Platelets/metabolism , Risk Assessment , East Asian People
16.
Cells ; 13(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38667319

ABSTRACT

Platelets are the terminal progeny of megakaryocytes, primarily produced in the bone marrow, and play critical roles in blood homeostasis, clotting, and wound healing. Traditionally, megakaryocytes and platelets are thought to arise from multipotent hematopoietic stem cells (HSCs) via multiple discrete progenitor populations with successive, lineage-restricting differentiation steps. However, this view has recently been challenged by studies suggesting that (1) some HSC clones are biased and/or restricted to the platelet lineage, (2) not all platelet generation follows the "canonical" megakaryocytic differentiation path of hematopoiesis, and (3) platelet output is the default program of steady-state hematopoiesis. Here, we specifically investigate the evidence that in vivo lineage tracing studies provide for the route(s) of platelet generation and investigate the involvement of various intermediate progenitor cell populations. We further identify the challenges that need to be overcome that are required to determine the presence, role, and kinetics of these possible alternate pathways.


Subject(s)
Blood Platelets , Cell Differentiation , Cell Lineage , Hematopoietic Stem Cells , Animals , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Blood Platelets/cytology , Blood Platelets/metabolism , Mice , Megakaryocytes/cytology , Megakaryocytes/metabolism , Hematopoiesis
17.
Cardiovasc Toxicol ; 24(5): 519-526, 2024 May.
Article in English | MEDLINE | ID: mdl-38622332

ABSTRACT

Inflammation plays a key role in the pathogenesis of the coronary slow flow phenomenon (CSFP). The newly developed inflammatory marker, pan-immune-inflammation value (PIV), is associated with adverse cardiovascular events. This study investigated the predictive value of PIV for diagnosing CSFP in comparison to other inflammation-based markers. A total of 214 patients, 109 in the CSFP group and 105 in the normal coronary flow (NCF) group, were retrospectively included in the study. Coronary flow was calculated using the Thrombolysis in Myocardial Infarction frame count method. In addition to PIV, other inflammatory markers such as neutrophil-lymphocyte ratio, platelet-lymphocyte ratio (PLR), and systemic immune-inflammation index (SII) were calculated for the patients. The average age of patients was 50.3 ± 8.4, with a male ratio of 55.1%. Compared to the NCF group, patients in the CSFP group had higher levels of hyperlipidemia, glucose, triglyceride, NLR, PLR, SII, and PIV, while their high-density lipoprotein cholesterol (HDL-C), was lower (p < 0.05). Logistic regression analysis demonstrated that HDL-C, glucose, triglyceride, and PIV were independent predictor factors for CSFP (p < 0.05). PIV is a strong and independent predictor factor for CSFP and superior in predicting CSFP compared to other inflammatory markers.


Subject(s)
Biomarkers , Coronary Circulation , Inflammation Mediators , No-Reflow Phenomenon , Predictive Value of Tests , Humans , Male , Female , Middle Aged , No-Reflow Phenomenon/blood , No-Reflow Phenomenon/diagnosis , No-Reflow Phenomenon/physiopathology , Retrospective Studies , Biomarkers/blood , Inflammation Mediators/blood , Adult , Inflammation/diagnosis , Inflammation/blood , Inflammation/immunology , Neutrophils/immunology , Lymphocyte Count , Coronary Angiography , Lymphocytes/immunology , Platelet Count , Prognosis , Risk Factors , Blood Platelets/metabolism , Blood Flow Velocity
18.
Thromb Res ; 237: 100-107, 2024 May.
Article in English | MEDLINE | ID: mdl-38579511

ABSTRACT

BACKGROUND: Reduced effect of antiplatelet therapy has been reported in patients with ST-segment elevation myocardial infarction (STEMI). Multiple factors may concur to explain this, including increased amount of highly reactive immature platelets. OBJECTIVES: To investigate the association between immature platelets and reactivity determined with multicolour flow cytometry using the SYTO-13 dye in STEMI patients. METHODS: We conducted an observational study of 59 patients with acute STEMI. Blood samples were obtained within 24 h after admission and after loading doses of dual antiplatelet therapy. For comparison, samples were obtained from 50 healthy individuals. Immature platelets and platelet reactivity were investigated using multicolour flow cytometry including the SYTO-13 dye that binds to platelet RNA and thus provides a method for subdividing platelets into immature and mature platelets. Additionally, we assessed platelet aggregation, serum-thromboxane B2 levels and standard immature platelet markers. RESULTS: Immature platelets were more reactive than mature platelets in both STEMI patients and healthy individuals (p-values < 0.05). STEMI patients had lower platelet aggregation and thromboxane B2 levels than healthy individuals. We found a positive association between automatically determined immature platelet markers and CD63 expression on activated platelets (Spearman's rho: 0.27 to 0.58, p-values < 0.05). CONCLUSIONS: Our study shows that immature platelets identified with a multicolour flow cytometric method using the SYTO-13 dye are more reactive than mature platelets in patients with acute STEMI and in healthy individuals. The presence of immature platelets may be important for the overall platelet reactivity, which may have implications for the effect of antiplatelet therapy.


Subject(s)
Blood Platelets , Flow Cytometry , ST Elevation Myocardial Infarction , Humans , ST Elevation Myocardial Infarction/blood , Blood Platelets/metabolism , Flow Cytometry/methods , Male , Female , Middle Aged , Aged , Platelet Aggregation Inhibitors/therapeutic use , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation/drug effects , Platelet Activation/drug effects
19.
J Transl Med ; 22(1): 371, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637802

ABSTRACT

Platelets not only participate in thrombosis and hemostasis but also interact with tumor cells and protect them from mechanical damage caused by hemodynamic shear stress and natural killer cell lysis, thereby promoting their colonization and metastasis to distant organs. Platelets can affect the tumor microenvironment via interactions between platelet-related factors and tumor cells. Metastasis is a key event in cancer-related death and is associated with platelet-related factors in lung, breast, and colorectal cancers. Although the factors that promote platelet expression vary slightly in terms of their type and mode of action, they all contribute to the overall process. Recognizing the correlation and mechanisms between these factors is crucial for studying the colonization of distant target organs and developing targeted therapies for these three types of tumors. This paper reviews studies on major platelet-related factors closely associated with metastasis in lung, breast, and colorectal cancers.


Subject(s)
Colorectal Neoplasms , Thrombosis , Humans , Blood Platelets/metabolism , Hemostasis , Thrombosis/pathology , Colorectal Neoplasms/pathology , Neoplasm Metastasis , Tumor Microenvironment
20.
Platelets ; 35(1): 2327835, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38655673

ABSTRACT

Percutaneous coronary intervention (PCI) patients combined with thrombocytopenia (TP) are usually considered to be at low ischemic risk, receiving less proper antiplatelet therapy. However, recent studies reported a paradoxical phenomenon that PCI patients with TP were prone to experience thrombotic events, while the mechanisms and future treatment remain unclear. We aim to investigate whether inflammation modifies platelet reactivity among these patients. Consecutive 10 724 patients undergoing PCI in Fuwai Hospital were enrolled throughout 2013. High-sensitivity C-reactive protein (hsCRP) ≥2 mg/L was considered inflammatory status. TP was defined as platelet count <150×109/L. High on-treatment platelet reactivity (HTPR) was defined as adenosine diphosphate-induced platelet maximum amplitude of thromboelastogram >47mm. Among 6617 patients finally included, 879 (13.3%) presented with TP. Multivariate logistic regression demonstrated that patients with TP were associated with a lower risk of HTPR (odds ratio [OR] 0.64, 95% confidence interval [CI] 0.53-0.76) than those without TP in the overall cohort. In further analysis, among hsCRP <2 mg/L group, patients with TP exhibited a decreased risk of HTPR (OR 0.53, 95% CI 0.41-0.68); however, in hsCRP ≥2mg/L group, TP patients had a similar risk of HTPR as those without TP (OR 0.83, 95% CI 0.63-1.08). Additionally, these results remain consistent across subgroups, including patients presenting with acute coronary syndrome and chronic coronary syndrome. Inflammation modified the platelet reactivity of PCI patients with TP, providing new insights into the mechanisms of the increased thrombotic risk. Future management for this special population should pay more attention to inflammation status and timely adjustment of antiplatelet therapy in TP patients with inflammation.


What is the context? Recent studies reported a paradoxical phenomenon that percutaneous coronary intervention (PCI) patients with thrombocytopenia (TP) were prone to experience thrombotic events. The potential mechanisms underlying the increased thrombotic risk and how to manage antiplatelet therapy in PCI patients with TP remain unclear.Growing attention has been paid to immunothrombosis. Inflammation is closely associated with high-on treatment platelet reactivity (HTPR) and thrombotic risk.HTPR is an independent risk factor of thrombosis and can provide information for guiding antiplatelet therapy.What is new? This prospective cohort study enrolled 10 724 patients undergoing PCI in Fuwai Hospital (National Center for Cardiovascular Diseases, Beijing, China), with HTPR risk being the study endpoint of interest.We first reported that inflammation significantly modified the platelet reactivity of PCI patients with TP.When hsCRP level <2 mg/L, PCI patients with TP had a decreased risk of HTPR. However, when hsCRP ≥2 mg/L, TP patients had similar HTPR risk as those without TP.HsCRP levels could modify the relationship between TP and HTPR risks both in patients with acute coronary syndrome and chronic coronary syndrome.What is the impact? These results provide insights into potential mechanisms of the increased thrombotic risk in PCI patients with TP. Specifically, inflammation might be involved in the thrombotic risk of PCI patients with TP by modifying the platelet reactivity.As for future management, personalized antiplatelet therapy should be administrated to TP patients with inflammation status.


Subject(s)
Blood Platelets , Inflammation , Percutaneous Coronary Intervention , Thrombocytopenia , Humans , Percutaneous Coronary Intervention/methods , Percutaneous Coronary Intervention/adverse effects , Male , Female , Inflammation/blood , Thrombocytopenia/etiology , Thrombocytopenia/blood , Thrombocytopenia/complications , Blood Platelets/metabolism , Middle Aged , Aged , Platelet Activation , C-Reactive Protein/metabolism , Platelet Count/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...