Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 819
Filter
1.
Mol Ecol ; 33(9): e17344, 2024 May.
Article in English | MEDLINE | ID: mdl-38597332

ABSTRACT

Body size variation is central in the evolution of life-history traits in amphibians, but the underlying genetic architecture of this complex trait is still largely unknown. Herein, we studied the genetic basis of body size and fecundity of the alternative morphotypes in a wild population of the Greek smooth newt (Lissotriton graecus). By combining a genome-wide association approach with linkage disequilibrium network analysis, we were able to identify clusters of highly correlated loci thus maximizing sequence data for downstream analysis. The putatively associated variants explained 12.8% to 44.5% of the total phenotypic variation in body size and were mapped to genes with functional roles in the regulation of gene expression and cell cycle processes. Our study is the first to provide insights into the genetic basis of complex traits in newts and provides a useful tool to identify loci potentially involved in fitness-related traits in small data sets from natural populations in non-model species.


Subject(s)
Body Size , Genome-Wide Association Study , Linkage Disequilibrium , Multifactorial Inheritance , Animals , Multifactorial Inheritance/genetics , Body Size/genetics , Salamandridae/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Genetics, Population , Fertility/genetics , Quantitative Trait Loci
2.
Genes (Basel) ; 15(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38674368

ABSTRACT

Domestication has shaped the diverse characteristics of rabbits, including coat color, fur structure, body size, and various physiological traits. Utilizing whole-genome resequencing (DNBSEQ-T7), we analyzed the genetic diversity, population structure, and genomic selection across 180 rabbits from 17 distinct breeds to uncover the genetic basis of these traits. We conducted whole-genome sequencing on 17 rabbit breeds, identifying 17,430,184 high-quality SNPs and analyzing genomic diversity, patterns of genomic variation, population structure, and selection signatures related to coat color, coat structure, long hair, body size, reproductive capacity, and disease resistance. Through PCA and NJ tree analyses, distinct clusters emerged among Chinese indigenous rabbits, suggesting varied origins and domestication histories. Selective sweep testing pinpointed regions and genes linked to domestication and key morphological and economic traits, including those affecting coat color (TYR, ASIP), structure (LIPH), body size (INSIG2, GLI3), fertility (EDNRA, SRD5A2), heat stress adaptation (PLCB1), and immune response (SEC31A, CD86, LAP3). Our study identified key genomic signatures of selection related to traits such as coat color, fur structure, body size, and fertility; these findings highlight the genetic basis underlying phenotypic diversification in rabbits and have implications for breeding programs aiming to improve productive, reproductive, and adaptive traits. The detected genomic signatures of selection also provide insights into rabbit domestication and can aid conservation efforts for indigenous breeds.


Subject(s)
Breeding , Polymorphism, Single Nucleotide , Selection, Genetic , Animals , Rabbits/genetics , Domestication , Whole Genome Sequencing , Phenotype , Genetic Variation , Body Size/genetics
3.
PLoS Comput Biol ; 20(4): e1011995, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38656999

ABSTRACT

Genomes contain conserved non-coding sequences that perform important biological functions, such as gene regulation. We present a phylogenetic method, PhyloAcc-C, that associates nucleotide substitution rates with changes in a continuous trait of interest. The method takes as input a multiple sequence alignment of conserved elements, continuous trait data observed in extant species, and a background phylogeny and substitution process. Gibbs sampling is used to assign rate categories (background, conserved, accelerated) to lineages and explore whether the assigned rate categories are associated with increases or decreases in the rate of trait evolution. We test our method using simulations and then illustrate its application using mammalian body size and lifespan data previously analyzed with respect to protein coding genes. Like other studies, we find processes such as tumor suppression, telomere maintenance, and p53 regulation to be related to changes in longevity and body size. In addition, we also find that skeletal genes, and developmental processes, such as sprouting angiogenesis, are relevant.


Subject(s)
Evolution, Molecular , Models, Genetic , Phylogeny , Animals , Longevity/genetics , Humans , Computational Biology/methods , Computer Simulation , Body Size/genetics , Nucleotides/genetics , Sequence Alignment/methods
4.
Zool Res ; 45(2): 314-328, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38485502

ABSTRACT

Animal body size variation is of particular interest in evolutionary biology, but the genetic basis remains largely unknown. Previous studies have shown the presence of two parallel evolutionary genetic clusters within the fish genus Epinephelus with evident divergence in body size, providing an excellent opportunity to investigate the genetic basis of body size variation in vertebrates. Herein, we performed phylotranscriptomic analysis and reconstructed the phylogeny of 13 epinephelids originating from the South China Sea. Two genetic clades with an estimated divergence time of approximately 15.4 million years ago were correlated with large and small body size, respectively. A total of 180 rapidly evolving genes and two positively selected genes were identified between the two groups. Functional enrichment analyses of these candidate genes revealed distinct enrichment categories between the two groups. These pathways and genes may play important roles in body size variation in groupers through complex regulatory networks. Based on our results, we speculate that the ancestors of the two divergent groups of groupers may have adapted to different environments through habitat selection, leading to genetic variations in metabolic patterns, organ development, and lifespan, resulting in body size divergence between the two locally adapted populations. These findings provide important insights into the genetic mechanisms underlying body size variation in groupers and species differentiation.


Subject(s)
Bass , Animals , Bass/genetics , Phylogeny , Body Size/genetics , China , Genetic Variation
5.
Dev Biol ; 509: 59-69, 2024 May.
Article in English | MEDLINE | ID: mdl-38373693

ABSTRACT

Mg2+ is a vital ion involved in diverse cellular functions by forming complexes with ATP. Intracellular Mg2+ levels are tightly regulated by the coordinated actions of multiple Mg2+ transporters, such as the Mg2+ efflux transporter, cyclin M (CNNM). Caenorhabditis elegans (C. elegans) worms with mutations in both cnnm-1 and cnnm-3 exhibit excessive Mg2+ accumulation in intestinal cells, leading to various phenotypic abnormalities. In this study, we investigated the mechanism underlying the reduction in body size in cnnm-1; cnnm-3 mutant worms. RNA interference (RNAi) of gtl-1, which encodes a Mg2+-intake channel in intestinal cells, restored the worm body size, confirming that this phenotype is due to excessive Mg2+ accumulation. Moreover, RNAi experiments targeting body size-related genes and analyses of mutant worms revealed that the suppression of the target of rapamycin complex 2 (TORC2) signaling pathway was involved in body size reduction, resulting in downregulated DAF-7 expression in head ASI neurons. As the DAF-7 signaling pathway suppresses dauer formation under stress, cnnm-1; cnnm-3 mutant worms exhibited a greater tendency to form dauer upon induction. Collectively, our results revealed that excessive accumulation of Mg2+ repressed the TORC2 signaling pathway in C. elegans worms and suggest the novel role of the DAF-7 signaling pathway in the regulation of their body size.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Signal Transduction/genetics , Mechanistic Target of Rapamycin Complex 2/genetics , Mechanistic Target of Rapamycin Complex 2/metabolism , Mutation/genetics , Body Size/genetics
6.
Am J Vet Res ; 85(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38346382

ABSTRACT

In this review, we examine mammalian body size as it reflects life history and genomic composition, with a primary focus on canids and the domestication of the gray wolf. The range of variation in body size is greater among Carnivora than any other terrestrial order. In the Canidae, this range is some 2 orders of magnitude. Macroevolutionary patterns (eg, Bergmann's rule and Cope's rule) that have been proposed in the past often fail to comport with modern studies on this aspect of carnivoran evolution. Clades often begin with small to medium size (mesocarnivorans) and diversify mostly in a right-skewed (larger) direction. The observed variation in body size reflects phenotypic plasticity in response to life history. As with many Mammalia, historically high gene flow (hybridization and introgression) among canid lineages has been a crucial source of genomic variation (nuclear and mitochondrial), yielding the potential for high plasticity of phenotypes such as body size. In addition, epigenetic marks connect genetic expression with environmental conditions in the manifested phenotypes. Among Mammalia generally, a larger size is associated with a longer life span, reflecting the foregoing genomic composition and environmental influences over a long geological time. However, the larger modern domestic dog breeds trend toward shorter life spans. The latter appears to reflect genetically mediated phenotypes that emerged secondary to domestication but nonetheless against a background of broadly and deeply conserved developmental and physiological patterns and body plans.


Subject(s)
Canidae , Animals , Dogs , Body Size/genetics , Mammals/genetics , Phenotype
7.
Anim Biotechnol ; 35(1): 2295926, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38149679

ABSTRACT

The body size traits are major traits in livestock, which intuitively displays the development of the animal's bones and muscles. This study used PCR amplification, Sanger sequencing, KASPar genotyping, and quantitative real-time reverse transcription PCR (qRT-PCR) to analyze the Single-nucleotide polymorphism and expression characteristics of Argonaute RISC catalytic component 2 (AGO2) and Plectin (PLEC) genes in Hu sheep. Two intron mutations were found in Hu sheep, which were AGO2 g.51700 A > C and PLEC g.23157 C > T, respectively. Through association analysis of two mutation sites and body size traits, it was found that AGO2 g.51700 A > C mainly affects the chest and cannon circumference of Hu sheep of while PLEC g.23157 C mainly affects body height and body length. The combined genotypes of AGO2 and PLEC genes with body size traits showed SNPs at the AGO2 g.51700 A > C and PLEC g.23157 C > T loci significantly improved the body size traits of Hu sheep. In addition, the AGO2 gene has the highest expression levels in the heart, rumen, and tail fat, and the PLEC gene is highly expressed in the heart. These two loci can provide new research ideas for improving the body size traits of Hu sheep.


Subject(s)
Plectin , Polymorphism, Single Nucleotide , Sheep/genetics , Animals , Plectin/genetics , Body Size/genetics , Polymorphism, Single Nucleotide/genetics , Genotype , Phenotype
8.
Genet Sel Evol ; 55(1): 83, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38017417

ABSTRACT

BACKGROUND: Cohorts of individuals that have been genotyped and phenotyped for genomic selection programs offer the opportunity to better understand genetic variation associated with complex traits. Here, we performed an association study for traits related to body size and muscular development in intensively selected beef cattle. We leveraged multiple trait information to refine and interpret the significant associations. RESULTS: After a multiple-step genotype imputation to the sequence-level for 14,762 Belgian Blue beef (BBB) cows, we performed a genome-wide association study (GWAS) for 11 traits related to muscular development and body size. The 37 identified genome-wide significant quantitative trait loci (QTL) could be condensed in 11 unique QTL regions based on their position. Evidence for pleiotropic effects was found in most of these regions (e.g., correlated association signals, overlap between credible sets (CS) of candidate variants). Thus, we applied a multiple-trait approach to combine information from different traits to refine the CS. In several QTL regions, we identified strong candidate genes known to be related to growth and height in other species such as LCORL-NCAPG or CCND2. For some of these genes, relevant candidate variants were identified in the CS, including three new missense variants in EZH2, PAPPA2 and ADAM12, possibly two additional coding variants in LCORL, and candidate regulatory variants linked to CCND2 and ARMC12. Strikingly, four other QTL regions associated with dimension or muscular development traits were related to five (recessive) deleterious coding variants previously identified. CONCLUSIONS: Our study further supports that a set of common genes controls body size across mammalian species. In particular, we added new genes to the list of those associated with height in both humans and cattle. We also identified new strong candidate causal variants in some of these genes, strengthening the evidence of their causality. Several breed-specific recessive deleterious variants were identified in our QTL regions, probably as a result of the extreme selection for muscular development in BBB cattle.


Subject(s)
Genome-Wide Association Study , Quantitative Trait Loci , Humans , Female , Cattle/genetics , Animals , Genome-Wide Association Study/veterinary , Belgium , Phenotype , Body Size/genetics , Mammals/genetics , Polymorphism, Single Nucleotide
9.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37703114

ABSTRACT

The high-fertility Meishan pig is currently categorized into medium sized (MMS) and small sized (SMS) based on body size. To identify causal genes responsible for the variation in body size within the two categories, we sequenced individuals representing the entire consanguinity of the existing Meishan pig. This enabled us to conduct genome selective signal analysis. Our findings revealed the genomes of MMS and SMS are stratified, with selective sweep regions formed by differential genomic intervals between the two categories enriched in multiple pig body size related quantitative trait loci (QTLs). Furthermore, the missense mutation c.575T > C of candidate causal gene NR6A1, accounting for the variation in lumbar vertebrae number in pigs, was positively selected in MMS only, leading to an increase in body length of MMS at 6 months of age. To precisely identify causal genes accounting for body size variation through multi-omics, we collected femoral cartilage and liver transcription data from MMS and SMS respectively, and re-sequencing data from pig breeds exhibiting varying body sizes. We found that two selected regions where the RSAD2-CMPK2 and COL3A1 genes are located, respectively, showed different haplotypes in pig breeds of varying body size, and was associated with body or carcass length in hybridized Suhuai pig. Additionally, the above three hub genes, were significantly greater expressed in SMS femoral cartilage and liver tissues compared to MMS. These three genes could strengthen the pathways related to bone resorption and metabolism in SMS, potentially hindering bone and skeletal development and resulting in a smaller body size in SMS. These findings provide valuable insights into the genetic mechanism of body size variation in Meishan pig population.


The existing well-known Meishan pig population has been categorized into medium sized (MMS), and small sized (SMS) based on body size, which is a result of artificial selection. MMS is relatively large in all body size traits, but otherwise have highly similar appearance and performance traits. To effectively identify the candidate selected genes that contribute to the body size variation in Meishan pigs, this study collected individuals from all lineages of MMS and SMS for re-sequencing. Additionally, femoral cartilage and liver transcription data were collected from MMS and SMS, respectively, and re-sequencing data from pig breeds exhibiting varying body sizes were also analyzed. Through multi-omics analysis, it was discovered that the missense mutation c.575T > C in the candidate causal gene NR6A1 was positively selected in MMS only, leading to an increase in the body length of MMS at 6 months of age. Moreover, the selected genes RSAD2-CMPK2 and COL3A1 were found to be significantly greater expressed in SMS femoral cartilage and liver tissues compared with MMS. These genes could potentially strengthen bone resorption and metabolism-related pathways in SMS. These findings contribute to a better understanding of the genetic mechanisms underlying body size variation in Meishan pigs and Chinese indigenous pigs.


Subject(s)
Collagen Type III , Nuclear Receptor Subfamily 6, Group A, Member 1 , Nucleoside-Phosphate Kinase , Oxidoreductases Acting on CH-CH Group Donors , Quantitative Trait Loci , Viperin Protein , Animals , Base Sequence , Body Size/genetics , Collagen Type III/genetics , Haplotypes , Nuclear Receptor Subfamily 6, Group A, Member 1/genetics , Swine/genetics , Viperin Protein/genetics , Sus scrofa , Nucleoside-Phosphate Kinase/genetics
10.
BMC Genom Data ; 24(1): 41, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37550632

ABSTRACT

BACKGROUND: At present, donkey meat in the market shows an imbalance between supply and demand, and there is an urgent need to cultivate a meat-type Dezhou donkey breed. On the one hand, it can improve the imbalance in the market, and on the other hand, it can promote the rapid development of the donkey industry. This study aimed to reveal significant genetic variation in the NK1 homeobox 2 gene (NKX1-2) of Dezhou donkeys and investigate the association between genotype and body size in Dezhou donkeys. RESULTS: In this study, a SNP (g.54704925 A > G) was identified at the exon4 by high-depth resequencing of the Dezhou donkey NKX1-2 gene. The AA genotype is the dominant genotype. The g.54704925 A > G site was significantly associated with body length, thoracic girth, and hide weight (P < 0.05), while it was highly significantly associated with body height and carcass weight (P < 0.01) in Dezhou donkeys. CONCLUSION: Overall, the results of this study showed that the NKX1-2 gene could be a candidate gene for breeding meat-type Dezhou donkeys, and the g.54704925 A > G locus could be used as a marker locus for selection and breeding.


Subject(s)
Equidae , Animals , Body Size/genetics , Equidae/genetics , Genotype , Phenotype , Sequence Analysis, DNA , Polymorphism, Single Nucleotide
11.
J Dairy Sci ; 106(12): 9055-9070, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37641329

ABSTRACT

Understanding the underlying pleiotropic relationships among growth and body size traits is important for refining breeding strategies in dairy cattle for optimal body size and growth rate. Therefore, we performed single-trait GWAS for monthly-recorded body weight (BW), hip height, body length, and chest girth from birth to 12 mo of age in Holstein animals, followed by stepwise multiple regression of independent or lowly-linked markers from GWAS loci using conditional and joint association analyses (COJO). Subsequently, we conducted a multitrait meta-analysis to detect pleiotropic markers. Based on the single-trait GWAS, we identified 170 significant SNPs, in which 59 of them remained significant after the COJO analyses. The most significant SNP, located at BTA7:3,676,741, explained 2.93% of the total phenotypic variance for BW6 (BW at 6 mo of age). We identified 17 SNPs with potential pleiotropic effects based on the multitrait meta-analyses, which resulted in 3 additional SNPs in comparison to those detected based on the single-trait GWAS. The identified quantitative trait loci regions overlap with genes known to influence human growth-related traits. According to positional and functional analyses, we proposed HMGA2, HNF4G, MED13L, BHLHE40, FRZB, DMP1, TRIB3, and GATAD2A as important candidate genes influencing the studied traits. The combination of single-trait GWAS and meta-analyses of GWAS results improved the efficiency of detecting associated SNPs, and provided new insights into the genetic mechanisms of growth and development in Holstein cattle.


Subject(s)
Genome-Wide Association Study , Quantitative Trait Loci , Humans , Cattle/genetics , Animals , Female , Genome-Wide Association Study/veterinary , Phenotype , Body Weight/genetics , Body Size/genetics , Polymorphism, Single Nucleotide
12.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37233614

ABSTRACT

High body weight (BW) in dogs has been associated with developmental as well as degenerative diseases, but the heritability of BW in dog breeds is largely unknown. The aim of the current study was to estimate heritability and genetic change (genetic trend) for BW in a range of dog breeds in Sweden. Body weight registrations from 19 dog breeds (with n ranging from 412 to 4,710) of varying body size, type and usage were collected from 2007 to 2016. The average BW of the breeds was 8 to 56 kg. The BW registrations were performed when the dogs were 12 to 24 mo of age (18 to 30 mo for one large-sized breed) in connection with an official radiographic screening program for hip dysplasia. Collected weight records were used to estimate heritability and genetic trends for BW. Several statistical models were used. The preliminary model included the fixed effects of breed (P < 0.001), sex (P < 0.001), year of screening (P < 0.001), litter size (P = 0.06), parity of the dam (P = 0.03) and linear regression on age at screening (P < 0.001), the latter five effects all nested within breed, and the random effects of litter and dam. Season of birth and the quadratic effect of age were also tested, but were not significant (P > 0.10). For the genetic analysis, various mixed linear models were tested within breed with different combinations of random effects; the most complex model included random effects of litter, direct additive, and maternal genetic effects, and maternal permanent environmental effects. The average heritability for BW over all 19 breeds was 51%, with a range of 35% to 70%, and the additive genetic coefficient of variance was around 9%. Maternal heritability was 5% to 9% and litter variance was below 10% with one exception (15% in Shetland Sheepdogs). For nine breeds, there was a genetic trend of increasing BW, whereas seven breeds had a genetic trend of decreasing BW. The largest absolute genetic change over a 10-yr period was around 0.6 kg or about 2% of the mean. In conclusion, given the small genetic changes in spite of the high heritability, it seems that there is generally a very weak selection, if any, for BW in the included dog breeds.


High body weight in dogs is often considered to cause problems, for instance, resulting in hip and elbow diseases. Furthermore, there is a huge variation in body conformation and size between different dog breeds, which is related to breeding for specific appearances and genetic traits. The aim of this study was to investigate the genetic variation of body weight within different dog breeds. To study this, we examined 19 dog breeds with an average body weight of 8 to 56 kg. We found that on average about 50% of the total variation in body weight between dogs, within a breed, depends on genetic differences, but with a range from 35% to 70% depending on breed. There were rather small changes over time in the genetic predisposition for high or low body weight; the largest changes were 0.6 kg over a 10-yr period.


Subject(s)
Parturition , Weight Gain , Pregnancy , Female , Dogs , Animals , Sweden , Parity , Body Size/genetics , Body Weight/genetics
13.
Genes (Basel) ; 14(5)2023 05 07.
Article in English | MEDLINE | ID: mdl-37239409

ABSTRACT

Goose is an important poultry commonly raised for meat. The early growth performance of geese significantly influences their market weight and slaughter weight, affecting the poultry industry's economic benefits. To identify the growth surge between the Shitou goose and the Wuzong goose, we collected the early growth body traits from 0 to 12 weeks. In addition, we investigated the transcriptomic changes in leg muscles at the high growth speed period to reveal the difference between the two geese breeds. We also estimated the growth curve parameters under three models, including the logistic, von Bertalanffy, and Gompertz models. The results showed that except for body length and keel length, the best-fitting model between the body weight and body size of the Shitou and Wuzong was the logistic model. The growth turning points of Shitou and Wuzong were 5.954 and 4.944 weeks, respectively, and the turning point of their body weight was 1459.01 g and 478.54 g, respectively. Growth surge occurred at 2-9 weeks in Shitou goose and at 1-7 weeks in Wuzong goose. The body size traits of the Shitou goose and Wuzong goose showed a trend of rapid growth in the early stage and slow growth in the later stage, and the Shitou goose growth was higher than the Wuzong goose. For transcriptome sequencing, a total of 87 differentially expressed genes (DEGs) were identified with a fold change ≥ 2 and a false discovery rate < 0.05. Many DEGs have a potential function for growth, such as CXCL12, SSTR4, FABP5, SLC2A1, MYLK4, and EIF4E3. KEGG pathway analysis identified that some DEGs were significantly enriched in the calcium signaling pathway, which may promote muscle growth. The gene-gene interaction network of DEGs was mainly related to the transmission of cell signals and substances, hematological system development, and functions. This study can provide theoretical guidance for the production and breeding management of the Shitou goose and Wuzong goose and help reveal the genetic mechanisms underlying diverse body sizes between two goose breeds.


Subject(s)
Geese , Gene Expression Profiling , Animals , Geese/genetics , Body Size/genetics , Muscles , Body Weight/genetics
14.
Genome Biol Evol ; 15(4)2023 04 06.
Article in English | MEDLINE | ID: mdl-37071793

ABSTRACT

Why the recently discovered nematode Caenorhabditis inopinata differs so greatly from its sibling species Caenorhabditis elegans remains unknown. A previous study showed that C. inopinata has more transposable elements (TEs), sequences that replicate and move autonomously throughout the genome, potentially altering the expression of neighboring genes. In this study, we focused on how the body size of this species has evolved and whether TEs could affect the expression of genes related to species-specific traits such as body size. First, we compared gene expression levels between C. inopinata and C. elegans in the L4 larval and young adult stages-when growth rates differ most prominently between these species-to identify candidate genes contributing to their differences. The results showed that the expression levels of collagen genes were consistently higher in C. inopinata than in C. elegans and that some genes related to cell size were differentially expressed between the species. Then, we examined whether genes with TE insertions are differentially expressed between species. Indeed, the genes featuring C. inopinata-specific TE insertions had higher expression levels in C. inopinata than in C. elegans. These upregulated genes included those related to body size, suggesting that these genes could be candidates for artificial TE insertion to examine the role of TEs in the body size evolution of C. inopinata.


Subject(s)
Caenorhabditis elegans , Caenorhabditis , Animals , Caenorhabditis elegans/genetics , Caenorhabditis/genetics , DNA Transposable Elements , Body Size/genetics
15.
Heredity (Edinb) ; 130(5): 302-311, 2023 05.
Article in English | MEDLINE | ID: mdl-36878946

ABSTRACT

Morphological scaling relationships between the sizes of individual traits and the body captures the characteristic shape of a species, and their evolution is the primary mechanism of morphological diversification. However, we have almost no knowledge of the genetic variation of scaling, which is critical if we are to understand how scaling evolves. Here we explore the genetics of population scaling relationships (scaling relationships fit to multiple genetically-distinct individuals in a population) by describing the distribution of individual scaling relationships (genotype-specific scaling relationships that are unseen or cryptic). These individual scaling relationships harbor the genetic variation in the developmental mechanisms that regulate trait growth relative to body growth, and theoretical studies suggest that their distribution dictates how the population scaling relationship will respond to selection. Using variation in nutrition to generate size variation within 197 isogenic lineages of Drosophila melanogaster, we reveal extensive variation in the slopes of the wing-body and leg-body individual scaling relationships among genotypes. This variation reflects variation in the nutritionally-induced size plasticity of the wing, leg, and body. Surprisingly, we find that variation in the slope of individual scaling relationships primarily results from variation in nutritionally-induced plasticity of body size, not leg or wing size. These data allow us to predict how different selection regimes affect scaling in Drosophila, and is the first step in identifying the genetic targets of such selection. More generally, our approach provides a framework for understanding the genetic variation of scaling, an important prerequisite to explaining how selection changes scaling and morphology.


Subject(s)
Drosophila melanogaster , Drosophila , Animals , Drosophila melanogaster/genetics , Body Size/genetics , Phenotype , Wings, Animal/anatomy & histology , Genetic Variation
16.
Int J Epidemiol ; 52(5): 1377-1387, 2023 10 05.
Article in English | MEDLINE | ID: mdl-36952292

ABSTRACT

BACKGROUND/OBJECTIVES: Different genetic variants are associated with larger body size in childhood vs adulthood. Whether and when these variants predominantly influence adiposity are unknown. We examined how genetic variants influence total body fat and total lean mass trajectories. METHODS: Data were from the Avon Longitudinal Study of Parents and Children birth cohort (N = 6926). Sex-specific genetic risk scores (GRS) for childhood and adulthood body size were generated, and dual-energy X-ray absorptiometry scans measured body fat and lean mass six times between the ages of 9 and 25 years. Multilevel linear spline models examined associations of GRS with fat and lean mass trajectories. RESULTS: In males, the sex-specific childhood and adulthood GRS were associated with similar differences in fat mass from 9 to 18 years; 8.3% [95% confidence interval (CI) 5.1, 11.6] and 7.5% (95% CI 4.3, 10.8) higher fat mass at 18 years per standard deviation (SD) higher childhood and adulthood GRS, respectively. In males, the sex-combined childhood GRS had stronger effects at ages 9 to 15 than the sex-combined adulthood GRS. In females, associations for the sex-specific childhood GRS were almost 2-fold stronger than the adulthood GRS from 9 to 18 years: 10.5% (95% CI 8.5, 12.4) higher fat mass at 9 years per SD higher childhood GRS compared with 5.1% (95% CI 3.2, 6.9) per-SD higher adulthood GRS. In females, the sex-combined GRS had similar effects, with slightly larger effect estimates. Lean mass effect sizes were much smaller. CONCLUSIONS: Genetic variants for body size are more strongly associated with adiposity than with lean mass. Sex-combined childhood variants are more strongly associated with increased adiposity until early adulthood. This may inform future studies that use genetics to investigate the causes and impact of adiposity at different life stages.


Subject(s)
Genetic Predisposition to Disease , Life Change Events , Male , Child , Female , Humans , Adolescent , Young Adult , Adult , Longitudinal Studies , Prospective Studies , Body Mass Index , Obesity/genetics , Adipose Tissue , Adiposity/genetics , Body Size/genetics
17.
Int J Mol Sci ; 24(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36835359

ABSTRACT

Body size is an important biological phenotypic trait that has attracted substantial attention. Small domestic pigs can serve as excellent animal models for biomedicine and also help meet sacrificial culture needs in human societies. Although the mechanisms underlying vertebral development regulating body size variation in domestic pigs during the embryonic period have been well described, few studies have examined the genetic basis of body size variation in post embryonic developmental stages. In this study, seven candidate genes-PLIN1, LIPE, PNPLA1, SCD, FABP5, KRT10 and IVL-significantly associated with body size were identified in Min pigs, on the basis of weighted gene co-expression network analysis (WGCNA), and most of their functions were found to be associated with lipid deposition. Six candidate genes except for IVL were found to have been subjected to purifying selection. PLIN1 had the lowest ω value (0.139) and showed heterogeneous selective pressure among domestic pig lineages with different body sizes (p < 0.05). These results suggested that PLIN1 is an important genetic factor regulating lipid deposition and consequently affecting body size variation in pigs. The culture of whole pig sacrifice in Manchu during the Qing Dynasty in China might have contributed to the strong artificial domestication and selection of Hebao pigs.


Subject(s)
Body Size , Perilipin-1 , Selection, Genetic , Swine, Miniature , Transcriptome , Animals , Humans , Acyltransferases/genetics , Perilipin-1/genetics , Perilipin-1/physiology , Phospholipases , Body Size/genetics , Lipid Metabolism/genetics , Swine, Miniature/genetics , Swine, Miniature/growth & development
18.
Int J Obes (Lond) ; 47(3): 181-189, 2023 03.
Article in English | MEDLINE | ID: mdl-36635383

ABSTRACT

BACKGROUND: Anthropometric measures show high heritability, and genetic correlations have been found between obesity-related traits. However, we lack a comprehensive analysis of the genetic background of human body morphology using detailed anthropometric measures. METHODS: Height, weight, 7 skinfold thicknesses, 7 body circumferences and 4 body diameters (skeletal breaths) were measured in 214 pairs of twin children aged 3-18 years (87 monozygotic pairs) in the Autonomous Region of Madeira, Portugal. Factor analysis (Varimax rotation) was used to analyze the underlying structure of body physique. Genetic twin modeling was used to estimate genetic and environmental contributions to the variation and co-variation of the anthropometric traits. RESULTS: Together, two factors explained 80% of the variation of all 22 anthropometric traits in boys and 73% in girls. Obesity measures (body mass index, skinfold thickness measures, as well as waist and hip circumferences) and limb circumferences loaded most strongly on the first factor, whereas height and body diameters loaded especially on the second factor. These factors as well as all anthropometric measures showed high heritability (80% or more for most of the traits), whereas the rest of the variation was explained by environmental factors not shared by co-twins. Obesity measures showed high genetic correlations (0.75-0.98). Height showed the highest genetic correlations with body diameter measures (0.58-0.76). Correlations between environmental factors not shared by co-twins were weaker than the genetic correlations but still substantial. The correlation patterns were roughly similar in boys and girls. CONCLUSIONS: Our results show high genetic correlations underlying the human body physique, suggesting that there are sets of genes widely affecting anthropometric traits. Better knowledge of these genetic variants can help to understand the development of obesity and other features of the human physique.


Subject(s)
Obesity , Twins , Male , Female , Humans , Child , Anthropometry , Body Mass Index , Body Size/genetics , Twins/genetics , Obesity/epidemiology , Obesity/genetics , Twins, Monozygotic/genetics , Twins, Dizygotic
19.
Poult Sci ; 102(1): 102303, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36436378

ABSTRACT

Body size is one of the main selection indices in chicken breeding. Although often investigated, knowledge of the underlying genetic mechanisms is incomplete. The aim of the current study was to identify genomic regions associated with body size differences between Asian Game and Asian Bantam type chickens. In this study, 94 and 107 chickens from 4 Asian Game and 5 Asian Bantam type breeds, respectively, were genotyped using the chicken 580K single nucleotide polymorphism (SNP) array. A genome-wide association study (GWAS) and principal component analyses (PCA) were performed to identify genomic regions associated with body size related-traits such as wing length, shank length, shank thickness, keel length, and body weight. Hierarchical clustering of genotype data showed a clear genetic difference between the investigated Asian Game and Asian Bantam chicken types. GWAS identified 16 genomic regions associated with wing length (2, FDR ≤ 0.018), shank thickness (6, FDR ≤ 0.008), keel length (5, FDR ≤ 0.023), and body weight (3, FDR ≤ 0.041). PCA showed that the first principal component (PC1) separated the 2 chicken types and significantly correlated with the measured body size related-traits (P ≤ 2.24e-40). SNPs contributing significantly to PC1 were subjected to a more detailed investigation. This analysis identified 11 regions potentially associated with differences in body size related-traits. A region on chromosome 4 (GGA4) (17.3-21.3 Mb) was detected in both analyses GWAS and PCA. This region harbors 60 genes. Among them are myotubularin 1 (MTM1) and secreted frizzled-related protein 2 (SFPR2) which can be considered as potential candidate genes for body size related-traits. Our results clearly show that the investigated Asian Game type chicken breeds are genetically different from the Asian Bantam breeds. A region on GGA4 between 17.3 and 21.3 Mb was identified which contributes to the phenotypic difference, though further validation of candidate genes is necessary.


Subject(s)
Chickens , Genome-Wide Association Study , Animals , Genotype , Chickens/genetics , Genome-Wide Association Study/veterinary , Genomics , Body Size/genetics , Phenotype , Body Weight/genetics , Polymorphism, Single Nucleotide
20.
J Dairy Sci ; 106(1): 421-438, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36424319

ABSTRACT

This study sheds light on the genetic complexity and interplay of production, body size, and metabolic health in dairy cattle. Phenotypes for body size-related traits from conformation classification (130,166 animals) and production (101,562 animals) of primiparous German Holstein cows were available. Additionally, 21,992, 16,641, and 7,096 animals were from herds with recordings of the metabolic diseases ketosis, displaced abomasum, and milk fever in first, second, and third lactation. Moreover, all animals were genotyped. Heritabilities of traits and genetic correlations between all traits were estimated and GWAS were performed. Heritability was between 0.240 and 0.333 for production and between 0.149 and 0.368 for body size traits. Metabolic diseases were lowly heritable, with estimates ranging from 0.011 to 0.029 in primiparous cows, from 0.008 to 0.031 in second lactation, and from 0.037 to 0.052 in third lactation. Production was found to have negative genetic correlations with body condition score (BCS; -0.279 to -0.343) and udder depth (-0.348 to -0.419). Positive correlations were observed for production and body depth (0.138-0.228), dairy character (DCH) (0.334-0.422), and stature (STAT) (0.084-0.158). In first parity cows, metabolic disease traits were unfavorably correlated with production, with genetic correlations varying from 0.111 to 0.224, implying that higher yielding cows have more metabolic problems. Genetic correlations of disease traits in second and third lactation with production in primiparous cows were low to moderate and in most cases unfavorable. While BCS was negatively correlated with metabolic diseases (-0.255 to -0.470), positive correlations were found between disease traits and DCH (0.269-0.469) as well as STAT (0.172-0.242). Thus, the results indicate that larger and sharper animals with low BCS are more susceptible to metabolic disorders. Genome-wide association studies revealed several significantly associated SNPs for production and conformation traits, confirming previous findings from literature. Moreover, for production and conformation traits, shared significant signals on Bos taurus autosome (BTA) 5 (88.36 Mb) and BTA 6 (86.40 to 87.27 Mb) were found, implying pleiotropy. Additionally, significant SNPs were observed for metabolic diseases on BTA 3, 10, 14, 17, and 26 in first lactation and on BTA 2, 6, 8, 17, and 23 in third lactation. Overall, this study provides important insights into the genetic basis and interrelations of relevant traits in today's Holstein cattle breeding programs, and findings may help to improve selection decisions.


Subject(s)
Cattle Diseases , Ketosis , Animals , Cattle , Female , Pregnancy , Body Size/genetics , Cattle Diseases/genetics , Cattle Diseases/metabolism , Genome-Wide Association Study/veterinary , Ketosis/veterinary , Lactation/genetics , Milk/metabolism , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...