Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.402
Filter
1.
Development ; 151(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38722098

ABSTRACT

During development, the gastrointestinal tract undergoes patterning along its anterior-posterior axis to define regions with distinct organs and functions. A new paper in Development derives human intestinal organoids from an individual with duodenal defects and a compound heterozygous variant in the gene encoding the transcription factor RFX6. By studying these organoids, the authors identify novel roles for RFX6 in intestinal patterning. To learn more about the story behind the paper, we caught up with first author J. Guillermo Sanchez and corresponding author Jim Wells, an endowed professor in the Division of Developmental Biology at Cincinnati Children's Hospital, USA, where he is also the Director for Basic Research in the Division of Endocrinology.


Subject(s)
Developmental Biology , Humans , History, 21st Century , History, 20th Century , Developmental Biology/history , Regulatory Factor X Transcription Factors/genetics , Regulatory Factor X Transcription Factors/metabolism , Organoids/metabolism , Body Patterning/genetics
2.
Curr Top Dev Biol ; 159: 168-231, 2024.
Article in English | MEDLINE | ID: mdl-38729676

ABSTRACT

The development of the vertebrate spinal cord involves the formation of the neural tube and the generation of multiple distinct cell types. The process starts during gastrulation, combining axial elongation with specification of neural cells and the formation of the neuroepithelium. Tissue movements produce the neural tube which is then exposed to signals that provide patterning information to neural progenitors. The intracellular response to these signals, via a gene regulatory network, governs the spatial and temporal differentiation of progenitors into specific cell types, facilitating the assembly of functional neuronal circuits. The interplay between the gene regulatory network, cell movement, and tissue mechanics generates the conserved neural tube pattern observed across species. In this review we offer an overview of the molecular and cellular processes governing the formation and patterning of the neural tube, highlighting how the remarkable complexity and precision of vertebrate nervous system arises. We argue that a multidisciplinary and multiscale understanding of the neural tube development, paired with the study of species-specific strategies, will be crucial to tackle the open questions.


Subject(s)
Body Patterning , Gene Expression Regulation, Developmental , Neural Tube , Signal Transduction , Neural Tube/embryology , Neural Tube/metabolism , Neural Tube/cytology , Animals , Body Patterning/genetics , Humans , Gene Regulatory Networks , Spinal Cord/embryology , Spinal Cord/cytology , Spinal Cord/metabolism , Cell Differentiation , Cell Movement
3.
Neural Dev ; 19(1): 5, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720353

ABSTRACT

BACKGROUND: Chaetognaths are a clade of marine worm-like invertebrates with a heavily debated phylogenetic position. Their nervous system superficially resembles the protostome type, however, knowledge regarding the molecular processes involved in neurogenesis is lacking. To better understand these processes, we examined the expression profiles of marker genes involved in bilaterian neurogenesis during post-embryonic stages of Spadella cephaloptera. We also investigated whether the transcription factor encoding genes involved in neural patterning are regionally expressed in a staggered fashion along the mediolateral axis of the nerve cord as it has been previously demonstrated in selected vertebrate, insect, and annelid models. METHODS: The expression patterns of genes involved in neural differentiation (elav), neural patterning (foxA, nkx2.2, pax6, pax3/7, and msx), and neuronal function (ChAT and VAChT) were examined in S. cephaloptera hatchlings and early juveniles using whole-mount fluorescent in situ hybridization and confocal microscopy. RESULTS: The Sce-elav + profile of S. cephaloptera hatchlings reveals that, within 24 h of post-embryonic development, the developing neural territories are not limited to the regions previously ascribed to the cerebral ganglion, the ventral nerve center (VNC), and the sensory organs, but also extend to previously unreported CNS domains that likely contribute to the ventral cephalic ganglia. In general, the neural patterning genes are expressed in distinct neural subpopulations of the cerebral ganglion and the VNC in hatchlings, eventually becoming broadly expressed with reduced intensity throughout the CNS in early juveniles. Neural patterning gene expression domains are also present outside the CNS, including the digestive tract and sensory organs. ChAT and VAChT domains within the CNS are predominantly observed in specific subpopulations of the VNC territory adjacent to the ventral longitudinal muscles in hatchlings. CONCLUSIONS: The observed spatial expression domains of bilaterian neural marker gene homologs in S. cephaloptera suggest evolutionarily conserved roles in neurogenesis for these genes among bilaterians. Patterning genes expressed in distinct regions of the VNC do not show a staggered medial-to-lateral expression profile directly superimposable to other bilaterian models. Only when the VNC is conceptually laterally unfolded from the longitudinal muscle into a flat structure, an expression pattern bearing resemblance to the proposed conserved bilaterian mediolateral regionalization becomes noticeable. This finding supports the idea of an ancestral mediolateral patterning of the trunk nervous system in bilaterians.


Subject(s)
Gene Expression Regulation, Developmental , Neurogenesis , Animals , Neurogenesis/physiology , Invertebrates/genetics , Body Patterning/genetics , Body Patterning/physiology , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Curr Top Dev Biol ; 159: 232-271, 2024.
Article in English | MEDLINE | ID: mdl-38729677

ABSTRACT

The anterior-to-posterior (head-to-tail) body axis is extraordinarily diverse among vertebrates but conserved within species. Body axis development requires a population of axial progenitors that resides at the posterior of the embryo to sustain elongation and is then eliminated once axis extension is complete. These progenitors occupy distinct domains in the posterior (tail-end) of the embryo and contribute to various lineages along the body axis. The subset of axial progenitors with neuromesodermal competency will generate both the neural tube (the precursor of the spinal cord), and the trunk and tail somites (producing the musculoskeleton) during embryo development. These axial progenitors are called Neuromesodermal Competent cells (NMCs) and Neuromesodermal Progenitors (NMPs). NMCs/NMPs have recently attracted interest beyond the field of developmental biology due to their clinical potential. In the mouse, the maintenance of neuromesodermal competency relies on a fine balance between a trio of known signals: Wnt/ß-catenin, FGF signalling activity and suppression of retinoic acid signalling. These signals regulate the relative expression levels of the mesodermal transcription factor Brachyury and the neural transcription factor Sox2, permitting the maintenance of progenitor identity when co-expressed, and either mesoderm or neural lineage commitment when the balance is tilted towards either Brachyury or Sox2, respectively. Despite important advances in understanding key genes and cellular behaviours involved in these fate decisions, how the balance between mesodermal and neural fates is achieved remains largely unknown. In this chapter, we provide an overview of signalling and gene regulatory networks in NMCs/NMPs. We discuss mutant phenotypes associated with axial defects, hinting at the potential significant role of lesser studied proteins in the maintenance and differentiation of the progenitors that fuel axial elongation.


Subject(s)
Body Patterning , Mesoderm , Animals , Body Patterning/genetics , Mesoderm/metabolism , Mesoderm/cytology , Mesoderm/embryology , Gene Expression Regulation, Developmental , Humans , Signal Transduction , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Cell Differentiation , Head/embryology
5.
Curr Top Dev Biol ; 159: 1-27, 2024.
Article in English | MEDLINE | ID: mdl-38729674

ABSTRACT

The diversity of vertebrate body plans is dizzying, yet stunning for the many things they have in common. Vertebrates have inhabited virtually every part of the earth from its coldest to warmest climates. They locomote by swimming, flying, walking, slithering, or climbing, or combinations of these behaviors. And they exist in many different sizes, from the smallest of frogs, fish and lizards to giraffes, elephants, and blue whales. Despite these differences, vertebrates follow a remarkably similar blueprint for the establishment of their body plan. Within the relatively small amount of time required to complete gastrulation, the process through which the three germ layers, ectoderm, mesoderm, and endoderm are created, the embryo also generates its body axis and is simultaneously patterned. For the length of this axis, the genes that distinguish the neck from the rib cage or the trunk from the sacrum are the Hox genes. In vertebrates, there was evolutionary pressure to maintain this set of genes in the organism. Over the past decades, much has been learned regarding the regulatory mechanisms that ensure the appropriate expression of these genes along the main body axes. Genetic functions continue to be explored though much has been learned. Much less has been discerned on the identity of co-factors used by Hox proteins for the specificity of transcriptional regulation or what downstream targets and pathways are critical for patterning events, though there are notable exceptions. Current work in the field is demonstrating that Hox genes continue to function in many organs long after directing early patterning events. It is hopeful continued research will shed light on remaining questions regarding mechanisms used by this important and conserved set of transcriptional regulators.


Subject(s)
Body Patterning , Gene Expression Regulation, Developmental , Genes, Homeobox , Vertebrates , Animals , Body Patterning/genetics , Vertebrates/genetics , Vertebrates/embryology , Genes, Homeobox/genetics
6.
Curr Top Dev Biol ; 159: 372-405, 2024.
Article in English | MEDLINE | ID: mdl-38729682

ABSTRACT

The Segmentation Clock is a tissue-level patterning system that enables the segmentation of the vertebral column precursors into transient multicellular blocks called somites. This patterning system comprises a set of elements that are essential for correct segmentation. Under the so-called "Clock and Wavefront" model, the system consists of two elements, a genetic oscillator that manifests itself as traveling waves of gene expression, and a regressing wavefront that transforms the temporally periodic signal encoded in the oscillations into a permanent spatially periodic pattern of somite boundaries. Over the last twenty years, every new discovery about the Segmentation Clock has been tightly linked to the nomenclature of the "Clock and Wavefront" model. This constrained allocation of discoveries into these two elements has generated long-standing debates in the field as what defines molecularly the wavefront and how and where the interaction between the two elements establishes the future somite boundaries. In this review, we propose an expansion of the "Clock and Wavefront" model into three elements, "Clock", "Wavefront" and signaling gradients. We first provide a detailed description of the components and regulatory mechanisms of each element, and we then examine how the spatiotemporal integration of the three elements leads to the establishment of the presumptive somite boundaries. To be as exhaustive as possible, we focus on the Segmentation Clock in zebrafish. Furthermore, we show how this three-element expansion of the model provides a better understanding of the somite formation process and we emphasize where our current understanding of this patterning system remains obscure.


Subject(s)
Body Patterning , Gene Expression Regulation, Developmental , Mesoderm , Somites , Animals , Body Patterning/genetics , Somites/embryology , Somites/metabolism , Mesoderm/embryology , Mesoderm/metabolism , Mesoderm/cytology , Zebrafish/embryology , Zebrafish/genetics , Signal Transduction , Biological Clocks/genetics
7.
Neural Dev ; 19(1): 4, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698415

ABSTRACT

BACKGROUND: The evolution of central nervous systems (CNSs) is a fascinating and complex topic; further work is needed to understand the genetic and developmental homology between organisms with a CNS. Research into a limited number of species suggests that CNSs may be homologous across Bilateria. This hypothesis is based in part on similar functions of BMP signaling in establishing fates along the dorsal-ventral (D-V) axis, including limiting neural specification to one ectodermal region. From an evolutionary-developmental perspective, the best way to understand a system is to explore it in a wide range of organisms to create a full picture. METHODS: Here, we expand our understanding of BMP signaling in Spiralia, the third major clade of bilaterians, by examining phenotypes after expression of a dominant-negative BMP Receptor 1 and after knock-down of the putative BMP antagonist Chordin-like using CRISPR/Cas9 gene editing in the annelid Capitella teleta (Pleistoannelida). RESULTS: Ectopic expression of the dominant-negative Ct-BMPR1 did not increase CNS tissue or alter overall D-V axis formation in the trunk. Instead, we observed a unique asymmetrical phenotype: a distinct loss of left tissues, including the left eye, brain, foregut, and trunk mesoderm. Adding ectopic BMP4 early during cleavage stages reversed the dominant-negative Ct-BMPR1 phenotype, leading to a similar loss or reduction of right tissues instead. Surprisingly, a similar asymmetrical loss of left tissues was evident from CRISPR knock-down of Ct-Chordin-like but concentrated in the trunk rather than the episphere. CONCLUSIONS: Our data highlight a novel asymmetrical phenotype, giving us further insight into the complicated story of BMP's developmental role. We further solidify the hypothesis that the function of BMP signaling during the establishment of the D-V axis and CNS is fundamentally different in at least Pleistoannelida, possibly in Spiralia, and is not required for nervous system delimitation in this group.


Subject(s)
Biological Evolution , Bone Morphogenetic Protein Receptors, Type I , Animals , Bone Morphogenetic Protein Receptors, Type I/genetics , Bone Morphogenetic Protein Receptors, Type I/metabolism , Body Patterning/genetics , Body Patterning/physiology , Signal Transduction/physiology
8.
Proc Natl Acad Sci U S A ; 121(20): e2321919121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38713625

ABSTRACT

Successful regeneration of missing tissues requires seamless integration of positional information along the body axes. Planarians, which regenerate from almost any injury, use conserved, developmentally important signaling pathways to pattern the body axes. However, the molecular mechanisms which facilitate cross talk between these signaling pathways to integrate positional information remain poorly understood. Here, we report a p21-activated kinase (smed-pak1) which functionally integrates the anterior-posterior (AP) and the medio-lateral (ML) axes. pak1 inhibits WNT/ß-catenin signaling along the AP axis and, functions synergistically with the ß-catenin-independent WNT signaling of the ML axis. Furthermore, this functional integration is dependent on warts and merlin-the components of the Hippo/Yorkie (YKI) pathway. Hippo/YKI pathway is a critical regulator of body size in flies and mice, but our data suggest the pathway regulates body axes patterning in planarians. Our study provides a signaling network integrating positional information which can mediate coordinated growth and patterning during planarian regeneration.


Subject(s)
Body Patterning , Planarians , Protein Serine-Threonine Kinases , Regeneration , Wnt Signaling Pathway , p21-Activated Kinases , Animals , Regeneration/physiology , Planarians/physiology , Planarians/genetics , Planarians/metabolism , p21-Activated Kinases/metabolism , p21-Activated Kinases/genetics , Wnt Signaling Pathway/physiology , Body Patterning/genetics , Body Patterning/physiology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Trans-Activators/metabolism , Trans-Activators/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
9.
Development ; 151(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38752392

ABSTRACT

The patterning of somites is coordinated by presomitic mesoderm cells through synchronised oscillations of Notch signalling, creating sequential waves of gene expression that propagate from the posterior to the anterior end of the tissue. In a new study, Klepstad and Marcon propose a new theoretical framework that recapitulates the dynamics of mouse somitogenesis observed in vivo and in vitro. To learn more about the story behind the paper, we caught up with first author Julie Klepstad and corresponding author Luciano Marcon, Principal Investigator at the Andalusian Center for Developmental Biology.


Subject(s)
Developmental Biology , Animals , Developmental Biology/history , Mice , Somites/embryology , Somites/metabolism , History, 21st Century , Humans , Body Patterning/genetics , History, 20th Century , Receptors, Notch/metabolism , Receptors, Notch/genetics
10.
Development ; 151(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38742434

ABSTRACT

During mouse development, presomitic mesoderm cells synchronize Wnt and Notch oscillations, creating sequential phase waves that pattern somites. Traditional somitogenesis models attribute phase waves to a global modulation of the oscillation frequency. However, increasing evidence suggests that they could arise in a self-organizing manner. Here, we introduce the Sevilletor, a novel reaction-diffusion system that serves as a framework to compare different somitogenesis patterning hypotheses. Using this framework, we propose the Clock and Wavefront Self-Organizing model that considers an excitable self-organizing region where phase waves form independent of global frequency gradients. The model recapitulates the change in relative phase of Wnt and Notch observed during mouse somitogenesis and provides a theoretical basis for understanding the excitability of mouse presomitic mesoderm cells in vitro.


Subject(s)
Receptors, Notch , Somites , Animals , Mice , Somites/embryology , Somites/metabolism , Receptors, Notch/metabolism , Receptors, Notch/genetics , Mesoderm/embryology , Mesoderm/metabolism , Models, Biological , Body Patterning/genetics , Wnt Proteins/metabolism , Wnt Proteins/genetics , Embryonic Development/genetics , Embryonic Development/physiology , Biological Clocks/physiology
11.
Proc Natl Acad Sci U S A ; 121(16): e2316244121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588419

ABSTRACT

Despite the conservation of genetic machinery involved in eye development, there is a strong diversity in the placement of eyes on the head of animals. Morphogen gradients of signaling molecules are vital to patterning cues. During Drosophila eye development, Wingless (Wg), a ligand of Wnt/Wg signaling, is expressed anterolaterally to form a morphogen gradient to determine the eye- versus head-specific cell fate. The underlying mechanisms that regulate this process are yet to be fully understood. We characterized defective proventriculus (dve) (Drosophila ortholog of human SATB1), a K50 homeodomain transcription factor, as a dorsal eye gene, which regulates Wg signaling to determine eye versus head fate. Across Drosophila species, Dve is expressed in the dorsal head vertex region where it regulates wg transcription. Second, Dve suppresses eye fate by down-regulating retinal determination genes. Third, the dve-expressing dorsal head vertex region is important for Wg-mediated inhibition of retinal cell fate, as eliminating the Dve-expressing cells or preventing Wg transport from these dve-expressing cells leads to a dramatic expansion of the eye field. Together, these findings suggest that Dve regulates Wg expression in the dorsal head vertex, which is critical for determining eye versus head fate. Gain-of-function of SATB1 exhibits an eye fate suppression phenotype similar to Dve. Our data demonstrate a conserved role for Dve/SATB1 in the positioning of eyes on the head and the interocular distance by regulating Wg. This study provides evidence that dysregulation of the Wg morphogen gradient results in developmental defects such as hypertelorism in humans where disproportionate interocular distance and facial anomalies are reported.


Subject(s)
Drosophila Proteins , Matrix Attachment Region Binding Proteins , Animals , Humans , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Matrix Attachment Region Binding Proteins/metabolism , Wnt1 Protein/genetics , Wnt1 Protein/metabolism , Drosophila/genetics , Retina/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Developmental , Drosophila melanogaster/metabolism , Body Patterning/genetics
12.
Development ; 151(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38587174

ABSTRACT

The gastrointestinal (GI) tract is complex and consists of multiple organs with unique functions. Rare gene variants can cause congenital malformations of the human GI tract, although the molecular basis of these has been poorly studied. We identified a patient with compound-heterozygous variants in RFX6 presenting with duodenal malrotation and atresia, implicating RFX6 in development of the proximal intestine. To identify how mutations in RFX6 impact intestinal patterning and function, we derived induced pluripotent stem cells from this patient to generate human intestinal organoids (HIOs). We identified that the duodenal HIOs and human tissues had mixed regional identity, with gastric and ileal features. CRISPR-mediated correction of RFX6 restored duodenal identity. We then used gain- and loss-of-function and transcriptomic approaches in HIOs and Xenopus embryos to identify that PDX1 is a downstream transcriptional target of RFX6 required for duodenal development. However, RFX6 had additional PDX1-independent transcriptional targets involving multiple components of signaling pathways that are required for establishing early regional identity in the GI tract. In summary, we have identified RFX6 as a key regulator in intestinal patterning that acts by regulating transcriptional and signaling pathways.


Subject(s)
Gene Expression Regulation, Developmental , Homeodomain Proteins , Organoids , Regulatory Factor X Transcription Factors , Trans-Activators , Humans , Regulatory Factor X Transcription Factors/genetics , Regulatory Factor X Transcription Factors/metabolism , Animals , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Trans-Activators/metabolism , Trans-Activators/genetics , Organoids/metabolism , Organoids/embryology , Duodenum/metabolism , Duodenum/embryology , Intestines/embryology , Intestinal Atresia/genetics , Induced Pluripotent Stem Cells/metabolism , Body Patterning/genetics , Signal Transduction/genetics , Mutation/genetics
13.
Development ; 151(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38372390

ABSTRACT

Embryogenesis results from the coordinated activities of different signaling pathways controlling cell fate specification and morphogenesis. In vertebrate gastrulation, both Nodal and BMP signaling play key roles in germ layer specification and morphogenesis, yet their interplay to coordinate embryo patterning with morphogenesis is still insufficiently understood. Here, we took a reductionist approach using zebrafish embryonic explants to study the coordination of Nodal and BMP signaling for embryo patterning and morphogenesis. We show that Nodal signaling triggers explant elongation by inducing mesendodermal progenitors but also suppressing BMP signaling activity at the site of mesendoderm induction. Consistent with this, ectopic BMP signaling in the mesendoderm blocks cell alignment and oriented mesendoderm intercalations, key processes during explant elongation. Translating these ex vivo observations to the intact embryo showed that, similar to explants, Nodal signaling suppresses the effect of BMP signaling on cell intercalations in the dorsal domain, thus allowing robust embryonic axis elongation. These findings suggest a dual function of Nodal signaling in embryonic axis elongation by both inducing mesendoderm and suppressing BMP effects in the dorsal portion of the mesendoderm.


Subject(s)
Body Patterning , Zebrafish , Animals , Body Patterning/genetics , Nodal Protein/genetics , Nodal Protein/metabolism , Morphogenesis/genetics , Signal Transduction , Transforming Growth Factor beta/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Gene Expression Regulation, Developmental
14.
Development ; 151(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38345326

ABSTRACT

Morphogen gradients provide essential positional information to gene networks through their spatially heterogeneous distribution, yet how they form is still hotly contested, with multiple models proposed for different systems. Here, we focus on the transcription factor Bicoid (Bcd), a morphogen that forms an exponential gradient across the anterior-posterior (AP) axis of the early Drosophila embryo. Using fluorescence correlation spectroscopy we find there are spatial differences in Bcd diffusivity along the AP axis, with Bcd diffusing more rapidly in the posterior. We establish that such spatially varying differences in Bcd dynamics are sufficient to explain how Bcd can have a steep exponential gradient in the anterior half of the embryo and yet still have an observable fraction of Bcd near the posterior pole. In the nucleus, we demonstrate that Bcd dynamics are impacted by binding to DNA. Addition of the Bcd homeodomain to eGFP::NLS qualitatively replicates the Bcd concentration profile, suggesting this domain regulates Bcd dynamics. Our results reveal how a long-range gradient can form while retaining a steep profile through much of its range.


Subject(s)
Drosophila Proteins , Homeodomain Proteins , Animals , Body Patterning/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Embryo, Nonmammalian/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism
15.
Development ; 151(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38345327

ABSTRACT

Neuromesodermal progenitor (NMPs) give rise to neural and mesodermal tissues during axis elongation. In their study, Fay Cooper, Anestis Tsakiridis and colleagues reveal the role of Notch signalling in NMP differentiation and its role in Hox gene expression. To learn more about their work, we spoke to first and co-corresponding author, Fay Cooper, and to co-corresponding author Anestis Tsakiridis, Group Leader at the University of Sheffield, UK.


Subject(s)
Body Patterning , Mesoderm , Humans , Body Patterning/genetics , Mesoderm/metabolism , Signal Transduction , Morphogenesis , Cell Differentiation
16.
Nat Commun ; 15(1): 1003, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38307837

ABSTRACT

Establishment of the left-right (LR, sinistral, dextral) body axis in many vertebrate embryos relies on cilia-driven leftward fluid flow within an LR organizer (LRO). A cardinal question is how leftward flow triggers symmetry breakage. The chemosensation model posits that ciliary flow enriches a signaling molecule on the left side of the LRO that promotes sinistral cell fate. However, the nature of this sinistralizing signal has remained elusive. In the Xenopus LRO, we identified the stem cell growth factor R-Spondin 2 (Rspo2) as a symmetrically expressed, sinistralizing signal. As predicted for a flow-mediated signal, Rspo2 operates downstream of leftward flow but upstream of the asymmetrically expressed gene dand5. Unexpectedly, in LR patterning, Rspo2 acts as an FGF receptor antagonist: Rspo2 via its TSP1 domain binds Fgfr4 and promotes its membrane clearance by Znrf3-mediated endocytosis. Concordantly, we find that at flow-stage, FGF signaling is dextralizing and forms a gradient across the LRO, high on the dextral- and low on the sinistral side. Rspo2 gain- and loss-of function equalize this FGF signaling gradient and sinistralize and dextralize development, respectively. We propose that leftward flow of Rspo2 produces an FGF signaling gradient that governs LR-symmetry breakage.


Subject(s)
Body Patterning , Intercellular Signaling Peptides and Proteins , Signal Transduction , Xenopus Proteins , Animals , Body Patterning/genetics , Cilia/metabolism , Xenopus laevis/metabolism , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism
17.
Proc Natl Acad Sci U S A ; 121(6): e2311625121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38300871

ABSTRACT

Molecular understanding of the vertebrate Organizer, a tissue center critical for inductive signaling during gastrulation, has so far been mostly limited to transcripts and a few proteins, the latter due to limitations in detection and sensitivity. The Spemann-Mangold Organizer (SMO) in the South African Clawed Frog (X. laevis), a popular model of development, has long been known to be the origin of signals that pattern the mesoderm and central nervous system. Molecular screens of the SMO have identified several genes responsible for the ability of the SMO to establish the body axis. Nonetheless, a comprehensive study of proteins and metabolites produced specifically in the SMO and their functional roles has been lacking. Here, we pioneer a deep discovery proteomic and targeted metabolomic screen of the SMO in comparison to the remainder of the embryo using high-resolution mass spectrometry (HRMS). Quantification of ~4,600 proteins and a panel of targeted metabolites documented differential expression for 460 proteins and multiple intermediates of energy metabolism in the SMO. Upregulation of oxidative phosphorylation and redox regulatory proteins gave rise to elevated oxidative stress and an accumulation of reactive oxygen species in the SMO. Imaging experiments corroborated these findings, discovering enrichment of hydrogen peroxide in the SMO. Chemical perturbation of the redox gradient perturbed mesoderm involution during early gastrulation. HRMS expands the bioanalytical toolbox of cell and developmental biology, providing previously unavailable information on molecular classes to challenge and refine our classical understanding of the Organizer and its function during early patterning of the embryo.


Subject(s)
Body Patterning , Proteomics , Animals , Reactive Oxygen Species/metabolism , Cell Lineage , Body Patterning/genetics , Gene Expression Regulation, Developmental , Transcription Factors/metabolism , Xenopus laevis/metabolism , Organizers, Embryonic/physiology , Energy Metabolism , Xenopus Proteins/metabolism
18.
Elife ; 132024 Feb 07.
Article in English | MEDLINE | ID: mdl-38323609

ABSTRACT

BMP signaling has a conserved function in patterning the dorsal-ventral body axis in Bilateria and the directive axis in anthozoan cnidarians. So far, cnidarian studies have focused on the role of different BMP signaling network components in regulating pSMAD1/5 gradient formation. Much less is known about the target genes downstream of BMP signaling. To address this, we generated a genome-wide list of direct pSMAD1/5 target genes in the anthozoan Nematostella vectensis, several of which were conserved in Drosophila and Xenopus. Our ChIP-seq analysis revealed that many of the regulatory molecules with documented bilaterally symmetric expression in Nematostella are directly controlled by BMP signaling. We identified several so far uncharacterized BMP-dependent transcription factors and signaling molecules, whose bilaterally symmetric expression may be indicative of their involvement in secondary axis patterning. One of these molecules is zswim4-6, which encodes a novel nuclear protein that can modulate the pSMAD1/5 gradient and potentially promote BMP-dependent gene repression.


Subject(s)
Sea Anemones , Animals , Sea Anemones/genetics , Gene Expression Regulation, Developmental , Signal Transduction , Genome , Gene Expression , Body Patterning/genetics
19.
Hereditas ; 161(1): 1, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167241

ABSTRACT

INTRODUCTION: The bicoid (bcd) gene in Drosophila has served as a paradigm for a morphogen in textbooks for decades. Discovered in 1986 as a mutation affecting anterior development in the embryo, its expression pattern as a protein gradient later confirmed the prediction from transplantation experiments. These experiments suggested that the protein fulfills the criteria of a true morphogen, with the existence of a homeodomain crucial for activation of genes along the anterior-posterior axis, based on the concentration of the morphogen. The bcd gene undergoes alternative splicing, resulting in, among other isoforms, a small and often neglected isoform with low abundance, which lacks the homeodomain, termed small bicoid (smbcd). Most importantly, all known classical strong bcd alleles used in the past to determine bcd function apparently do not affect the function of this isoform. RESULTS: To overcome the uncertainty regarding which isoform regulates what, I removed the bcd locus entirely using CRISPR technology. bcdCRISPR eggs exhibited a short and round appearance. The phenotype could be ascribed to smbcd because all bcd alleles affecting the function of the major transcript, termed large bicoid (lgbcd) showed normally sized eggs. Several patterning genes for the embryo showed expression in the oocyte, and their expression patterns were altered in bcdCRISPR oocytes. In bcdCRISPR embryos, all downstream segmentation genes showed altered expression patterns, consistent with the expression patterns in "classical" alleles; however, due to the altered egg geometry resulting in fewer blastoderm nuclei, additional constraints came into play, further affecting their expression patterns. CONCLUSIONS: This study unveils a novel and fundamental role of bcd in shaping the egg's geometry. This discovery demands a comprehensive revision of our understanding of this important patterning gene and prompts a reevaluation of past experiments conducted under the assumption that bcd mutants were bcdnull-mutants.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Protein Isoforms/metabolism , Body Patterning/genetics
20.
Proc Natl Acad Sci U S A ; 121(2): e2304470121, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38175868

ABSTRACT

Repeating patterns of synovial joints are a highly conserved feature of articulated digits, with variations in joint number and location resulting in diverse digit morphologies and limb functions across the tetrapod clade. During the development of the amniote limb, joints form iteratively within the growing digit ray, as a population of distal progenitors alternately specifies joint and phalanx cell fates to segment the digit into distinct elements. While numerous molecular pathways have been implicated in this fate choice, it remains unclear how they give rise to a repeating pattern. Here, using single-cell RNA sequencing and spatial gene expression profiling, we investigate the transcriptional dynamics of interphalangeal joint specification in vivo. Combined with mathematical modeling, we predict that interactions within the BMP signaling pathway-between the ligand GDF5, the inhibitor NOGGIN, and the intracellular effector pSMAD-result in a self-organizing Turing system that forms periodic joint patterns. Our model is able to recapitulate the spatiotemporal gene expression dynamics observed in vivo, as well as phenocopy digit malformations caused by BMP pathway perturbations. By contrasting in silico simulations with in vivo morphometrics of two morphologically distinct digits, we show how changes in signaling parameters and growth dynamics can result in variations in the size and number of phalanges. Together, our results reveal a self-organizing mechanism that underpins amniote digit segmentation and its evolvability and, more broadly, illustrate how Turing systems based on a single molecular pathway may generate complex repetitive patterns in a wide variety of organisms.


Subject(s)
Body Patterning , Joints , Animals , Body Patterning/genetics , Extremities , Signal Transduction , Birds , Mammals/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...