Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Front Immunol ; 13: 1053059, 2022.
Article in English | MEDLINE | ID: mdl-36532076

ABSTRACT

Introduction: bluetongue virus (BTV) infection triggers dramatic and complex changes in the host's transcriptional profile to favor its own survival and reproduction. However, there is no whole-transcriptome study of susceptible animal cells with BTV infection, which impedes the in-depth and systematical understanding of the comprehensive characterization of BTV-host interactome, as well as BTV infection and pathogenic mechanisms. Methods: to systematically understand these changes, we performed whole-transcriptome sequencing in BTV serotype 1 (BTV-1)-infected and mock-infected sheep embryonic testicular cells, and subsequently conducted bioinformatics differential analyses. Results: there were 1504 differentially expressed mRNAs, 78 differentially expressed microRNAs, 872 differentially expressed long non-coding RNAs, and 59 differentially expressed circular RNAs identified in total. Annotation from the Gene Ontology, enrichment from the Kyoto Encyclopedia of Genes and Genomes, and construction of competing endogenous RNA networks revealed differentially expressed RNAs primarily related to virus-sensing and signaling transduction pathways, antiviral and immune responses, inflammation, and development and metabolism related pathways. Furthermore, a protein-protein interaction network analysis found that BTV may contribute to abnormal spermatogenesis by reducing steroid biosynthesis. Finally, real-time quantitative PCR and western blotting results showed that the expression trends of differentially expressed RNAs were consistent with the whole-transcriptome sequencing data. Discussion: this study provides more insights of comprehensive characterization of BTV-host interactome, and BTV infection and pathogenic mechanisms.


Subject(s)
Bluetongue virus , Bluetongue , Male , Sheep/genetics , Animals , Bluetongue virus/genetics , Bluetongue/genetics , Bluetongue/pathology , Gene Expression Profiling , Testis/metabolism , Gene Ontology
2.
J Adv Res ; 31: 137-153, 2021 07.
Article in English | MEDLINE | ID: mdl-34194838

ABSTRACT

Introduction: Wild-type adult mice with intact interferon (IFN) system were neither susceptible to bluetongue virus (BTV) infection nor showed signs of morbidity/mortality. Establishment of immunologically competent wild-type adult mouse model with type I IFNs blockade is necessary to assess the pathogenesis, immune responses and testing of BTV vaccines. Objectives: Present study aimed to establish and characterize BTV serotype 1 infection in immunocompetent adult mice with type I IFNs blockade at the time of infection by studying immune responses and sequential pathology. Methods: Adult mice were administered with anti-mouse IFN-α/ß receptor subunit-1 (IFNAR1) blocking antibody (Clone: MAR1-5A3) 24 h before and after BTV serotype 1 infection, and sacrificed at various time points. Sequential pathology, BTV localization by immunohistochemistry and quantification by qRT-PCR, immune cell kinetics and apoptosis by flow cytometry, and cytokines estimation by c-ELISA and qRT-PCR were studied. Results: IFNAR blocked-infected mice developed clinical signs and typical lesions of BT; whereas, isotype-infected control mice did not develop any disease. The IFNAR blocked-infected mice showed enlarged, edematous, and congested lymph nodes (LNs) and spleen, and vascular (congestion and hemorrhage) and pneumonic lesions in lungs. Histopathologically, marked lymphoid depletion with "starry-sky pattern" due to lymphocytes apoptosis was noticed in the LNs and spleen. BTV antigen was detected and quantified in lymphoid organs, lungs, and other organs at various time points. Initial leukopenia (increased CD4+/CD8+ T cells ratio) followed by leukocytosis (decreased CD4+/CD8+ T cells ratio) and significantly increased biochemical values were noticed in IFNAR blocked-infected mice. Increased apoptotic cells in PBMCs and tissues coincided with viral load and levels of different cytokines in blood, spleen and draining LNs and notably varied between time points in IFNAR blocked-infected mice. Conclusion: Present study is first to characterize BTV serotype 1 infection in immunocompetent adult mouse with type I IFNs blockade. The findings will be useful for studying pathogenesis and testing the efficacy of BTV vaccines.


Subject(s)
Bluetongue virus/genetics , Bluetongue/immunology , Bluetongue/pathology , Interferon Type I/immunology , Animals , Antibodies, Blocking/immunology , Apoptosis , Bluetongue virus/immunology , Female , Leukocytes/immunology , Leukocytosis/immunology , Leukopenia/immunology , Lung/pathology , Lung/virology , Lymph Nodes/pathology , Lymph Nodes/virology , Mice , Models, Immunological , Receptor, Interferon alpha-beta/immunology , Serogroup , Sheep , Spleen/pathology , Spleen/virology , Viral Vaccines/immunology
3.
Virus Genes ; 57(4): 369-379, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34120252

ABSTRACT

The smallest polycistronic dsRNA segment-10 (S10) of bluetongue virus (BTV) encodes NS3/3A and putative NS5. The S10 sequence data of 46 Indian BTV field isolates obtained between 1985 and 2011 were determined and compared with the cognate sequences of global BTV strains. The largest ORF on S10 encodes NS3 (229 aa) and an amino-terminal truncated form of the protein (NS3A) and a putative NS5 (50-59 aa) due to alternate translation initiation site. The overall mean distance of the global NS3 was 0.1106 and 0.0269 at nt and deduced aa sequence, respectively. The global BTV strains formed four major clusters. The major cluster of Indian BTV strains was closely related to the viruses reported from Australia and China. A minor sub-cluster of Indian BTV strains were closely related to the USA strains and a few of the Indian strains were similar to the South African reference and vaccine strains. The global trait association of phylogenetic structure indicates the evolution of the global BTV S10 was not homogenous but rather represents a moderate level of geographical divergence. There was no evidence of an association between the virus and the host species, suggesting a random spread of the viruses. Conflicting selection pressure on the alternate coding sequences of the S10 was evident where NS3/3A might have evolved through strong purifying (negative) selection and NS5 through a positive selection. The presence of multiple positively selected codons on the putative NS5 may be advantageous for adaptation of the virus though their precise role is unknown.


Subject(s)
Bluetongue virus/genetics , Bluetongue/genetics , RNA, Double-Stranded/genetics , Viral Nonstructural Proteins/genetics , Animals , Australia/epidemiology , Bluetongue/pathology , Bluetongue/virology , Bluetongue virus/classification , China/epidemiology , Double Stranded RNA Viruses/classification , Double Stranded RNA Viruses/genetics , Genetic Variation/genetics , Humans , India/epidemiology , Phylogeny , Sequence Analysis, DNA , Sheep/virology
4.
Viruses ; 12(4)2020 03 31.
Article in English | MEDLINE | ID: mdl-32244509

ABSTRACT

Peste des petits ruminants (PPR) disease was first confirmed in Tanzania in 2008 in sheep and goats in Ngorongoro District, northern Tanzania, and is now endemic in this area. This study aimed to characterise PPR disease in pastoralist small ruminant flocks in Ngorongoro District. During June 2015, 33 PPR-like disease reports were investigated in different parts of the district, using semi-structured interviews, clinical examinations, PPR virus rapid detection test (PPRV-RDT), and laboratory analysis. Ten flocks were confirmed as PPRV infected by PPRV-RDT and/or real-time reverse transcription-polymerase chain reaction (RT-qPCR), and two flocks were co-infected with bluetongue virus (BTV), confirmed by RT-qPCR. Phylogenetic analysis of six partial N gene sequences showed that the PPR viruses clustered with recent lineage III Tanzanian viruses, and grouped with Ugandan, Kenyan and Democratic Republic of Congo isolates. No PPR-like disease was reported in wildlife. There was considerable variation in clinical syndromes between flocks: some showed a full range of PPR signs, while others were predominantly respiratory, diarrhoea, or oro-nasal syndromes, which were associated with different local disease names (olodua-a term for rinderpest, olkipiei-lung disease, oloirobi-fever, enkorotik-diarrhoea). BTV co-infection was associated with severe oro-nasal lesions. This clinical variability makes the field diagnosis of PPR challenging, highlighting the importance of access to pen-side antigen tests and multiplex assays to support improved surveillance and targeting of control activities for PPR eradication.


Subject(s)
Bluetongue/epidemiology , Coinfection/epidemiology , Disease Outbreaks/veterinary , Peste-des-Petits-Ruminants/epidemiology , Animals , Animals, Domestic , Antibodies, Viral/blood , Bluetongue/diagnosis , Bluetongue/pathology , Bluetongue/virology , Bluetongue virus/genetics , Bluetongue virus/immunology , Bluetongue virus/isolation & purification , Coinfection/diagnosis , Coinfection/pathology , Coinfection/virology , Diagnosis, Differential , Goats , Peste-des-Petits-Ruminants/diagnosis , Peste-des-Petits-Ruminants/pathology , Peste-des-Petits-Ruminants/virology , Peste-des-petits-ruminants virus/classification , Peste-des-petits-ruminants virus/genetics , Peste-des-petits-ruminants virus/immunology , Peste-des-petits-ruminants virus/isolation & purification , Phylogeny , RNA, Viral/genetics , Sheep , Tanzania/epidemiology
5.
Sci Rep ; 10(1): 2164, 2020 02 07.
Article in English | MEDLINE | ID: mdl-32034180

ABSTRACT

Transplacental transmission (TPT) of wild-type Indian BTV-1 had never been experimentally proved. This study was first time investigated TPT of Indian BTV-1 (isolated from aborted and stillborn goat fetal spleens). The sequential pathology, virological and immune cell kinetics (CD4+, CD8+ T-lymphocytes and NK cells in spleen and PBMCs), and apoptosis in IFNAR1-blocked pregnant mice during early (infected on 1 GD) and mid (infected on 8 GD) gestation have been studied. There was higher rate of TPT during mid stage (71.43%) than early (57.14%) stage. In early stage reduced implantation sites, early embryonic deaths, abortions, and necro-haemorrhagic lesions had observed. Mid stage, congenital defects and neurological lesions in foetuses like haemorrhages, diffuse cerebral edema, necrotizing encephalitis and decreased bone size (Alizarin red staining) were noticed. BTV-1 antigen was first time demonstrable in cells of mesometrium, decidua of embryos, placenta, uterus, ovary, and brain of foetuses by immunohistochemistry and quantified by real-time qRT-PCR. BTV-inoculated mice were seroconverted by 7 and 5 dpi, and reached peak levels by 15 and 9 dpi in early and mid gestation, respectively. CD4+ and CD8+ cells were significantly decreased (increased ratio) on 7 dpi but subsequently increased on 15 dpi in early gestation. In mid gestation, increased CD8+ cells (decreased ratio) were observed. Apoptotic cells in PBMCs and tissues increased during peak viral load. This first time TPT of wild-type Indian BTV-1 deserves to be reported for implementation of control strategies. This model will be very suitable for further research into mechanisms of TPT, overwintering, and vaccination strategies.


Subject(s)
Bluetongue/pathology , Fetal Diseases/immunology , Fetal Diseases/pathology , Infectious Disease Transmission, Vertical , Pregnancy Complications, Infectious/pathology , Receptor, Interferon alpha-beta/deficiency , Animals , Antigens, Viral/immunology , Bluetongue/immunology , Bluetongue/transmission , Bluetongue/virology , Bluetongue virus/immunology , Bluetongue virus/pathogenicity , Bone and Bones/abnormalities , Brain/abnormalities , Female , Fetal Diseases/virology , Mice , Pregnancy , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/virology , Receptor, Interferon alpha-beta/genetics , Spleen/immunology , T-Lymphocytes/immunology
6.
Viruses ; 11(5)2019 05 26.
Article in English | MEDLINE | ID: mdl-31130699

ABSTRACT

The embryonated chicken egg (ECE) is routinely used for the laboratory isolation and adaptation of Bluetongue virus (BTV) in vitro. However, its utility as an alternate animal model has not been fully explored. In this paper, we evaluated the pathogenesis of BTV in ovo using a pathogenic isolate of South African BTV serotype 3 (BTV-3) derived from the blood of an infected sheep. Endothelio- and neurotropism of BTV-3 were observed by immunohistochemistry of non-structural protein 1 (NS1), NS3, NS3/3a, and viral protein 7 (VP7) antigens. In comparing the pathogenicity of BTV from infectious sheep blood with cell-culture-passaged BTV, including virus propagated through a Culicoides-derived cell line (KC) or ECE, we found virus attenuation in ECE following cell-culture passage. Genomic analysis of the consensus sequences of segments (Seg)-2, -5, -6, -7, -8, -9, and -10 identified several nucleotide and amino-acid mutations among the cell-culture-propagated BTV-3. Deep sequencing analysis revealed changes in BTV-3 genetic diversity in various genome segments, notably a reduction of Seg-7 diversity following passage in cell culture. Using this novel approach to investigate BTV pathogenicity in ovo, our findings support the notion that pathogenic BTV becomes attenuated in cell culture and that this change is associated with virus quasispecies evolution.


Subject(s)
Bluetongue virus/physiology , Bluetongue/virology , Genetic Variation , Animals , Bluetongue/metabolism , Bluetongue/pathology , Cell Culture Techniques , Cell Line , Cells, Cultured , Chick Embryo , Genetic Fitness , High-Throughput Nucleotide Sequencing , Immunohistochemistry , Sheep , Virus Replication
7.
J Wildl Dis ; 55(3): 627-636, 2019 07.
Article in English | MEDLINE | ID: mdl-30605393

ABSTRACT

Bluetongue virus serotype 3 (BTV-3) has been found in the US since 1999 and was recently identified in white-tailed deer (WTD; Odocoileus virginianus) found dead in Virginia, US and West Virginia, US in 2016. Bluetongue viruses are known to cause pathologic changes in WTD; however, the relative virulence and pathogenicity of BTV-3 in WTD is unknown. In our study, eight WTD fawns, 6-12 wk old, were needle inoculated subcutaneously with a field isolate of BTV-3, with one fawn shaminoculated as a control during July 2017; all were monitored to determine the pathogenicity of BTV-3 in WTD. All inoculated fawns developed viremias that were first detected on postinoculation day (PID), 3 with peak titers on PID 5 by both quantitative reverse-transcription PCR (qRT-PCR) and virus isolation. The sham-inoculated control fawn also became viremic on PID 12, presumably through contact with infected fawns. Mild clinical signs, including periorbital edema and hyperemia, were first seen on PID 5. None of the fawns developed a significant febrile response, clinical pathology changes, or BTV-3 neutralizing antibodies. The cytokines TNF-α, IL-1ß, and IFN-α were not detected by commercial enzyme-linked immunosorbent assays developed for bovids. The absence of severe clinical disease, fibrinogenemia, thrombocytopenia, and leukopenia, along with the lack of seroconversion and a detectable cytokine response during the study period, is atypical when compared to previous experimental BTV serotype infections in WTD but may be related to the young age of these deer, possible attenuation of the BTV-3 strain used, innate resistance or, in some cases to maternally derived antibody to other BTV serotypes.


Subject(s)
Bluetongue virus/classification , Bluetongue/virology , Deer/virology , Serogroup , Animals , Bluetongue/pathology , Deer/blood , Female , Male , Viremia
8.
J Comp Pathol ; 162: 18-28, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30060839

ABSTRACT

Bluetongue virus (BTV) is neurotropic in nature, especially in ruminant fetuses and in-utero infection results in abortion and congenital brain malformations. The aim of the present study was to compare the neuropathogenicity of major Indian BTV serotypes 1, 2, 10, 16 and 23 by gross and histopathological lesions and virus distribution in experimentally infected neonatal BALB/c mice. Each BTV serotype (20 µl of inoculum containing 1 × 105 tissue culture infectious dose [TCID]50/ml of virus) was inoculated intracerebrally into 3-day-old mice, while a control group was inoculated with mock-infected cell culture medium. Infection with BTV serotypes 1, 2 and 23 led to 65-70% mortality at 7-9 days post infection (dpi) and caused severe necrotizing encephalitis with neurodegenerative changes in neurons, swelling and proliferation of vascular endothelial cells in the cerebral cortex, cerebellum, midbrain and brainstem. In contrast, infection with BTV serotypes 10 and 16 led to 25-30% mortality at 9-11 dpi and caused mild neuropathological lesions. BTV antigen was detected by immunohistochemistry, direct fluorescence antibody technique and confocal microscopy in the cytoplasm of neuronal cells of the hippocampus, grey matter of the cerebral cortex and vascular endothelial cells in the midbrain and brainstem of BTV-1, -2, -10, -16 and -23 infected groups from 3 to 20 dpi. BTV nucleic acid was detected in the infected brain tissues from as early as 24 h up to 20 dpi by VP7 gene segment-based one-step reverse transcriptase polymerase chain reaction. This study of the relative neurovirulence of BTV serotypes is likely to help design suitable vaccination and control strategies for the disease.


Subject(s)
Bluetongue/pathology , Brain/pathology , Brain/virology , Animals , Animals, Newborn , Bluetongue virus , Disease Models, Animal , Mice , Mice, Inbred BALB C , Serogroup
9.
J Virol ; 92(19)2018 10 01.
Article in English | MEDLINE | ID: mdl-30021901

ABSTRACT

Arboviruses can cause a variety of clinical signs, including febrile illness, arthritis, encephalitis, and hemorrhagic fever. The recent Zika epidemic highlighted the possibility that arboviruses may also negatively affect the male reproductive tract. In this study, we focused on bluetongue virus (BTV), the causative agent of bluetongue and one of the major arboviruses of ruminants. We show that rams that recovered from bluetongue displayed signs of testicular degeneration and azoospermia up to 100 days after the initial infection. Importantly, testicular degeneration was induced in rams experimentally infected with either a high (BTV-1IT2006)- or a low (BTV-1IT2013)-virulence strain of BTV. Rams infected with the low-virulence BTV strain displayed testicular lesions in the absence of other major clinical signs. Testicular lesions in BTV-infected rams were due to viral replication in the endothelial cells of the peritubular areas of the testes, resulting in stimulation of a type I interferon response, reduction of testosterone biosynthesis by Leydig cells and destruction of Sertoli cells and the blood-testis barrier in more severe cases. Hence, BTV induces testicular degeneration and disruption of spermatogenesis by replicating solely in the endothelial cells of the peritubular areas unlike other gonadotropic viruses. This study shows that a naturally occurring arboviral disease can cause testicular degeneration and affect male fertility at least temporarily.IMPORTANCE During the recent Zika epidemic, it has become apparent that arboviruses could potentially cause reproductive health problems in male patients. Little is known regarding the effects that arboviruses have on the male reproductive tract. Here, we studied bluetongue virus (BTV), an arbovirus of ruminants, and its effects on the testes of rams. We show that BTV was able to induce testicular degeneration in naturally and experimentally infected rams. Testicular degeneration was caused by BTV replication in the endothelial cells of the peritubular area surrounding the seminiferous tubules (the functional unit of the testes) and was associated with a localized type I interferon response, destruction of the cells supporting the developing germinal cells (Sertoli cells), and reduction of testosterone synthesis. As a result of BTV infection, rams became azoospermic. This study highlights that problems in the male reproductive tract caused by arboviruses could be more common than previously thought.


Subject(s)
Bluetongue virus/pathogenicity , Bluetongue/complications , Endothelium, Vascular/pathology , Infertility, Male/etiology , Sheep Diseases/etiology , Spermatogenesis , Testis/pathology , Animals , Bluetongue/pathology , Bluetongue/virology , Endothelium, Vascular/metabolism , Endothelium, Vascular/virology , Infertility, Male/pathology , Male , Sheep , Sheep Diseases/pathology , Testis/metabolism , Testis/virology , Testosterone/analysis , Virulence , Virus Replication
10.
Res Vet Sci ; 113: 87-93, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28918235

ABSTRACT

Bluetongue (BT) is a vector-borne viral disease caused by the Bluetongue virus (BTV), an Orbivirus from the Reoviridae family, affecting domestic and wild ruminants. BTV circulation in Brazil was first reported in 1978, and several serological surveys indicate that the virus is widespread, although with varied prevalence. In 2014, BT outbreaks affected sheep flocks in Rio Grande do Sul state, causing significant mortality (18.4%; 91/495) in BTV-infected sheep. In total, seven farms were monitored, and one or two sheep from each farm that died due to clinical signs of BT were necropsied. Apathy, pyrexia, anorexia, tachycardia, respiratory, and digestive disorders were noted. Additionally, an abortion was recorded in one of the monitored farms. The main gross lesions observed were pulmonary edema, anterior-ventral pulmonary consolidation, muscular necrosis in the esophagus and in the ventral serratus muscle, and hemorrhagic lesions in the heart. The blood and tissue samples were tested for BTV RNA detection by RT-qPCR targeting the segment 10. Positive samples were used for viral isolation. The isolated BTVs were typed by conventional RT-PCR targeting the segment 2 of the 26 BTV serotypes, followed by sequencing analysis. BTV-1, BTV-4 and BTV-17 were identified in the analyzed samples. Double or triple BTV co-infections with these serotypes were detected. We report the occurrence of BT outbreaks related to BTV-1, BTV-4 and BTV-17 infections and co-infections causing clinical signs in sheep flocks in Southern Brazil, with significant mortality and lethality rates.


Subject(s)
Bluetongue virus/genetics , Bluetongue/epidemiology , Coinfection/epidemiology , Disease Outbreaks/veterinary , Sheep Diseases/epidemiology , Animals , Bluetongue/pathology , Bluetongue/virology , Bluetongue virus/classification , Brazil/epidemiology , Coinfection/pathology , Coinfection/virology , Serogroup , Sheep , Sheep Diseases/pathology , Sheep Diseases/virology
11.
Infect Genet Evol ; 49: 256-267, 2017 04.
Article in English | MEDLINE | ID: mdl-28132926

ABSTRACT

Bluetongue virus (BTV) is a member of the genus Orbivirus within the family Reoviridae and causes a non-contagious, insect-transmitted disease in domestic and wild ruminants, mainly in sheep and occasionally in cattle and some species of deer. Virus infection can trigger the changes of the cellular microRNA (miRNA) expression profile, which play important post-transcriptional regulatory roles in gene expression and can greatly influence viral replication and pathogenesis. Here, we employed deep sequencing technology to determine which cellular miRNAs were differentially expressed in primary sheep testicular (ST) cells infected with BTV. A total of 25 known miRNAs and 240 novel miRNA candidates that were differentially expressed in BTV-infected and uninfected ST cells were identified, and 251 and 8428 predicted target genes were annotated, respectively. Nine differentially expressed miRNAs and their mRNA targets were validated by quantitative reverse transcription-polymerase chain reaction. Targets prediction and functional analysis of these regulated miRNAs revealed significant enrichment for several signaling pathways including MAPK, PI3K-Akt, endocytosis, Hippo, NF-kB, viral carcinogenesis, FoxO, and JAK-STAT signaling pathways. This study provides a valuable basis for further investigation on the roles of miRNAs in BTV replication and pathogenesis.


Subject(s)
Bluetongue virus/growth & development , Bluetongue/genetics , Gene Expression Regulation , Host-Pathogen Interactions , MicroRNAs/genetics , Testis/metabolism , Animals , Bluetongue/metabolism , Bluetongue/pathology , Bluetongue/virology , Bluetongue virus/pathogenicity , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Profiling , Gene Ontology , High-Throughput Nucleotide Sequencing , Janus Kinases/genetics , Janus Kinases/metabolism , Male , MicroRNAs/metabolism , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Molecular Sequence Annotation , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Primary Cell Culture , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Reverse Transcriptase Polymerase Chain Reaction , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Sheep, Domestic , Signal Transduction , Testis/pathology , Testis/virology
12.
Vector Borne Zoonotic Dis ; 16(6): 400-7, 2016 06.
Article in English | MEDLINE | ID: mdl-27111674

ABSTRACT

Bluetongue virus (BTV) is an orbivirus transmitted by biting midges (Culicoides spp.) that can result in moderate to high morbidity and mortality primarily in sheep and white-tailed deer. Although only 5 serotypes of BTV are considered endemic to the United States, as many as 11 incursive serotypes have been detected in livestock and wildlife in the past 16 years. Introductions of serotypes, with unknown virulence and disease risk, are constant threats to US agriculture. One potential incursive serotype of particular concern is the European strain of BTV-8, which was introduced into Northern Europe in 2006 and caused unprecedented livestock disease and mortality during the 2006-2007 vector seasons. To assess disease risk of BTV-8 in a common white-faced American sheep breed, eight Polled Dorset yearlings were experimentally infected and monitored for clinical signs. Viremia and viral tissue distribution were detected and quantified by real-time qRT-PCR. Overall, clinical disease was moderate with no mortality. Viremia reached as high as 9.7 log10 particles/mL and persisted at 5 logs or higher through the end of the study (28 days). Virus distribution in tissues was extensive with the highest mean titers at the peak of viremia (day 8) in the kidney (8.38 log10 particles/mg) and pancreas (8.37 log10 particles/mg). Virus persisted in tissues of some sheep at 8 logs or higher by day 28. Results of this study suggest that should BTV-8 emerge in the United States, clinical disease in this common sheep breed would likely be similar in form, duration, and severity to what is typically observed in severe outbreaks of endemic serotypes, not the extraordinary disease levels seen in Northern Europe. In addition, a majority of exposed sheep would be expected to survive and act as significant BTV-8 reservoirs with high titer viremias for subsequent transmission to other livestock and wildlife populations.


Subject(s)
Bluetongue virus/classification , Bluetongue/virology , Animals , Bluetongue/epidemiology , Bluetongue/genetics , Bluetongue/pathology , Bluetongue virus/genetics , Europe/epidemiology , Female , Genetic Predisposition to Disease , Risk Factors , Sheep , United States/epidemiology , Viremia , Virus Replication
13.
Vaccine ; 32(49): 6614-21, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25312275

ABSTRACT

Bluetongue virus (BTV) infections in ruminants pose a permanent agricultural threat since new serotypes are constantly emerging in new locations. Clinical disease is mainly observed in sheep, but cattle were unusually affected during an outbreak of BTV seroype 8 (BTV-8) in Europe. We previously developed an experimental vaccine based on recombinant viral protein 2 (VP2) of BTV-8 and non-structural proteins 1 (NS1) and NS2 of BTV-2, mixed with an immunostimulating complex (ISCOM)-matrix adjuvant. We demonstrated that bovine immune responses induced by this vaccine were as good or superior to those induced by a classic commercial inactivated vaccine. In this study, we evaluated the protective efficacy of the experimental vaccine in cattle and, based on the detection of VP7 antibodies, assessed its DIVA compliancy following virus challenge. Two groups of BTV-seronegative calves were subcutaneously immunized twice at a 3-week interval with the subunit vaccine (n=6) or with adjuvant alone (n=6). Following BTV-8 challenge 3 weeks after second immunization, controls developed viremia and fever associated with other mild clinical signs of bluetongue disease, whereas vaccinated animals were clinically and virologically protected. The vaccine-induced protection was likely mediated by high virus-neutralizing antibody titers directed against VP2 and perhaps by cellular responses to NS1 and NS2. T lymphocyte responses were cross-reactive between BTV-2 and BTV-8, suggesting that NS1 and NS2 may provide the basis of an adaptable vaccine that can be varied by using VP2 of different serotypes. The detection of different levels of VP7 antibodies in vaccinated animals and controls after challenge suggested a compliancy between the vaccine and the DIVA companion test. This BTV subunit vaccine is a promising candidate that should be further evaluated and developed to protect against different serotypes.


Subject(s)
Bluetongue virus/immunology , Bluetongue/prevention & control , Viral Vaccines/immunology , Viremia/prevention & control , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Bluetongue/immunology , Bluetongue/pathology , Bluetongue virus/classification , Cattle , Cholesterol/administration & dosage , Drug Combinations , Female , Injections, Subcutaneous , Phospholipids/administration & dosage , Saponins/administration & dosage , Serogroup , Vaccination/methods , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Viral Nonstructural Proteins/immunology , Viral Vaccines/administration & dosage , Viremia/immunology
14.
Virus Res ; 182: 35-42, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24100234

ABSTRACT

Bluetongue is an arthropod-borne disease caused by a virus of the genus Orbivirus, the bluetongue virus (BTV), which affects ruminant livestock such as cattle, sheep, and goats and wild ruminants such as deer, and camelids. Recently, adult mice with gene knockouts of the interferon α/ß receptor (IFNAR-/-) have been described as a model of lethal BTV infection. IFNAR(-/-) mice are highly susceptible to BTV-1, BTV-4 and BTV-8 infection when the virus is administered intravenously or subcutaneosuly. Disease progression and pathogenesis closely mimics signs of bluetongue disease in ruminants. In the present paper we review the studies where IFNAR(-/-) mice have been used as an animal model to study BTV transmission, pathogenesis, virulence, and protective efficacy of inactivated and new recombinant marker BTV vaccines. Furthermore, we report new data on protective efficacy of different strategies of BTV vaccination and also on induction of interferon α/ß and proinflammatory immune responses in IFNAR(-/-) mice infected with BTV.


Subject(s)
Bluetongue virus/immunology , Bluetongue virus/physiology , Bluetongue/pathology , Bluetongue/virology , Disease Models, Animal , Receptor, Interferon alpha-beta/deficiency , Animals , Bluetongue/immunology , Bluetongue/prevention & control , Bluetongue virus/pathogenicity , Mice , Mice, Knockout , Viral Vaccines/administration & dosage , Viral Vaccines/immunology
15.
Vet Microbiol ; 167(3-4): 250-9, 2013 Dec 27.
Article in English | MEDLINE | ID: mdl-24035481

ABSTRACT

The emergence of bluetongue disease (BT) among livestock in Europe in 2006 raised many questions including the occurrence and epidemiological significance of foetal infections in cattle. To clarify these aspects, vaccinated and unvaccinated pregnant heifers were sequentially infected twice in an isolation facility (biosafety level 3) with a northern European outbreak strain of Bluetongue virus serotype 8 (BTV-8). The study was terminated 2 months after calving with necropsy of the dams and their offspring. The cattle were monitored throughout the study by clinical scoring and for the presence of circulating neutralising antibodies, and after calving for the presence of infectious virus and viral RNA in blood and milk. Four calves, one born from a vaccinated dam and three from non-vaccinated ones, that were infected at 120 days of gestation had obvious haemorrhage of the pulmonary artery at necropsy. Although haemorrhage of the pulmonary artery is highly characteristic of BT, viral RNA was not detected in any of these calves. Furthermore, although none of the calves born from heifers infected prior to mid-gestation had teratogenic BTV typical brain lesions, some had lesions at birth suggestive of in utero BTV infection. Despite the lack of viral RNA detection, the presence of haemorrhage of the pulmonary artery deserves to be reported as a new observation in the context of the multiple investigations having as main subject the BTV placental crossing in cattle.


Subject(s)
Bluetongue/pathology , Cattle Diseases/pathology , Pregnancy Complications, Infectious/veterinary , Pulmonary Artery/pathology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/analysis , Antibodies, Viral/blood , Bluetongue/diagnosis , Bluetongue/immunology , Bluetongue virus/physiology , Brain/pathology , Cattle , Cattle Diseases/diagnosis , Cattle Diseases/immunology , Europe , Female , Milk/immunology , Placenta/pathology , Pregnancy , Pregnancy Complications, Infectious/pathology , RNA, Viral/analysis , RNA, Viral/blood , Sheep , Vaccination/veterinary
16.
Vet Microbiol ; 166(1-2): 184-94, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-23849094

ABSTRACT

Bluetongue virus serotypes 1 (BTV-1) and 8 (BTV-8) have been described as the most prevalent in Europe during recent outbreaks displaying intense virulence, sheep being among the most severely affected livestock species. However, BTV pathogenesis is still unclear. This study sought to elucidate differences in the pathogenetic mechanisms of BTV-1 and -8 in sheep. For this purpose, a time-course study was carried out, with sequential sacrifices in order to relate pathological lesions to changes in a range of virological and serological parameters. A greater virulence of BTV-1 was probed. BTV-1 infected sheep showed a longer clinical course, with a significant increase of clinical signs and more severe gross lesions than BTV-8 infected sheep. These differences appear not to be attributable to greater virus replication, suggesting viral loads did not influence in the pathogenicity of these serotypes. While both groups displayed an early, intense antibody response, they still developed clinical signs and lesions characteristic of bluetongue, indicating a lack of correlation between antibody levels and protection against the disease. Both acute phase response (APR) and thrombocytopenia induced by BTV-1 in sheep were more intense. Furthermore, an association between acute phase proteins (APPs) concentrations and the evolution of clinical signs and gross lesions was also observed, suggesting the existence of a direct link between the pathogenicity of BTV serotypes, the severity of vascular lesions and the serum concentrations of APPs. To our knowledge, this is the first verification of a measurable APR in sheep with both experimental and naturally occurring bluetongue.


Subject(s)
Acute-Phase Reaction/veterinary , Blood Coagulation , Bluetongue virus/pathogenicity , Bluetongue/pathology , Bluetongue/virology , Acute-Phase Proteins/immunology , Acute-Phase Reaction/virology , Animals , Antibodies, Viral/immunology , Bluetongue/blood , Bluetongue/immunology , Bluetongue virus/classification , Bluetongue virus/immunology , Bluetongue virus/physiology , Sheep , Virulence
17.
Vet Microbiol ; 166(3-4): 394-404, 2013 Oct 25.
Article in English | MEDLINE | ID: mdl-23890676

ABSTRACT

During the incursion of bluetongue virus (BTV) serotype 8 in Europe, an increase in the number of abortions in ruminants was observed. Transplacental transmission of BTV-8 in cattle and sheep, with subsequent foetal infection, is a feature of this specific bluetongue serotype. In this study, BTV-8 ability to cross the placental barrier at the beginning of the second third of pregnancy and at the end of pregnancy was investigated in goats in two separate experiments. In the first experiment, nine goats were experimentally infected with BTV-8 at 61 days of pregnancy. Foetuses were collected 21 dpi. BTV-8 was evidenced by real time RT-PCR and by viral isolation using blood from the umbilical cord and the spleens of 3 out of the 13 foetuses. All dams were viraemic (viral isolation) at the moment of sampling of the foetuses. Significant macroscopic or histological lesions could not be observed in foetuses or in their infected dams (notably at the placenta level). In the second experiment, 10 goats were infected with BTV-8 at 135 days of pregnancy. Kids were born by caesarean section at the programmed day of birth (15 dpi). BTV-8 could not be detected by rt-RT-PCR in blood or spleen samples from the kids. This study showed for the first time that BTV-8 transplacental transmission can occur in goats that have been infected at 61 days of pregnancy, with infectious virus recovered from the caprine foetuses. The observed transmission rate was quite high (33%) at this stage of pregnancy. However, it was not possible to demonstrate the existence of BTV-8 transplacental transmission when infection occurred at the end of the goat pregnancy.


Subject(s)
Abortion, Veterinary/virology , Bluetongue virus/physiology , Bluetongue/transmission , Goat Diseases/transmission , Infectious Disease Transmission, Vertical/veterinary , Placenta/virology , Pregnancy Complications, Infectious/veterinary , Abortion, Veterinary/pathology , Animals , Bluetongue/pathology , Bluetongue/virology , Bluetongue virus/isolation & purification , Female , Fetus/pathology , Fetus/virology , Goat Diseases/pathology , Goat Diseases/virology , Goats , Male , Placenta/pathology , Pregnancy , Pregnancy Complications, Infectious/pathology , Pregnancy Complications, Infectious/virology
18.
Vaccine ; 31(3): 553-8, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23159460

ABSTRACT

Since 1998, there have been multiple separate outbreaks of Bluetongue disease (BT) in Europe with the largest outbreak ever recorded in Northern Europe caused by Bluetongue virus serotype 8 (BTV-8). Coinciding with the BTV-8 outbreak, a virulent strain of BTV-1 emerged and co-infections of these two serotypes were reported. In response, we generated VLPs for BTV-8 and tested the efficacy of BTV-8 VLPs as a single immunogen and as a component of a multivalent vaccine, with VLPs of BTV-1 and BTV-2, in order to test if there was any interference between serotypes. All pre-Alps sheep vaccinated with BTV-8 VLPs developed a strong neutralising antibody response to BTV-8 and multivalent VLP vaccinated animals also developed neutralising antibodies to BTV-1 and BTV-2. There were no side effects observed due to the vaccination with either the single- or multivalent VLP cocktail. All VLP-vaccinated animals had no clinical manifestation of BT or viraemia after challenge with a virulent BTV-8 isolate. This data indicates that BTV-8 VLPs delivered as a single immunogen or as a component of a multivalent vaccine are highly efficacious. Moreover, there was no interference on the development of a strong protective immune response due to the combination of different phylogenetically unrelated BTV serotypes in the vaccinated animals. This report further highlights that BTV VLPs are safe and efficacious immunogens that are able to afford complete protection against a virulent virus challenge.


Subject(s)
Bluetongue virus/immunology , Bluetongue/prevention & control , Vaccines, Virus-Like Particle/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Bluetongue/pathology , Body Temperature , Female , Male , Sheep , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/adverse effects , Viremia/prevention & control
19.
Transbound Emerg Dis ; 60(3): 231-7, 2013 Jun.
Article in English | MEDLINE | ID: mdl-22571462

ABSTRACT

Forty-one cattle from seven Belgian farms and two French farms confirmed as infected with bluetongue virus serotype 8 (BTV-8) were monitored from the onset of clinical signs to describe the disease pattern and estimate the duration of blood RT-qPCR and competitiveELISA positivity under field conditions. On each visit, blood samples were taken, and a standardized clinical form was filled in for each animal. A clinical score was calculated for every week until the end of clinical signs. A classification and regression tree (CART) analysis was conducted to determine the most important clinical signs every week for the first 7 weeks. The highest scores were recorded within 2 weeks of clinical onset. The first recorded clinical signs were quite obviously visible (lethargy, conjunctivitis, lesions of nasal mucosa, nasal discharge). Skin lesions, a drop in milk production and weight loss appeared later in the course of the disease. A biphasic pattern regarding nasal lesions was noticed: the first peak concerned mainly congestive and ulcerative lesions, whereas the second peak mainly concerned crusty lesions. The median time estimated by survival analysis to obtain negative RT-qPCR results from the onset of clinical signs was 195 days (range 166-213 days) in the 23 cattle included in the analysis. Serological results remained strongly positive until the end of the study. These results should ensure more accurate detection of an emerging infectious disease and are of prime importance in improving the modelling of BTV-8 persistence in Europe.


Subject(s)
Bluetongue virus/pathogenicity , Bluetongue/pathology , Cattle Diseases/pathology , Conjunctivitis, Viral/veterinary , Nasal Mucosa/virology , Animals , Belgium/epidemiology , Bluetongue/complications , Bluetongue/epidemiology , Bluetongue virus/genetics , Bluetongue virus/isolation & purification , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/virology , Enzyme-Linked Immunosorbent Assay , France/epidemiology , Lethargy/veterinary , Lethargy/virology , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
20.
Transbound Emerg Dis ; 60(3): 252-62, 2013 Jun.
Article in English | MEDLINE | ID: mdl-22607118

ABSTRACT

In vitro studies have demonstrated that bluetongue virus (BTV)-induced vasoactive mediators could contribute to the endothelial cells dysfunction and increased vascular permeability responsible of lesions characteristic of bluetongue (BT) like oedema, haemorrhages and ischaemic necrosis in different tissues. However, few in vivo studies have been carried out to clarify the causes of these lesions. The aim of this study was to elucidate in vivo the pathogenetic mechanisms involved in the appearance of vascular lesions in different organs during BT. For this purpose, tissue samples from goats naturally infected with bluetongue virus serotype 1 (BTV-1) were taken for histopathological and immunohistochemical studies to determine the potential role of proinflammatory cytokines (tumour necrosis factor alpha, TNFα and interleukin one alpha, IL-1α) in the increased vascular permeability and their relationship with the presence of virus. Gross and histopathological examination revealed the presence of vascular damage leading to generalized oedema and haemorrhages. Immunohistochemical studies displayed that endothelial injury may have been due to the direct pathogenic effect of BTV infection on endothelial cells or may be a response to inflammatory mediators released by virus-infected endothelial cells and, possibly, other cell types such as monocytes/macrophages. These preliminary results of what appears to be the first in vivo study of tissue damage in small BT-infected ruminants suggest a direct link between the appearance of vascular changes and the presence of BTV-induced vasoactive cytokines.


Subject(s)
Bluetongue virus/pathogenicity , Bluetongue/immunology , Interleukin-1alpha/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vascular Diseases/pathology , Animals , Bluetongue/complications , Bluetongue/pathology , Bluetongue virus/genetics , Cell Membrane Permeability , Edema/etiology , Edema/metabolism , Enzyme-Linked Immunosorbent Assay , Goats , Hemorrhage/etiology , Hemorrhage/metabolism , Immunoenzyme Techniques , Inflammation Mediators/metabolism , Interleukin-1alpha/genetics , RNA, Messenger/genetics , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tumor Necrosis Factor-alpha/genetics , Vascular Diseases/immunology , Vascular Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...