Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.768
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731858

ABSTRACT

This editorial investigates chronic traumatic encephalopathy (CTE) as a course of Alzheimer's disease (AD). CTE is a debilitating neurodegenerative disease that is the result of repeated mild traumatic brain injury (TBI). Many epidemiological studies show that experiencing a TBI in early or middle life is associated with an increased risk of dementia later in life. Chronic traumatic encephalopathy (CTE) and Alzheimer's disease (AD) present a series of similar neuropathological features that were investigated in this work like recombinant tau into filaments or the accumulation and aggregation of Aß protein. However, these two conditions differ from each other in brain-blood barrier damage. The purpose of this review was to evaluate information about CTE and AD from various articles, focusing especially on new therapeutic possibilities for the improvement in cognitive skills.


Subject(s)
Alzheimer Disease , Chronic Traumatic Encephalopathy , Humans , Alzheimer Disease/complications , Alzheimer Disease/pathology , Alzheimer Disease/etiology , Chronic Traumatic Encephalopathy/pathology , Chronic Traumatic Encephalopathy/complications , tau Proteins/metabolism , Amyloid beta-Peptides/metabolism , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731913

ABSTRACT

Despite combined antiretroviral therapy (cART) limiting HIV replication to undetectable levels in the blood, people living with HIV continue to experience HIV-associated neurocognitive disorder (HAND). HAND is associated with neurocognitive impairment, including motor impairment, and memory loss. HIV has been detected in the brain within 8 days of estimated exposure and the mechanisms for this early entry are being actively studied. Once having entered into the central nervous system (CNS), HIV degrades the blood-brain barrier through the production of its gp120 and Tat proteins. These proteins are directly toxic to endothelial cells and neurons, and propagate inflammatory cytokines by the activation of immune cells and dysregulation of tight junction proteins. The BBB breakdown is associated with the progression of neurocognitive disease. One of the main hurdles for treatment for HAND is the latent pool of cells, which are insensitive to cART and prolong inflammation by harboring the provirus in long-lived cells that can reactivate, causing damage. Multiple strategies are being studied to combat the latent pool and HAND; however, clinically, these approaches have been insufficient and require further revisions. The goal of this paper is to aggregate the known mechanisms and challenges associated with HAND.


Subject(s)
Blood-Brain Barrier , Humans , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , HIV Infections/complications , HIV Infections/virology , HIV Infections/pathology , HIV Infections/metabolism , AIDS Dementia Complex/metabolism , AIDS Dementia Complex/pathology , HIV-1 , Neurocognitive Disorders/etiology , Neurocognitive Disorders/metabolism , Neurocognitive Disorders/pathology , Animals
3.
J Neuroinflammation ; 21(1): 131, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760784

ABSTRACT

BACKGROUND: Sepsis-associated encephalopathy (SAE) causes acute and long-term cognitive deficits. However, information on the prevention and treatment of cognitive dysfunction after sepsis is limited. The neuropeptide orexin-A (OXA) has been shown to play a protective role against neurological diseases by modulating the inflammatory response through the activation of OXR1 and OXR2 receptors. However, the role of OXA in mediating the neuroprotective effects of SAE has not yet been reported. METHODS: A mouse model of SAE was induced using cecal ligation perforation (CLP) and treated via intranasal administration of exogenous OXA after surgery. Mouse survival, in addition to cognitive and anxiety behaviors, were assessed. Changes in neurons, cerebral edema, blood-brain barrier (BBB) permeability, and brain ultrastructure were monitored. Levels of pro-inflammatory factors (IL-1ß, TNF-α) and microglial activation were also measured. The underlying molecular mechanisms were investigated by proteomics analysis and western blotting. RESULTS: Intranasal OXA treatment reduced mortality, ameliorated cognitive and emotional deficits, and attenuated cerebral edema, BBB disruption, and ultrastructural brain damage in mice. In addition, OXA significantly reduced the expression of the pro-inflammatory factors IL-1ß and TNF-α, and inhibited microglial activation. In addition, OXA downregulated the expression of the Rras and RAS proteins, and reduced the phosphorylation of P-38 and JNK, thus inhibiting activation of the MAPK pathway. JNJ-10,397,049 (an OXR2 blocker) reversed the effect of OXA, whereas SB-334,867 (an OXR1 blocker) did not. CONCLUSION: This study demonstrated that the intranasal administration of moderate amounts of OXA protects the BBB and inhibits the activation of the OXR2/RAS/MAPK pathway to attenuate the outcome of SAE, suggesting that OXA may be a promising therapeutic approach for the management of SAE.


Subject(s)
Mice, Inbred C57BL , Orexins , Sepsis-Associated Encephalopathy , Animals , Mice , Sepsis-Associated Encephalopathy/drug therapy , Sepsis-Associated Encephalopathy/metabolism , Orexins/metabolism , Male , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Disease Models, Animal , Administration, Intranasal
4.
Mol Neurodegener ; 19(1): 41, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38760857

ABSTRACT

Recent evidence suggests that Alzheimer's disease (AD) genetic risk variants (rs1582763 and rs6591561) of the MS4A locus are genome-wide significant regulators of soluble TREM2 levels such that the minor allele of the protective variant (rs1582763) is associated with higher sTREM2 and lower AD risk while the minor allele of (rs6591561) relates to lower sTREM2 and higher AD risk. Our group previously found that higher sTREM2 relates to higher Aß40, worse blood-brain barrier (BBB) integrity (measured with the CSF/plasma albumin ratio), and higher CSF tau, suggesting strong associations with amyloid abundance and both BBB and neurodegeneration complicate interpretation. We expand on this work by leveraging these common variants as genetic tools to tune the interpretation of high CSF sTREM2, and by exploring the potential modifying role of these variants on the well-established associations between CSF sTREM2 as well as TREM2 transcript levels in the brain with AD neuropathology. Biomarker analyses leveraged data from the Vanderbilt Memory & Aging Project (n = 127, age = 72 ± 6.43) and were replicated in the Alzheimer's Disease Neuroimaging Initiative (n = 399, age = 73 ± 7.39). Autopsy analyses were performed leveraging data from the Religious Orders Study and Rush Memory and Aging Project (n = 577, age = 89 ± 6.46). We found that the protective variant rs1582763 attenuated the association between CSF sTREM2 and Aß40 (ß = -0.44, p-value = 0.017) and replicated this interaction in ADNI (ß = -0.27, p = 0.017). We did not observe this same interaction effect between TREM2 mRNA levels and Aß peptides in brain (Aß total ß = -0.14, p = 0.629; Aß1-38, ß = 0.11, p = 0.200). In contrast to the effects on Aß, the minor allele of this same variant seemed to enhance the association with blood-brain barrier dysfunction (ß = 7.0e-4, p = 0.009), suggesting that elevated sTREM2 may carry a much different interpretation in carriers vs. non-carriers of this allele. When evaluating the risk variant (rs6591561) across datasets, we did not observe a statistically significant interaction against any outcome in VMAP and observed opposing directions of associations in ADNI and ROS/MAP on Aß levels. Together, our results suggest that the protective effect of rs1582763 may act by decoupling the associations between sTREM2 and amyloid abundance, providing important mechanistic insight into sTREM2 changes and highlighting the need to incorporate genetic context into the analysis of sTREM2 levels, particularly if leveraged as a clinical biomarker of disease in the future.


Subject(s)
Alzheimer Disease , Biomarkers , Membrane Glycoproteins , Receptors, Immunologic , Humans , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Aged , Male , Biomarkers/cerebrospinal fluid , Biomarkers/metabolism , Female , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/cerebrospinal fluid , Aged, 80 and over , Brain/metabolism , Brain/pathology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Genetic Predisposition to Disease
5.
ACS Chem Neurosci ; 15(10): 2028-2041, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38710594

ABSTRACT

Chronic cerebral hypoperfusion (CCH)-triggered blood-brain barrier (BBB) dysfunction is a core pathological change occurring in vascular dementia (VD). Despite the recent advances in the exploration of the structural basis of BBB impairment and the routes of entry of harmful compounds after a BBB leakage, the molecular mechanisms inducing BBB impairment remain largely unknown in terms of VD. Here, we employed a CCH-induced VD model and discovered increased vascular cell adhesion molecule 1 (VCAM1) expression on the brain endothelial cells (ECs). The expression of VCAM1 was directly correlated with the severity of BBB impairment. Moreover, the VCAM1 expression was associated with different regional white matter lesions. Furthermore, a compound that could block VCAM1 activation, K-7174, was also found to alleviate BBB leakage and protect the white matter integrity, whereas pharmacological manipulation of the BBB leakage did not affect the VCAM1 expression. Thus, our results demonstrated that VCAM1 is an important regulator that leads to BBB dysfunction following CCH. Blocking VCAM1-mediated BBB impairment may thus offer a new strategy to treat CCH-related neurodegenerative diseases.


Subject(s)
Blood-Brain Barrier , Endothelial Cells , Vascular Cell Adhesion Molecule-1 , Vascular Cell Adhesion Molecule-1/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/pathology , Animals , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Male , Brain/metabolism , Brain/pathology , Dementia, Vascular/metabolism , Dementia, Vascular/pathology , Humans , Brain Ischemia/metabolism , Brain Ischemia/pathology , Mice
6.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732053

ABSTRACT

Concussion, caused by a rotational acceleration/deceleration injury mild enough to avoid structural brain damage, is insufficiently captured in recent preclinical models, hampering the relation of pathophysiological findings on the cellular level to functional and behavioral deficits. We here describe a novel model of unrestrained, single vs. repetitive concussive brain injury (CBI) in male C56Bl/6j mice. Longitudinal behavioral assessments were conducted for up to seven days afterward, alongside the evaluation of structural cerebral integrity by in vivo magnetic resonance imaging (MRI, 9.4 T), and validated ex vivo by histology. Blood-brain barrier (BBB) integrity was analyzed by means of fluorescent dextran- as well as immunoglobulin G (IgG) extravasation, and neuroinflammatory processes were characterized both in vivo by positron emission tomography (PET) using [18F]DPA-714 and ex vivo using immunohistochemistry. While a single CBI resulted in a defined, subacute neuropsychiatric phenotype, longitudinal cognitive testing revealed a marked decrease in spatial cognition, most pronounced in mice subjected to CBI at high frequency (every 48 h). Functional deficits were correlated to a parallel disruption of the BBB, (R2 = 0.29, p < 0.01), even detectable by a significant increase in hippocampal uptake of [18F]DPA-714, which was not due to activation of microglia, as confirmed immunohistochemically. Featuring a mild but widespread disruption of the BBB without evidence of macroscopic damage, this model induces a characteristic neuro-psychiatric phenotype that correlates to the degree of BBB disruption. Based on these findings, the BBB may function as both a biomarker of CBI severity and as a potential treatment target to improve recovery from concussion.


Subject(s)
Blood-Brain Barrier , Brain Concussion , Disease Models, Animal , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Blood-Brain Barrier/diagnostic imaging , Mice , Brain Concussion/metabolism , Brain Concussion/diagnostic imaging , Brain Concussion/pathology , Brain Concussion/physiopathology , Male , Mice, Inbred C57BL , Magnetic Resonance Imaging , Positron-Emission Tomography , Head Injuries, Closed/pathology , Head Injuries, Closed/metabolism , Head Injuries, Closed/physiopathology , Head Injuries, Closed/diagnostic imaging
7.
Acta Neuropathol Commun ; 12(1): 56, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589905

ABSTRACT

In malignant glioma, cytotoxic drugs are often inhibited from accessing the tumor site due to the blood-tumor barrier (BTB). Ibrutinib, FDA-approved lymphoma agent, inhibits Bruton tyrosine kinase (BTK) and has previously been shown to independently impair aortic endothelial adhesion and increase rodent glioma model survival in combination with cytotoxic therapy. Yet additional research is required to understand ibrutinib's effect on BTB function. In this study, we detail baseline BTK expression in glioma cells and its surrounding vasculature, then measure endothelial junctional expression/function changes with varied ibrutinib doses in vitro. Rat glioma cells and rodent glioma models were treated with ibrutinib alone (1-10 µM and 25 mg/kg) and in combination with doxil (10-100 µM and 3 mg/kg) to assess additive effects on viability, drug concentrations, tumor volume, endothelial junctional expression and survival. We found that ibrutinib, in a dose-dependent manner, decreased brain endothelial cell-cell adhesion over 24 h, without affecting endothelial cell viability (p < 0.005). Expression of tight junction gene and protein expression was decreased maximally 4 h after administration, along with inhibition of efflux transporter, ABCB1, activity. We demonstrated an additive effect of ibrutinib with doxil on rat glioma cells, as seen by a significant reduction in cell viability (p < 0.001) and increased CNS doxil concentration in the brain (56 ng/mL doxil alone vs. 74.6 ng/mL combination, p < 0.05). Finally, Ibrutinib, combined with doxil, prolonged median survival in rodent glioma models (27 vs. 16 days, p < 0.0001) with brain imaging showing a - 53% versus - 75% volume change with doxil alone versus combination therapy (p < 0.05). These findings indicate ibrutinib's ability to increase brain endothelial permeability via junctional disruption and efflux inhibition, to increase BTB drug entry and prolong rodent glioma model survival. Our results motivate the need to identify other BTB modifiers, all with the intent of improving survival and reducing systemic toxicities.


Subject(s)
Adenine/analogs & derivatives , Antineoplastic Agents , Doxorubicin/analogs & derivatives , Glioma , Piperidines , Rats , Animals , Rodentia , Glioma/pathology , Antineoplastic Agents/therapeutic use , Blood-Brain Barrier/pathology , Polyethylene Glycols
8.
Curr Neurol Neurosci Rep ; 24(5): 123-139, 2024 May.
Article in English | MEDLINE | ID: mdl-38578405

ABSTRACT

PURPOSE OF REVIEW: Glioblastoma remains resistant to most conventional treatments. Despite scientific advances in the past three decades, there has been a dearth of effective new treatments. New approaches to drug delivery and clinical trial design are needed. RECENT FINDINGS: We discuss how the blood-brain barrier and tumor microenvironment pose challenges for development of effective therapies for glioblastoma. Next, we discuss treatments in development that aim to overcome these barriers, including novel drug designs such as nanoparticles and antibody-drug conjugates, novel methods of drug delivery, including convection-enhanced and intra-arterial delivery, and novel methods to enhance drug penetration, such as blood-brain barrier disruption by focused ultrasound and laser interstitial thermal therapy. Lastly, we address future opportunities, positing combination therapy as the best strategy for effective treatment, neoadjuvant and window-of-opportunity approaches to simultaneously enhance therapeutic effectiveness with interrogation of on-treatment biologic endpoints, and adaptive platform and basket trials as imperative for future trial design. New approaches to GBM treatment should account for the blood-brain barrier and immunosuppression by improving drug delivery, combining treatments, and integrating novel clinical trial designs.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Glioblastoma , Humans , Blood-Brain Barrier/pathology , Glioblastoma/drug therapy , Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Drug Delivery Systems , Tumor Microenvironment
9.
Cells ; 13(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38667275

ABSTRACT

Blood-brain barrier (BBB) dysfunction and neuroinflammation are key mechanisms of brain injury. We performed a time-course study following neonatal hypoxia-ischemia (HI) to characterize these events. HI brain injury was induced in postnatal day 10 rats by single carotid artery ligation followed by hypoxia (8% oxygen, 90 min). At 6, 12, 24, and 72 h (h) post-HI, brains were collected to assess neuropathology and BBB dysfunction. A significant breakdown of the BBB was observed in the HI injury group compared to the sham group from 6 h in the cortex and hippocampus (p < 0.001), including a significant increase in albumin extravasation (p < 0.0033) and decrease in basal lamina integrity and tight-junction proteins. There was a decrease in resting microglia (p < 0.0001) transitioning to an intermediate state from as early as 6 h post-HI, with the intermediate microglia peaking at 12 h (p < 0.0001), which significantly correlated to the peak of microbleeds. Neonatal HI insult leads to significant brain injury over the first 72 h that is mediated by BBB disruption within 6 h and a transitioning state of the resident microglia. Key BBB events coincide with the appearance of the intermediate microglial state and this relationship warrants further research and may be a key target for therapeutic intervention.


Subject(s)
Animals, Newborn , Blood-Brain Barrier , Hypoxia-Ischemia, Brain , Microglia , Animals , Microglia/pathology , Microglia/metabolism , Blood-Brain Barrier/pathology , Blood-Brain Barrier/metabolism , Hypoxia-Ischemia, Brain/pathology , Hypoxia-Ischemia, Brain/metabolism , Rats , Rats, Sprague-Dawley , Time Factors , Male , Female
10.
J Neuroinflammation ; 21(1): 110, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678254

ABSTRACT

Obesity, a burgeoning global health issue, is increasingly recognized for its detrimental effects on the central nervous system, particularly concerning the integrity of the blood-brain barrier (BBB). This manuscript delves into the intricate relationship between obesity and BBB dysfunction, elucidating the underlying phenotypes and molecular mechanisms. We commence with an overview of the BBB's critical role in maintaining cerebral homeostasis and the pathological alterations induced by obesity. By employing a comprehensive literature review, we examine the structural and functional modifications of the BBB in the context of obesity, including increased permeability, altered transport mechanisms, and inflammatory responses. The manuscript highlights how obesity-induced systemic inflammation and metabolic dysregulation contribute to BBB disruption, thereby predisposing individuals to various neurological disorders. We further explore the potential pathways, such as oxidative stress and endothelial cell dysfunction, that mediate these changes. Our discussion culminates in the summary of current findings and the identification of knowledge gaps, paving the way for future research directions. This review underscores the significance of understanding BBB dysfunction in obesity, not only for its implications in neurodegenerative diseases but also for developing targeted therapeutic strategies to mitigate these effects.


Subject(s)
Blood-Brain Barrier , Obesity , Phenotype , Humans , Blood-Brain Barrier/pathology , Blood-Brain Barrier/metabolism , Obesity/pathology , Obesity/metabolism , Obesity/complications , Obesity/physiopathology , Animals
11.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674030

ABSTRACT

Age-associated deep-subcortical white matter lesions (DSCLs) are an independent risk factor for dementia, displaying high levels of CD68+ microglia. This study aimed to characterize the transcriptomic profile of microglia in DSCLs and surrounding radiologically normal-appearing white matter (NAWM) compared to non-lesional control white matter. CD68+ microglia were isolated from white matter groups (n = 4 cases per group) from the Cognitive Function and Ageing Study neuropathology cohort using immuno-laser capture microdissection. Microarray gene expression profiling, but not RNA-sequencing, was found to be compatible with immuno-LCM-ed post-mortem material in the CFAS cohort and identified significantly differentially expressed genes (DEGs). Functional grouping and pathway analysis were assessed using the Database for Annotation Visualization and Integrated Discovery (DAVID) software, and immunohistochemistry was performed to validate gene expression changes at the protein level. Transcriptomic profiling of microglia in DSCLs compared to non-lesional control white matter identified 181 significant DEGs (93 upregulated and 88 downregulated). Functional clustering analysis in DAVID revealed dysregulation of haptoglobin-haemoglobin binding (Enrichment score 2.5, p = 0.017), confirmed using CD163 immunostaining, suggesting a neuroprotective microglial response to blood-brain barrier dysfunction in DSCLs. In NAWM versus control white matter, microglia exhibited 347 DEGs (209 upregulated, 138 downregulated), with significant dysregulation of protein de-ubiquitination (Enrichment score 5.14, p < 0.001), implying an inability to maintain protein homeostasis in NAWM that may contribute to lesion spread. These findings enhance understanding of microglial transcriptomic changes in ageing white matter pathology, highlighting a neuroprotective adaptation in DSCLs microglia and a potentially lesion-promoting phenotype in NAWM microglia.


Subject(s)
Aging , Blood-Brain Barrier , Microglia , Transcriptome , White Matter , Humans , Microglia/metabolism , Microglia/pathology , White Matter/metabolism , White Matter/pathology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Male , Female , Aging/genetics , Aged , Gene Expression Profiling/methods , Aged, 80 and over , Neuroprotection/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, CD/metabolism , Antigens, CD/genetics
12.
Exp Brain Res ; 242(6): 1387-1397, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38563979

ABSTRACT

Cerebral small vessel disease (CSVD) is increasingly being recognized as a leading contributor to cognitive impairment in the elderly. However, there is a lack of effective preventative or therapeutic options for CSVD. In this exploratory study, we investigated the interplay between neuroinflammation and CSVD pathogenesis as well as the cognitive performance, focusing on NLRP3 signaling as a new therapeutic target. Spontaneously hypertensive stroke-prone (SHRSP) rats served as a CSVD model. We found that SHRSP rats showed decline in learning and memory abilities using morris water maze test. Activated NLRP3 signaling and an increased expression of the downstream pro-inflammatory factors, including IL (interleukin)-6 and tumor necrosis factor α were determined. We also observed a remarkable increase in the production of pyroptosis executive protein gasdermin D, and elevated astrocytic and microglial activation. In addition, we identify several neuropathological hallmarks of CSVD, including blood-brain barrier breakdown, white matter damage, and endothelial dysfunction. These results were in correlation with the activation of NLRP3 inflammasome. Thus, our findings reveal that the NLRP3-mediated inflammatory pathway could play a central role in the pathogenesis of CSVD, presenting a novel target for potential CSVD treatment.


Subject(s)
Cerebral Small Vessel Diseases , Disease Models, Animal , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Rats, Inbred SHR , Animals , Cerebral Small Vessel Diseases/metabolism , Cerebral Small Vessel Diseases/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats , Inflammasomes/metabolism , Male , Neuroinflammatory Diseases/metabolism , Microglia/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Signal Transduction/physiology
13.
Neuropathol Appl Neurobiol ; 50(2): e12980, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38647003

ABSTRACT

Neuroinflammation, blood-brain barrier (BBB) dysfunction, neuron and glia injury/death and myelin damage are common central nervous system (CNS) pathologies observed in various neurological diseases and injuries. Serine protease inhibitor (Serpin) clade A member 3n (Serpina3n), and its human orthologue SERPINA3, is an acute-phase inflammatory glycoprotein secreted primarily by the liver into the bloodstream in response to systemic inflammation. Clinically, SERPINA3 is dysregulated in brain cells, cerebrospinal fluid and plasma in various neurological conditions. Although it has been widely accepted that Serpina3n/SERPINA3 is a reliable biomarker of reactive astrocytes in diseased CNS, recent data have challenged this well-cited concept, suggesting instead that oligodendrocytes and neurons are the primary sources of Serpina3n/SERPINA3. The debate continues regarding whether Serpina3n/SERPINA3 induction represents a pathogenic or a protective mechanism. Here, we propose possible interpretations for previously controversial data and present perspectives regarding the potential role of Serpina3n/SERPINA3 in CNS pathologies, including demyelinating disorders where oligodendrocytes are the primary targets. We hypothesise that the 'good' or 'bad' aspects of Serpina3n/SERPINA3 depend on its cellular sources, its subcellular distribution (or mis-localisation) and/or disease/injury types. Furthermore, circulating Serpina3n/SERPINA3 may cross the BBB to impact CNS pathologies. Cell-specific genetic tools are critically important to tease out the potential roles of cell type-dependent Serpina3n in CNS diseases/injuries.


Subject(s)
Serpins , Humans , Serpins/metabolism , Serpins/genetics , Animals , Central Nervous System Diseases/pathology , Central Nervous System Diseases/metabolism , Central Nervous System/pathology , Central Nervous System/metabolism , Blood-Brain Barrier/pathology , Blood-Brain Barrier/metabolism
14.
BMJ Open ; 14(3): e081635, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38458785

ABSTRACT

INTRODUCTION: Loss of blood-brain barrier (BBB) integrity is hypothesised to be one of the earliest microvascular signs of Alzheimer's disease (AD). Existing BBB integrity imaging methods involve contrast agents or ionising radiation, and pose limitations in terms of cost and logistics. Arterial spin labelling (ASL) perfusion MRI has been recently adapted to map the BBB permeability non-invasively. The DEveloping BBB-ASL as a non-Invasive Early biomarker (DEBBIE) consortium aims to develop this modified ASL-MRI technique for patient-specific and robust BBB permeability assessments. This article outlines the study design of the DEBBIE cohorts focused on investigating the potential of BBB-ASL as an early biomarker for AD (DEBBIE-AD). METHODS AND ANALYSIS: DEBBIE-AD consists of a multicohort study enrolling participants with subjective cognitive decline, mild cognitive impairment and AD, as well as age-matched healthy controls, from 13 cohorts. The precision and accuracy of BBB-ASL will be evaluated in healthy participants. The clinical value of BBB-ASL will be evaluated by comparing results with both established and novel AD biomarkers. The DEBBIE-AD study aims to provide evidence of the ability of BBB-ASL to measure BBB permeability and demonstrate its utility in AD and AD-related pathologies. ETHICS AND DISSEMINATION: Ethics approval was obtained for 10 cohorts, and is pending for 3 cohorts. The results of the main trial and each of the secondary endpoints will be submitted for publication in a peer-reviewed journal.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/pathology , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Spin Labels , Magnetic Resonance Imaging/methods , Cognitive Dysfunction/diagnostic imaging , Biomarkers , Observational Studies as Topic
16.
ACS Nano ; 18(13): 9511-9524, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38499440

ABSTRACT

Glioblastoma multiforme (GBM) is the most aggressive and lethal form of human brain tumors. Dismantling the suppressed immune microenvironment is an effective therapeutic strategy against GBM; however, GBM does not respond to exogenous immunotherapeutic agents due to low immunogenicity. Manipulating the mitochondrial electron transport chain (ETC) elevates the immunogenicity of GBM, rendering previously immune-evasive tumors highly susceptible to immune surveillance, thereby enhancing tumor immune responsiveness and subsequently activating both innate and adaptive immunity. Here, we report a nanomedicine-based immunotherapeutic approach that targets the mitochondria in GBM cells by utilizing a Trojan-inspired nanovector (ABBPN) that can cross the blood-brain barrier. We propose that the synthetic photosensitizer IrPS can alter mitochondrial electron flow and concurrently interfere with mitochondrial antioxidative mechanisms by delivering si-OGG1 to GBM cells. Our synthesized ABBPN coloaded with IrPS and si-OGG1 (ISA) disrupts mitochondrial electron flow, which inhibits ATP production and induces mitochondrial DNA oxidation, thereby recruiting immune cells and endogenously activating intracranial antitumor immune responses. The results of our study indicate that strategies targeting the mitochondrial ETC have the potential to treat tumors with limited immunogenicity.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/pathology , Blood-Brain Barrier/pathology , Electrons , Biological Transport , Brain Neoplasms/genetics , Mitochondria , Cell Line, Tumor , Tumor Microenvironment
17.
Epilepsia ; 65(5): 1462-1474, 2024 May.
Article in English | MEDLINE | ID: mdl-38436479

ABSTRACT

OBJECTIVE: Interictal blood-brain barrier dysfunction in chronic epilepsy has been demonstrated in animal models and pathological specimens. Ictal blood-brain barrier dysfunction has been shown in humans in vivo using an experimental quantitative magnetic resonance imaging (MRI) protocol. Here, we hypothesized that interictal blood-brain barrier dysfunction is also present in people with drug-resistant epilepsy. METHODS: Thirty-nine people (21 females, mean age at MRI ± SD = 30 ± 8 years) with drug-resistant epilepsy were prospectively recruited and underwent interictal T1-relaxometry before and after administration of a paramagnetic contrast agent. Likewise, quantitative T1 was acquired in 29 people without epilepsy (12 females, age at MRI = 48 ± 18 years). Quantitative T1 difference maps were calculated and served as a surrogate imaging marker for blood-brain barrier dysfunction. Values of quantitative T1 difference maps inside hemispheres ipsilateral to the presumed seizure onset zone were then compared, on a voxelwise level and within presumed seizure onset zones, to the contralateral side of people with epilepsy and to people without epilepsy. RESULTS: Compared to the contralateral side, ipsilateral T1 difference values were significantly higher in white matter (corrected p < .05), gray matter (uncorrected p < .05), and presumed seizure onset zones (p = .04) in people with epilepsy. Compared to people without epilepsy, significantly higher T1 difference values were found in the anatomical vicinity of presumed seizure onset zones (p = .004). A subgroup of people with hippocampal sclerosis demonstrated significantly higher T1 difference values in the ipsilateral hippocampus and in regions strongly interconnected with the hippocampus compared to people without epilepsy (corrected p < .01). Finally, z-scores reflecting the deviation of T1 difference values within the presumed seizure onset zone were associated with verbal memory performance (p = .02) in people with temporal lobe epilepsy. SIGNIFICANCE: Our results indicate a blood-brain barrier dysfunction in drug-resistant epilepsy that is detectable interictally in vivo, anatomically related to the presumed seizure onset zone, and associated with cognitive deficits.


Subject(s)
Blood-Brain Barrier , Drug Resistant Epilepsy , Magnetic Resonance Imaging , Humans , Blood-Brain Barrier/physiopathology , Blood-Brain Barrier/pathology , Blood-Brain Barrier/diagnostic imaging , Female , Male , Adult , Middle Aged , Drug Resistant Epilepsy/physiopathology , Drug Resistant Epilepsy/diagnostic imaging , Young Adult , Prospective Studies , Epilepsy/physiopathology , Epilepsy/diagnostic imaging
18.
Brain Res Bull ; 209: 110922, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458135

ABSTRACT

Sepsis causes significant morbidity and mortality worldwide, most surviving patients show acute or chronic mental disorders, which are known as sepsis-associated encephalopathy (SAE). SAE involves many pathological processes, including the blood-brain barrier (BBB) damage. The BBB is located at the interface between the central nervous system and the surrounding environment, which protects the central nervous system (CNS) from the invasion of exogenous molecules, harmful substances or microorganisms in the blood. Recently, a growing number of studies have indicated that the BBB destruction was involved in SAE and played an important role in SAE-induced brain injury. In the present review, we firstly reveal the pathological processes of SAE such as the neurotransmitter disorders, oxidative stress, immune dysfunction and BBB destruction. Moreover, we introduce the structure of BBB, and describe the immune cells including microglia and astrocytes that participate in the BBB destruction after SAE. Furthermore, in view of the current research on non-coding RNAs (ncRNAs), we explain the regulatory mechanism of ncRNAs including long noncoding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) on BBB in the processes of SAE. Finally, we propose some challenges and perspectives of regulating BBB functions in SAE. Hence, on the basis of these effects, both immune cells and ncRNAs may be developed as therapeutic targets to protect BBB for SAE patients.


Subject(s)
Sepsis-Associated Encephalopathy , Sepsis , Humans , Blood-Brain Barrier/pathology , Astrocytes/pathology , Biological Transport
19.
Acta Neuropathol ; 147(1): 39, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347288

ABSTRACT

Central nervous system (CNS) accumulation of fibrillary deposits made of Amyloid ß (Aß), hyperphosphorylated Tau or α-synuclein (α-syn), present either alone or in the form of mixed pathology, characterizes the most common neurodegenerative diseases (NDDs) as well as the aging brain. Compelling evidence supports that acute neurological disorders, such as traumatic brain injury (TBI) and stroke, are also accompanied by increased deposition of toxic Aß, Tau and α-syn species. While the contribution of these pathological proteins to neurodegeneration has been experimentally ascertained, the cellular and molecular mechanisms driving Aß, Tau and α-syn-related brain damage remain to be fully clarified. In the last few years, studies have shown that Aß, Tau and α-syn may contribute to neurodegeneration also by inducing and/or promoting blood-brain barrier (BBB) disruption. These pathological proteins can affect BBB integrity either directly by affecting key BBB components such as pericytes and endothelial cells (ECs) or indirectly, by promoting brain macrophages activation and dysfunction. Here, we summarize and critically discuss key findings showing how Aß, Tau and α-syn can contribute to BBB damage in most common NDDs, TBI and stroke. We also highlight the need for a deeper characterization of the role of these pathological proteins in the activation and dysfunction of brain macrophages, pericytes and ECs to improve diagnosis and treatment of acute and chronic neurological disorders.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Stroke , Humans , alpha-Synuclein/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Blood-Brain Barrier/pathology , Brain/pathology , Endothelial Cells/pathology , Neurodegenerative Diseases/pathology , Stroke/pathology , tau Proteins/metabolism
20.
Nat Commun ; 15(1): 1650, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38396134

ABSTRACT

Here, the results of a phase 1/2 single-arm trial (NCT03744026) assessing the safety and efficacy of blood-brain barrier (BBB) disruption with an implantable ultrasound system in recurrent glioblastoma patients receiving carboplatin are reported. A nine-emitter ultrasound implant was placed at the end of tumor resection replacing the bone flap. After surgery, activation to disrupt the BBB was performed every four weeks either before or after carboplatin infusion. The primary objective of the Phase 1 was to evaluate the safety of escalating numbers of ultrasound emitters using a standard 3 + 3 dose escalation. The primary objective of the Phase 2 was to evaluate the efficacy of BBB opening using magnetic resonance imaging (MRI). The secondary objectives included safety and clinical efficacy. Thirty-three patients received a total of 90 monthly sonications with carboplatin administration and up to nine emitters activated without observed DLT. Grade 3 procedure-related adverse events consisted of pre syncope (n = 3), fatigue (n = 1), wound infection (n = 2), and pain at time of device connection (n = 7). BBB opening endpoint was met with 90% of emitters showing BBB disruption on MRI after sonication. In the 12 patients who received carboplatin just prior to sonication, the progression-free survival was 3.1 months, the 1-year overall survival rate was 58% and median overall survival was 14.0 months from surgery.


Subject(s)
Blood-Brain Barrier , Glioblastoma , Humans , Carboplatin/adverse effects , Blood-Brain Barrier/pathology , Glioblastoma/diagnostic imaging , Glioblastoma/drug therapy , Ultrasonography , Biological Transport , Antineoplastic Combined Chemotherapy Protocols/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...