Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
1.
Molecules ; 29(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38611867

ABSTRACT

We previously revealed that phosphine-boranes can function as molecular frameworks for biofunctional molecules. In the present study, we exploited the diversity of available phosphines to design and synthesize a series of B-(trifluoromethyl)phenyl phosphine-borane derivatives as novel progesterone receptor (PR) antagonists. We revealed that the synthesized phosphine-borane derivatives exhibited LogP values in a predictable manner and that the P-H group in the phosphine-borane was almost nonpolar. Among the synthesized phosphine-boranes, which exhibited PR antagonistic activity, B-(4-trifluoromethyl)phenyl tricyclopropylphosphine-borane was the most potent with an IC50 value of 0.54 µM. A docking simulation indicated that the tricyclopropylphosphine moiety plays an important role in ligand-receptor interactions. These results support the idea that phosphine-boranes are versatile structural options in drug discovery, and the developed compounds are promising lead compounds for further structural development of next-generation PR antagonists.


Subject(s)
Boranes , Phosphines , Receptors, Progesterone , Boranes/pharmacology , Computer Simulation , Drug Discovery
2.
Biochem Pharmacol ; 214: 115642, 2023 08.
Article in English | MEDLINE | ID: mdl-37321416

ABSTRACT

Carbon monoxide (CO) is an endogenously produced gaseous signaling molecule with demonstrated pharmacological effects. In studying CO biology, three delivery forms have been used: CO gas, CO in solution, and CO donors of various types. Among the CO donors, four carbonyl complexes with either a transition metal ion or borane (BH3) (termed CO-releasing molecules or CORMs) have played the most prominent roles appearing in over 650 publications. These are CORM-2, CORM-3, CORM-A1, and CORM-401. Intriguingly, there have been unique biology findings that were only observed with these CORMs, but not CO gas; yet these properties were often attributed to CO, raising puzzling questions as to why CO source would make such a fundamental difference in terms of CO biology. Recent years have seen a large number of reports of chemical reactivity (e.g., catalase-like activity, reaction with thiol, and reduction of NAD(P)+) and demonstrated CO-independent biological activity for these four CORMs. Further, CORM-A1 releases CO in an idiosyncratic fashion; CO release from CORM-401 is strongly influenced or even dependent on reaction with an oxidant and/or a nucleophile; CORM-2 mostly releases CO2, not CO, after a water-gas shift reaction except in the presence of a strong nucleophile; and CORM-3 does not release CO except in the presence of a strong nucleophile. All these beg the question as to what constitutes an appropriate CO donor for studying CO biology. This review critically summarizes literature findings related to these aspects, with the aim of helping result interpretation when using these CORMs and development of essential criteria for an appropriate donor for studying CO biology.


Subject(s)
Boranes , Organometallic Compounds , Organometallic Compounds/pharmacology , Boranes/chemistry , Boranes/pharmacology , Biology , Carbon Monoxide/pharmacology
3.
Molecules ; 27(14)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35889376

ABSTRACT

Lipoxygenases convert polyunsaturated fatty acids into biologically active metabolites such as inflammatory mediators-prostaglandins and leukotrienes. The inhibition of lipoxygenases is increasingly employed in the treatment of cancer. We evaluated the anticancer potential of two novel 5-lipoxygenase inhibitors, named CarbZDNaph and CarbZDChin, which are analogues of the commercially available inhibitor Rev-5901. The in vitro segment of this study was conducted on a mouse colorectal carcinoma cell line-CT26CL25. For an in vivo model, we induced tumors in BALB/c mice by the implantation of CT26CL25 cells, and we treated the animals with potential inhibitors. A 48 h treatment resulted in diminished cell viability. Calculated IC50 values (half-maximal inhibitory concentrations) were 25 µM, 15 µM and 30 µM for CarbZDNaph, CarbZDChin and Rev-5901, respectively. The detailed analysis of mechanism revealed an induction of caspase-dependent apoptosis and autophagy. In the presence of chloroquine, an autophagy inhibitor, we observed an increased mortality of cells, implying a cytoprotective role of autophagy. Our in vivo experiment reports tumor growth attenuation in animals treated with CarbZDChin. Compounds CarbZDNaph and Rev-5901 lacked an in vivo efficacy. The results presented in this study display a strong effect of compound CarbZDChin on malignant cell growth. Having in mind the important role of inflammation in cancer development, these results have a significant impact and are worthy of further evaluation.


Subject(s)
Boranes , Carcinoma , Colonic Neoplasms , Animals , Apoptosis , Autophagy , Boranes/pharmacology , Caspase 3/metabolism , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Lipoxygenases , Mice , Mice, Inbred BALB C
4.
Int J Mol Sci ; 23(12)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35743158

ABSTRACT

Many organophosphorus compounds (OPs), especially various α-aminophosphonates, exhibit anti-cancer activities. They act, among others, as inhibitors of the proteases implicated in cancerogenesis. Thesetypes of inhibitors weredescribed, e.g., for neutral endopeptidase (NEP) expressed in different cancer cells, including osteosarcoma (OS). The aim of the present study isto evaluate new borane-protected derivatives of phosphonous acid (compounds 1-7) in terms of their drug-likeness properties, anti-osteosarcoma activities in vitro (against HOS and Saos-2 cells), and use as potential NEP inhibitors. The results revealed that all tested compounds exhibited the physicochemical and ADME properties typical for small-molecule drugs. However, compound 4 did not show capability of blood-brain barrier penetration (Lipinski and Veber rules;SwissAdme tool). Moreover, the α-aminophosphonite-boranes (compounds 4-7) exhibited stronger anti-proliferative activity against OS cells than the other phosphonous acid-borane derivatives (compounds 1-3),especially regarding HOS cells (MTT assay). The most promising compounds 4 and 6 induced apoptosis through the activation of caspase 3 and/or cell cycle arrest at the G2 phase (flow cytometry). Compound 4 inhibited the migration and invasiveness of highly aggressive HOS cells (wound/transwell and BME-coated transwell assays, respectively). Additionally, compound 4 and, to a lesser extent, compound 6 inhibited NEP activity (fluorometric assay). This activity of compound 4 was involved in its anti-proliferative potential (BrdU assay). The present study shows that compound 4 can be considered a potential anti-osteosarcoma agent and a scaffold for the development of new NEP inhibitors.


Subject(s)
Antineoplastic Agents , Bone Neoplasms , Boranes , Osteosarcoma , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Bone Neoplasms/drug therapy , Bone Neoplasms/metabolism , Boranes/pharmacology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Humans , Neprilysin/pharmacology , Osteosarcoma/drug therapy , Osteosarcoma/metabolism
5.
J Cardiovasc Pharmacol ; 78(5): e656-e661, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34328710

ABSTRACT

ABSTRACT: Infarct size is a major determinant of outcomes after acute myocardial infarction (AMI). Carbon monoxide-releasing molecules (CORMs), which deliver nanomolar concentrations of carbon monoxide to tissues, have been shown to reduce infarct size in rodents. We evaluated efficacy and safety of CORM-A1 to reduce infarct size in a clinically relevant porcine model of AMI. We induced AMI in Yorkshire White pigs by inflating a coronary angioplasty balloon to completely occlude the left anterior descending artery for 60 minutes, followed by deflation of the balloon to mimic reperfusion. Fifteen minutes after balloon occlusion, animals were given an infusion of 4.27 mM CORM-A1 (n = 7) or sodium borate control (n = 6) over 60 minutes. Infarct size, cardiac biomarkers, ejection fraction, and hepatic and renal function were compared amongst the groups. Immunohistochemical analyses were performed to compare inflammation, cell proliferation, and apoptosis between the groups. CORM-A1-treated animals had significant reduction in absolute infarct area (158 ± 16 vs. 510 ± 91 mm2, P < 0.001) and infarct area corrected for area at risk (24.8% ± 2.6% vs. 45.2% ± 4.0%, P < 0.0001). Biochemical markers of myocardial injury also tended to be lower and left ventricular function tended to recover better in the CORM-A1 treated group. There was no evidence of hepatic or renal toxicity with the doses used. The cardioprotective effects of CORM-A1 were associated with a significant reduction in cell proliferation and inflammation. CORM-A1 reduces infarct size and improves left ventricular remodeling and function in a porcine model of reperfused MI by a reduction in inflammation. These potential cardioprotective effects of CORMs warrant further translational investigations.


Subject(s)
Boranes/pharmacology , Carbon Monoxide/metabolism , Carbonates/pharmacology , Cardiovascular Agents/pharmacology , Myocardial Infarction/drug therapy , Myocardial Reperfusion Injury/drug therapy , Myocytes, Cardiac/drug effects , Animals , Apoptosis/drug effects , Biomarkers/metabolism , Boranes/metabolism , Carbonates/metabolism , Cardiovascular Agents/metabolism , Caspase 3/metabolism , Cell Proliferation/drug effects , Disease Models, Animal , Interleukin-1beta/metabolism , Ki-67 Antigen/metabolism , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Sus scrofa , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects
6.
Int J Mol Sci ; 22(9)2021 May 04.
Article in English | MEDLINE | ID: mdl-34064412

ABSTRACT

Epidermal growth factor receptor (EGFR) is one of the most promising molecular targets for anticancer therapy. We used boron clusters as a platform for generation of new materials. For this, functional DNA constructs conjugated with boron clusters (B-ASOs) were developed. These B-ASOs, built from 1,2-dicarba-closo-dodecaborane linked with two anti-EGFR antisense oligonucleotides (ASOs), form with their complementary congeners torus-like nanostructures, as previously shown by atomic force microscope (AFM) and transmission electron cryo-microscopy (cryo-TEM) imaging. In the present work, deepened studies were carried out on B-ASO's properties. In solution, B-ASOs formed four dominant complexes as confirmed by non-denaturing polyacrylamide gel electrophoresis (PAGE). These complexes exhibited increased stability in cell lysate comparing to the non-modified ASO. Fluorescently labeled B-ASOs localized mostly in the cytoplasm and decreased EGFR expression by activating RNase H. Moreover, the B-ASO complexes altered the cancer cell phenotype, decreased cell migration rate, and arrested the cells in the S phase of cell cycle. The 1,2-dicarba-closo-dodecaborane-containing nanostructures did not activate NLRP3 inflammasome in human macrophages. In addition, as shown by inductively coupled plasma mass spectrometry (ICP MS), these nanostructures effectively penetrated the human squamous carcinoma cells (A431), showing their potential applicability as anticancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , Boranes/pharmacology , Gene Expression Regulation, Neoplastic , Nanoparticles/chemistry , Oligonucleotides, Antisense/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Boranes/chemical synthesis , Boranes/metabolism , Cell Line, Tumor , Cell Membrane Permeability , Cell Movement/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , HeLa Cells , Humans , Kinetics , MCF-7 Cells , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/metabolism , S Phase/drug effects , S Phase/genetics , Signal Transduction
7.
Molecules ; 26(9)2021 Apr 25.
Article in English | MEDLINE | ID: mdl-33923006

ABSTRACT

Phosphine-borane complexes are novel chemical entities with preclinical efficacy in neuronal and ophthalmic disease models. In vitro and in vivo studies showed that the metabolites of these compounds are capable of cleaving disulfide bonds implicated in the downstream effects of axonal injury. A difficulty in using standard in silico methods for studying these drugs is that most computational tools are not designed for borane-containing compounds. Using in silico and machine learning methodologies, the absorption-distribution properties of these unique compounds were assessed. Features examined with in silico methods included cellular permeability, octanol-water partition coefficient, blood-brain barrier permeability, oral absorption and serum protein binding. The resultant neural networks demonstrated an appropriate level of accuracy and were comparable to existing in silico methodologies. Specifically, they were able to reliably predict pharmacokinetic features of known boron-containing compounds. These methods predicted that phosphine-borane compounds and their metabolites meet the necessary pharmacokinetic features for orally active drug candidates. This study showed that the combination of standard in silico predictive and machine learning models with neural networks is effective in predicting pharmacokinetic features of novel boron-containing compounds as neuroprotective drugs.


Subject(s)
Boranes/chemistry , Machine Learning , Neuroprotective Agents/chemistry , Phosphines/chemistry , Blood-Brain Barrier/drug effects , Boranes/pharmacology , Computer Simulation , Humans , Neuroprotection/drug effects , Neuroprotective Agents/pharmacology , Phosphines/pharmacology , Protein Binding/drug effects
8.
Toxicology ; 456: 152750, 2021 05 30.
Article in English | MEDLINE | ID: mdl-33737140

ABSTRACT

Paraquat, an herbicide used extensively worldwide, can cause severe toxicity in humans and animals, leading to irreversible, lethal lung fibrosis. The potential of CO-releasing molecules (CORMs), substances that release CO (Carbon monoxide) within animal tissues, for treating paraquat-induced ROS generation and inflammation is investigated here. Our results show that the fast CO releaser CORM-3 (4-20 µM) acts as a potential scavenger of free radicals and decreases fibrosis progression by inhibiting paraquat-induced overexpression of connective tissue growth factor and angiotensin II in MRC-5 cells. The slow CO releaser CORM-A1 (5 mg/kg) clearly decreased expression of the lung profibrogenic cytokines COX-2, TNF-α, and α-SMA and serum hydroxyproline, resulting in a lower mortality rate in paraquat-treated mice. Mice treated with higher-dose CORM-A1 (10 mg/kg) had relatively intact lung lobes and fewer fibrotic patches by gross observation, with less collagen deposition, mesangial matrix accumulation, and pulmonary fibrosis resulting from the mitigation of TGF-ß overexpression. In conclusion, our data demonstrate for the first time that CORM-A1 alleviated the development of the fibrotic process and improved survival rate in mice exposed to PQ, would be an attractive therapeutic approach to attenuate the progression of pulmonary fibrosis following PQ exposure.


Subject(s)
Boranes/therapeutic use , Carbon Monoxide , Carbonates/therapeutic use , Herbicides/toxicity , Lung Diseases, Interstitial/chemically induced , Paraquat/toxicity , Pulmonary Fibrosis/chemically induced , Animals , Boranes/pharmacology , Carbon Monoxide/metabolism , Carbonates/pharmacology , Cell Line , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Humans , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Lung Diseases, Interstitial/drug therapy , Lung Diseases, Interstitial/metabolism , Male , Mice , Mice, Inbred ICR , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Random Allocation
9.
Arterioscler Thromb Vasc Biol ; 40(10): 2376-2390, 2020 10.
Article in English | MEDLINE | ID: mdl-32787519

ABSTRACT

OBJECTIVES: Carbon monoxide (CO) produced by haem oxygenases or released by CO-releasing molecules (CORM) affords antiplatelet effects, but the mechanism involved has not been defined. Here, we tested the hypothesis that CO-induced inhibition of human platelet aggregation is mediated by modulation of platelet bioenergetics. Approach and Results: To analyze the effects of CORM-A1 on human platelet aggregation and bioenergetics, a light transmission aggregometry, Seahorse XFe technique and liquid chromatography tandem-mass spectrometry-based metabolomics were used. CORM-A1-induced inhibition of platelet aggregation was accompanied by the inhibition of mitochondrial respiration and glycolysis. Interestingly, specific inhibitors of these processes applied individually, in contrast to combined treatment, did not inhibit platelet aggregation considerably. A CORM-A1-induced delay of tricarboxylic acid cycle was associated with oxidized nicotinamide adenine dinucleotide (NAD+) depletion, compatible with the inhibition of oxidative phosphorylation. CORM-A1 provoked an increase in concentrations of proximal (before GAPDH [glyceraldehyde 3-phosphate dehydrogenase]), but not distal glycolysis metabolites, suggesting that CO delayed glycolysis at the level of NAD+-dependent GAPDH; however, GAPDH activity was directly not inhibited. In the presence of exogenous pyruvate, CORM-A1-induced inhibition of platelet aggregation and glycolysis were lost, but were restored by the inhibition of lactate dehydrogenase, involved in cytosolic NAD+ regeneration, pointing out to the key role of NAD+ depletion in the inhibition of platelet bioenergetics by CORM-A1. CONCLUSIONS: The antiplatelet effect of CO is mediated by inhibition of mitochondrial respiration-attributed to the inhibition of cytochrome c oxidase, and inhibition of glycolysis-ascribed to cytosolic NAD+ depletion.


Subject(s)
Adenosine Triphosphate/metabolism , Blood Platelets/drug effects , Boranes/pharmacology , Carbon Monoxide/pharmacology , Carbonates/pharmacology , Glycolysis/drug effects , Mitochondria/drug effects , NAD/metabolism , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation/drug effects , Blood Platelets/metabolism , Cell Respiration/drug effects , Electron Transport Complex IV/metabolism , Humans , Male , Mitochondria/metabolism
10.
Eur J Pharmacol ; 881: 173191, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32422186

ABSTRACT

Carbon monoxide (CO) is an endogenously synthesized gaseous mediator and is involved in the regulation of numerous physiological processes. Mitochondria, in which hemoproteins are abundant, are among the targets for CO action. Large-conductance calcium-activated (mitoBKCa) channels in the inner mitochondrial membrane share multiple biophysical similarities with the BKCa channels of the plasma membrane and could be a potential target for CO. To test this hypothesis, the activity of the mitoBKCa channels in human astrocytoma U-87 MG cell mitochondria was assessed with the patch-clamp technique. The effects of CO-releasing molecules (CORMs), such as CORM-2, CORM-401, and CORM-A1, were compared to the application of a CO-saturated solution to the mitoBKCa channels in membrane patches. The applied CORMs showed pleiotropic effects including channel inhibition, while the CO-containing solution did not significantly modulate channel activity. Interestingly, CO applied to the mitoBKCa channels, which were inhibited by exogenously added heme, stimulated the channel. To summarize, our findings indicate a requirement of heme binding to the mitoBKCa channel for channel modulation by CO and suggest that CORMs might have complex unspecific effects on mitoBKCa channels.


Subject(s)
Boranes/pharmacology , Carbon Monoxide/pharmacology , Carbonates/pharmacology , Heme/pharmacology , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/drug effects , Mitochondria/drug effects , N-substituted Glycines/pharmacology , Organometallic Compounds/pharmacology , Boranes/metabolism , Carbon Monoxide/metabolism , Carbonates/metabolism , Cell Line, Tumor , Heme/metabolism , Humans , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Membrane Potentials , Mitochondria/metabolism , N-substituted Glycines/metabolism , Organometallic Compounds/metabolism , Protein Binding
11.
Bioorg Chem ; 98: 103729, 2020 05.
Article in English | MEDLINE | ID: mdl-32179284

ABSTRACT

Leucettamine B is a natural product found in marine sponge Leucetta microraphis. Several of analogs of its family, such as aplysinopsine and clathridine, are medicinally active molecules which have applications in many pharmaceuticals and healthcare products; however, thus far, leucettamine B has not been studied. In this report, we describe the synthesis of a new class of analogs of leucettamine B obtained by Knoevenagel condensation using a microwave reactor. The 25 newly synthesized compounds were tested against MDA-MB-468, SW480, and Mahlavu cell lines for anticancer activity. Among them, the carborane-based compound (Z)-5-(benzo[d][1,3]dioxol-5-ylmethylene)-3-(1-closo-carboranyl)-2-thioxo -thiazolidin-4-one (49) and (Z)-5-(benzo[d][1,3]dioxol-5-ylmethylene)-3-(2-(pyrrolidin-1-yl)ethyl)-2-thioxothiazolidin-4-one (31) derivatives were found to have the most potential for use against tumor cells. The carborane derivative 49 had the lowest IC50 value against the SW480 cell line (4.7 µM) and the Mahlavu (6.6 µM) cell line. Furthermore, compound 31 also had a low IC50 value against SW480 (7.5 µM). Our research shows that leucettamine B analogs might have potential for use in cancer chemotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , Boranes/pharmacology , Drug Design , Imidazoles/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Boranes/chemical synthesis , Boranes/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Chlorocebus aethiops , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Molecular Structure , Structure-Activity Relationship , Vero Cells
12.
Mol Neurobiol ; 57(5): 2436-2446, 2020 May.
Article in English | MEDLINE | ID: mdl-32108290

ABSTRACT

In human glioma tumours, heme oxygenase-1 (HO-1) is overexpressed when compared with normal brain tissues and during oligodendroglioma progression. However, the molecular mechanisms mediated by HO-1 to promote glioblastoma remain unknown. We therefore aimed at investigating the effect of HO-1 expression and its selective enzymatic inhibition in two different cell lines (i.e. A172 and U87-MG). HO-1 was induced by hemin treatment (10 µM), and VP13/47 (100 µM) was used as a specific non-competitive inhibitor of HO-1 activity. Cell proliferation was measured by cell index measurement (xCelligence technology) and clonogenic assay, whereas cell migration was assessed by wound healing assay. Carbon monoxide-releasing molecules (CORMs) (i.e. CORM-3 and CORM-A1) were also used in a separate set of experiments to confirm the effect of HO-1 by-product in glioblastoma progression further. Our results were further validated using GSE4412 microarray dataset analysis and comparing biopsies overexpressing HO-1 with the rest of the cases. Our results showed that hemin was able to induce both HO-1 gene and protein expression in a cell-dependent manner being A172 more responsive to pharmacological upregulation of HO-1. Hemin, but not CORMs treatment, resulted in a significant increase of cell proliferation following 24 h of treatment as measured by increased cell index and colony formation capacity and such effect was abolished by VP13/47. Interestingly, both hemin and CORMs showed a significant effect on the wound healing assay also exhibiting cell specificity. Finally, our dataset analysis showed a positive correlation of HO-1 gene expression with ITGBI and ITGBII which are membrane receptors involved in cell adhesion, embryogenesis, tissue repair, immune response and metastatic diffusion of tumour cells. In conclusion, our data suggest that HO-1 and its by-product CO exhibit a cell-specific effect on various aspects of disease progression and are associated with a complex series of molecular mechanisms driving cell proliferation, survival and metastasis.


Subject(s)
Brain Neoplasms/pathology , Carbon Monoxide/physiology , Glioblastoma/pathology , Heme Oxygenase-1/physiology , Neoplasm Proteins/physiology , Boranes/pharmacology , Brain Neoplasms/enzymology , Brain Neoplasms/genetics , Carbonates/pharmacology , Cell Division/drug effects , Cell Line, Tumor , Chemotaxis/drug effects , Datasets as Topic , Disease Progression , Enzyme Induction/drug effects , Gene Expression Profiling , Gene Ontology , Glioblastoma/enzymology , Glioblastoma/genetics , Heme Oxygenase-1/biosynthesis , Heme Oxygenase-1/genetics , Hemin/pharmacology , Humans , Hydrocarbons, Brominated/pharmacology , Imidazoles/pharmacology , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Organometallic Compounds/pharmacology , Tumor Stem Cell Assay
13.
Bioorg Med Chem ; 28(4): 115310, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31980362

ABSTRACT

Increasing structural options in medicinal chemistry is important for the development of novel and distinctive drug candidates. In this study, we focused on phosphorus-containing functionalities. We designed and synthesized a series of phosphinophenol derivatives and determined their physicochemical properties, including hydrophobicity parameter LogP, and their biological activity toward estrogen receptor (ER). Notably, the phosphine borane derivatives (9 and 14) exhibited potent ER-antagonistic activity, exceeding the potency of the corresponding alkane (15) and silane (16) derivatives, despite having a less hydrophobic nature. The determined physicochemical parameters will be helpful for the rational design of phosphorus-containing biologically active compounds. Our results indicate that phosphine boranes are a promising new chemical entry in the range of structural options for drug discovery.


Subject(s)
Boranes/pharmacology , Estrogen Receptor Modulators/pharmacology , Phenols/pharmacology , Phosphines/pharmacology , Receptors, Estrogen/antagonists & inhibitors , Alkanes/chemistry , Boranes/chemistry , Dose-Response Relationship, Drug , Estrogen Receptor Modulators/chemical synthesis , Estrogen Receptor Modulators/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Molecular Structure , Phenols/chemical synthesis , Phenols/chemistry , Phosphines/chemistry , Receptors, Estrogen/metabolism , Silanes/chemistry , Structure-Activity Relationship
14.
Redox Biol ; 28: 101314, 2020 01.
Article in English | MEDLINE | ID: mdl-31514051

ABSTRACT

Nuclear factor-erythroid 2 related factor 2 (Nrf2)-mediated signaling plays a central role in maintaining cellular redox homeostasis of hepatic cells. Carbon monoxide releasing molecule-A1 (CORM-A1) has been reported to stimulate up-regulation and nuclear translocation of Nrf2 in hepatocytes. However, the role of CORM-A1 in improving lipid metabolism, antioxidant signaling and mitochondrial functions in nonalcoholic steatohepatitis (NASH) is unknown. In this study, we report that CORM-A1 prevents hepatic steatosis in high fat high fructose (HFHF) diet fed C57BL/6J mice, used as model of NASH. The beneficial effects of CORM-A1 in HFHF fed mice was associated with improved lipid homeostasis, Nrf2 activation, upregulation of antioxidant responsive (ARE) genes and increased ATP production. As, mitochondria are intracellular source of reactive oxygen species (ROS) and important sites of lipid metabolism, we further investigated the mechanisms of action of CORM-A1-mediated improvement in mitochondrial function in palmitic acid (PA) treated HepG2 cells. Cellular oxidative stress and cell viability were found to be improved in PA + CORM-A1 treated cells via Nrf2 translocation and activation of cytoprotective genes. Furthermore, in PA treated cells, CORM-A1 improved mitochondrial oxidative stress, membrane potential and rescued mitochondrial biogenesis thru upregulation of Drp1, TFAM, PGC-1α and NRF-1 genes. CORM-A1 treatment improved cellular status by lowering glycolytic respiration and maximizing OCR. Improvement in mitochondrial respiration and increment in ATP production in PA + CORM-A1 treated cells further corroborate our findings. In summary, our data demonstrate for the first time that CORM-A1 ameliorates tissue damage in steatotic liver via Nrf2 activation and improved mitochondrial function, thus, suggesting the anti-NASH potential of CORM-A1.


Subject(s)
Boranes/administration & dosage , Carbonates/administration & dosage , Diet, High-Fat/adverse effects , High Fructose Corn Syrup/adverse effects , NF-E2-Related Factor 2/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Animals , Boranes/pharmacology , Carbonates/pharmacology , Cell Survival , Disease Models, Animal , Gene Expression Regulation/drug effects , Hep G2 Cells , Humans , Lipid Metabolism/drug effects , Male , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/metabolism , Oxidative Stress/drug effects , Palmitic Acid/pharmacology , Signal Transduction/drug effects
15.
Eur J Med Chem ; 185: 111766, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31677445

ABSTRACT

In the present article we describe the creation of a small carboranylcarboxamide compound library followed by a screening campaign at the soluble epoxide hydrolase (sEH). We identified meta-carboranyl alkylamides, -anilides, and -benzylamides as potent sEH inhibitors. Furthermore, we optimized the scaffolds and we derived structure-activity relationships. The most potent benzylamide 33 (MS1) was similar to a previously reported adamantane derivative and gave an IC50 value of 0.07 µM for meta- and 0.08 µM for para-carborane at isolated sEH. The ortho-derivative suffered deboronation. The results underline the potential of carboranes as non-natural 3-D pharmacophores to extend the chemical space in drug discovery.


Subject(s)
Boranes/pharmacology , Enzyme Inhibitors/pharmacology , Epoxide Hydrolases/antagonists & inhibitors , Boranes/chemical synthesis , Boranes/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Epoxide Hydrolases/metabolism , Humans , Molecular Structure , Solubility , Structure-Activity Relationship
16.
Bioorg Chem ; 94: 103466, 2020 01.
Article in English | MEDLINE | ID: mdl-31826808

ABSTRACT

In this study, a series of uridine (U) and 2'-deoxyuridine (dU) conjugates containing an isomeric ortho-, meta- or para-carborane cluster (C2B10H12) attached at C-5 through an ethynyl linker were synthesized. The effect of carborane cluster isomerism on the conjugate syn/anti conformation, molar extinction coefficient, lipophilicity, susceptibility to phosphorylation (by TK1, TK2 and dCK), cytotoxicity and antiviral activity was evaluated. A strong effect of the boron cluster modification on the syn/anti equilibrium of the modified nucleosides was observed. An increase in lipophilicity compared with unmodified U and dU, especially for conjugates bearing a para-carborane cluster, was detected. Furthermore a pronounced and differential influence of the boron cluster modification on the electronic properties of the nucleobase chromophore was observed. The obtained conjugates have low or medium toxicity toward several cell lines, are phosphorylated fairly well by TK1 and are poor or not substrates for dCK. Furthermore, the conjugates preferentially inhibit HCMV replication with an SI index as high as 22 for the ortho-carborane derivative of U and more than 180 for the para-carborane derivative of dU.


Subject(s)
Antiviral Agents/pharmacology , Boranes/pharmacology , DNA Viruses/drug effects , RNA Viruses/drug effects , Uridine/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Boranes/chemical synthesis , Boranes/chemistry , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Uridine/analogs & derivatives , Uridine/chemistry
17.
Mol Pharm ; 17(1): 202-211, 2020 01 06.
Article in English | MEDLINE | ID: mdl-31763850

ABSTRACT

Boron neutron capture therapy (BNCT) has received extensive attention as noninvasive cell-level oncotherapy for treating solid cancer tumors. However, boron-containing drugs such as l-boronophenylalanine (BPA) and sodium borocaptate have low boron content and/or poor tumor-targeting ability, limiting their application. In this study, we designed and synthesized a series of nontoxic, dual-target boron carriers (B139, B142, and B151) with the ability to accumulate specifically in tumor cells. We found that the B139 uptake into hypoxic tumor regions was high, with a 70-fold boron content compared to BPA. In addition, in vivo observation showed that B139 can be trapped in tumor cells for a prolonged period and maintains an effective therapeutic concentration, with a peak boron concentration of 50.7 µg/g and a high tumor: blood boron ratio of >3, achieving ideal BNCT conditions. Cytotoxicity evaluation in mice further proved that B139 is safe and reliable. Therefore, B139 has great potential for BNCT application as a dual-target, safe, and efficient boron carrier.


Subject(s)
Boron Neutron Capture Therapy , Neoplasms/radiotherapy , Animals , Boranes/pharmacology , Boron Compounds/chemistry , Boron Compounds/metabolism , Boron Compounds/pharmacokinetics , Boron Compounds/toxicity , Cell Hypoxia , Cell Line, Tumor , Humans , Mice , Nanoparticles/chemistry , Nanoparticles/radiation effects , Nanoparticles/therapeutic use , Neoplasms/blood , Neoplasms/enzymology , Neoplasms/metabolism , Nitroimidazoles/chemistry , Phenylalanine/analogs & derivatives , Phenylalanine/pharmacology , Tissue Distribution , Xenograft Model Antitumor Assays
18.
Bioorg Chem ; 94: 103432, 2020 01.
Article in English | MEDLINE | ID: mdl-31776032

ABSTRACT

The development of 1,8-naphthalimide derivatives as DNA-targeting anticancer agents is a rapidly growing area and has resulted in several derivatives entering into clinical trials. One of original recent developments is the use of boron clusters: carboranes and metallacarboranes in the design of pharmacologically active molecules. In this direction several naphthalimide-carborane and metallacarborane conjugates were synthesized in the present study. Their effect on a cancer cell line - cytotoxicity, type of cell death, cell cycle, and ROS production were investigated. The tested conjugates revealed different activities than the leading members of the naphthalimides family, namely mitonafide and pinafide. These derivatives could induce G0/G1 arrest and promote mainly apoptosis in HepG2 cell line. Our investigations demonstrated that the most promising molecule is N-{[2-(3,3'-commo-bis(1,2-dicarba-3-cobalta(III)-closo-dodecaborate-1-yl)ethyl]-1'-aminoethyl)}-1,8-naphthalimide] (17). It was shown that 17 exhibited cytotoxicity against HepG2 cells, activated cell apoptosis, and caused cell cycle arrest in HepG2 cells. Further investigations in HepG2 cells revealed that compound 17 can also induce ROS generation, particularly mitochondrial ROS (mtROS), which was also proved by increased 8-oxo-dG level in DNA. Additionally to biological assays the interaction of the new compounds with ct-DNA was studied by CD spectra and melting temperature, thus demonstrating that these compounds were rather weak classical DNA intercalators.


Subject(s)
Antineoplastic Agents/pharmacology , Boranes/pharmacology , DNA, Neoplasm/drug effects , Naphthalimides/pharmacology , Organometallic Compounds/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Binding Sites , Boranes/chemistry , Cell Line , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Hep G2 Cells , Humans , Molecular Structure , Naphthalimides/chemistry , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Oxidative Stress/drug effects , Structure-Activity Relationship
19.
ChemMedChem ; 14(24): 2075-2083, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31677361

ABSTRACT

Investigations on the antitumor activity of metallacarboranes are sparse in the literature and limited to a handful of ruthena- and molybdacarboranes. In this study, the molybdacarborane fragment [3-(CO)2 -closo-3,1,2-MoC2 B9 H11 ] was combined with a vector molecule, inspired by the well-known drug tamoxifen or 4,4'-dihydroxytamoxifen (TAM-diOH). The molybdacarborane derivative [3,3-{4-[1,1-bis(4-hydroxyphenyl)but-1-en-2-yl]-2,2'-bipyridine-κ2 N,N'}-3-(CO)2 -closo-3,1,2-MoC2 B9 H11 ] (10), as well as the ligand itself 4-[1,1-bis(4-hydroxyphenyl)but-1-en-2-yl]-2,2'-bipyridine (6) showed cytotoxic activities in the low micromolar range against breast adenocarcinoma (MDA-MB-231, MDA-MB-361 and MCF-7), human glioblastoma (LN-229) and human glioma (U-251) cell lines. In addition, compounds 6 and 10 were found to induce senescence and cytodestructive autophagy, lower ROS/RNS levels, but only the molybdacarborane 10 induced a strong increase of nitric oxide (NO) concentration in the MCF-7 cells.


Subject(s)
2,2'-Dipyridyl/pharmacology , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Glioma/drug therapy , Organometallic Compounds/pharmacology , Tamoxifen/pharmacology , 2,2'-Dipyridyl/chemistry , Antineoplastic Agents/chemistry , Boranes/chemistry , Boranes/pharmacology , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Glioma/pathology , Humans , MCF-7 Cells , Molecular Structure , Molybdenum/chemistry , Molybdenum/pharmacology , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Structure-Activity Relationship , Tamoxifen/chemistry
20.
J Med Chem ; 62(21): 9560-9575, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31568723

ABSTRACT

Carbonic anhydrase IX (CAIX) is a transmembrane enzyme that regulates pH in hypoxic tumors and promotes tumor cell survival. Its expression is associated with the occurrence of metastases and poor prognosis. Here, we present nine derivatives of the cobalt bis(dicarbollide)(1-) anion substituted at the boron or carbon sites by alkysulfamide group(s) as highly specific and selective inhibitors of CAIX. Interactions of these compounds with the active site of CAIX were explored on the atomic level using protein crystallography. Two selected derivatives display subnanomolar or picomolar inhibition constants and high selectivity for the tumor-specific CAIX over cytosolic isoform CAII. Both derivatives had a time-dependent effect on the growth of multicellular spheroids of HT-29 and HCT116 colorectal cancer cells, facilitated penetration and/or accumulation of doxorubicin into spheroids, and displayed low toxicity and showed promising pharmacokinetics and a significant inhibitory effect on tumor growth in syngenic breast 4T1 and colorectal HT-29 cancer xenotransplants.


Subject(s)
Amides/chemistry , Boranes/chemistry , Boranes/pharmacology , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Animals , Biological Transport/drug effects , Carbonic Anhydrase IX/chemistry , Catalytic Domain , Cell Line, Tumor , Doxorubicin/metabolism , Drug Design , Drug Synergism , Humans , Mice , Models, Molecular , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...