Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 540
Filter
1.
Proc Natl Acad Sci U S A ; 121(22): e2401591121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38787877

ABSTRACT

The sodium (Na+) leak channel (NALCN) is a member of the four-domain voltage-gated cation channel family that includes the prototypical voltage-gated sodium and calcium channels (NaVs and CaVs, respectively). Unlike NaVs and CaVs, which have four lateral fenestrations that serve as routes for lipophilic compounds to enter the central cavity to modulate channel function, NALCN has bulky residues (W311, L588, M1145, and Y1436) that block these openings. Structural data suggest that occluded fenestrations underlie the pharmacological resistance of NALCN, but functional evidence is lacking. To test this hypothesis, we unplugged the fenestrations of NALCN by substituting the four aforementioned residues with alanine (AAAA) and compared the effects of NaV, CaV, and NALCN blockers on both wild-type (WT) and AAAA channels. Most compounds behaved in a similar manner on both channels, but phenytoin and 2-aminoethoxydiphenyl borate (2-APB) elicited additional, distinct responses on AAAA channels. Further experiments using single alanine mutants revealed that phenytoin and 2-APB enter the inner cavity through distinct fenestrations, implying structural specificity to their modes of access. Using a combination of computational and functional approaches, we identified amino acid residues critical for 2-APB activity, supporting the existence of drug binding site(s) within the pore region. Intrigued by the activity of 2-APB and its analogues, we tested compounds containing the diphenylmethane/amine moiety on WT channels. We identified clinically used drugs that exhibited diverse activity, thus expanding the pharmacological toolbox for NALCN. While the low potencies of active compounds reiterate the pharmacological resistance of NALCN, our findings lay the foundation for rational drug design to develop NALCN modulators with refined properties.


Subject(s)
Phenytoin , Binding Sites , Humans , Phenytoin/metabolism , Phenytoin/pharmacology , Boron Compounds/chemistry , Boron Compounds/pharmacology , Boron Compounds/metabolism , Ion Channels/metabolism , Ion Channels/genetics , HEK293 Cells , Animals , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/chemistry , Membrane Proteins
2.
Sci Rep ; 14(1): 2572, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38296985

ABSTRACT

Bacterial caseinolytic protease P subunit (ClpP) is important and vital for cell survival and infectivity. Recent publications describe and discuss the complex structure-function relationship of ClpP and its processive activity mediated by 14 catalytic sites. Even so, there are several aspects yet to be further elucidated, such as the paradoxical allosteric modulation of ClpP by peptidomimetic boronates. These compounds bind to all catalytic sites, and in specific conditions, they stimulate a dysregulated degradation of peptides and globular proteins, instead of inhibiting the enzymatic activity, as expected for serine proteases in general. Aiming to explore and explain this paradoxical effect, we solved and refined the crystal structure of native ClpP from Staphylococcus epidermidis (Se), an opportunistic pathogen involved in nosocomial infections, as well as ClpP in complex with ixazomib at 1.90 Å and 2.33 Å resolution, respectively. The interpretation of the crystal structures, in combination with complementary biochemical and biophysical data, shed light on how ixazomib affects the ClpP conformational state and activity. Moreover, SEC-SAXS and DLS measurements show, for the first time, that a peptidomimetic boronate compound also induces the assembly of the tetradecameric structure from isolated homomeric heptameric rings of a gram-positive organism.


Subject(s)
Glycine/analogs & derivatives , Peptidomimetics , Peptidomimetics/pharmacology , Scattering, Small Angle , X-Ray Diffraction , Boron Compounds/pharmacology , Boron Compounds/metabolism , Endopeptidase Clp/metabolism , Bacterial Proteins/metabolism
3.
Pharmacol Ther ; 251: 108548, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37858628

ABSTRACT

Boron has become a crucial weapon in anticancer research due to its significant intervention in cell proliferation. Being an excellent bio-isosteric replacement of carbon, it has modulated the anticancer efficacy of various molecules in the development pipeline. It has elicited promising results through interactions with various therapeutic targets such as HIF-1α, steroid sulfatase, arginase, proteasome, etc. Since boron liberates alpha particles, it has a wide-scale application in Boron Neutron Capture therapy (BNCT), a radiotherapy that demonstrates selectivity towards cancer cells due to high boron uptake capacity. Significant advances in the medicinal chemistry of boronated compounds, such as boronated sugars, natural/unnatural amino acids, boronated DNA binders, etc., have been reported over the past few years as BNCT agents. In addition, boronated nanoparticles have assisted the field of bio-nano medicines by their usage in radiotherapy. This review exclusively focuses on the medicinal chemistry aspects, radiotherapeutic, and chemotherapeutic aspects of boron in cancer therapeutics. Emphasis is also given on the mechanism of action along with advantages over conventional therapies.


Subject(s)
Antineoplastic Agents , Boron Neutron Capture Therapy , Neoplasms , Humans , Boron/therapeutic use , Boron/chemistry , Boron Compounds/therapeutic use , Boron Compounds/chemistry , Boron Compounds/metabolism , Neoplasms/drug therapy , Neoplasms/radiotherapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Boron Neutron Capture Therapy/methods
4.
Cancer Med ; 12(21): 20564-20572, 2023 11.
Article in English | MEDLINE | ID: mdl-37881128

ABSTRACT

BACKGROUND: The correlation between L-type amino acid transporter 1 (LAT1) expression and 4-borono-2-18 F-fluoro-phenylalanine (18 F-FBPA) accumulation in humans remains unclear. This study aimed to investigate the correlation between LAT1 expression in tumor tissues and 18 F-FBPA accumulation in patients with head and neck cancer who participated in a clinical trial of 18 F-FBPA positron emission tomography (PET). METHODS: Altogether, 28 patients with head and neck cancer who participated in a clinical trial of 18 F-FBPA PET at our institution between March 2012 and January 2018 were included. Correlations between standardized uptake values (SUVs); the maximum SUV (SUVmax ), the mean SUV within a 1 cm3 sphere centered at a single point, that is, the SUVmax (SUVpeak ), the minimum SUV (SUVmin ), and the intensity of LAT1 expression (maximum and minimum LAT1 expressions) were investigated. RESULTS: Weak correlations were identified between SUVmax and LAT1 maximum score, SUVmin and LAT1 maximum score, and SUVmin and LAT1 minimum score (ρ = 0.427, 0.362, and 0.330, respectively). SUVmax and LAT1 minimum score, SUVpeak and LAT1 maximum score, and SUVpeak and LAT1 minimum score demonstrated moderate correlations (ρ = 0.535, 0.556, and 0.661, respectively). Boron neutron capture therapy (BNCT) was performed in 2 of the 4 patients with discrepancies between 18 F-FBPA accumulation and intensity of LAT1 expression, and the intensity of LAT1 expression was a better predictor of treatment response. CONCLUSION: 18 F-FBPA accumulation and the intensity of LAT1 expression demonstrated a moderate correlation; however, LAT1 expression may be a better predictor of treatment response of BNCT in patients with discrepancies.


Subject(s)
Head and Neck Neoplasms , Phenylalanine , Humans , Boron Compounds/therapeutic use , Boron Compounds/metabolism , Positron-Emission Tomography/methods , Amino Acid Transport Systems , Head and Neck Neoplasms/drug therapy
5.
J Med Chem ; 66(20): 14029-14046, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37824378

ABSTRACT

Soluble amyloid ß (Aß) aggregates, suggested to be the most toxic forms of Aß, draw attention as therapeutic targets and biomarkers of Alzheimer's disease (AD). As soluble Aß aggregates are transient and diverse, imaging their diverse forms in vivo is expected to have a marked impact on research and diagnosis of AD. Herein, we report a near-infrared fluorescent (NIRF) probe, BAOP-16, targeting diverse soluble Aß aggregates. BAOP-16, whose molecular shape resembles "y", showed a marked selective increase in fluorescence intensity upon binding to soluble Aß aggregates in the near-infrared region and a high binding affinity for them. Additionally, BAOP-16 could detect Aß oligomers in the brains of Aß-inoculated model mice. In an in vivo fluorescence imaging study of BAOP-16, brains of AD model mice displayed significantly higher fluorescence signals than those of wild-type mice. These results indicate that BAOP-16 could be useful for the in vivo NIRF imaging of diverse soluble Aß aggregates.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Mice , Animals , Amyloid beta-Peptides/metabolism , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/drug therapy , Boron Compounds/metabolism , Brain/diagnostic imaging , Brain/metabolism , Optical Imaging/methods , Plaque, Amyloid/metabolism , Fluorescent Dyes/chemistry , Mice, Transgenic
6.
Turk J Med Sci ; 53(3): 619-629, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37476906

ABSTRACT

BACKGROUND: Gastrointestinal health is essential for maintaining a healthy lifestyle. Improving nutrient absorption and energy metabolism are the critical targets for intestinal health. This study aimed to determine the effects of different boron (B) derivatives on nutrient digestibility, intestinal nutrient transporters, and lipid metabolism in rats. METHODS: Twenty-one rats were allocated to three groups (n = 7) as follows: (i) Control, (ii) Sodium pentaborate pentahydrate (SPP), and (iii) boric acid (BA). The rats were fed a chow diet (AIN-93M) and supplemented with 8 mg/kg elemental B from SPP (45.2 mg/kg BW) and BA (42.7 mg/kg BW) via oral gavage every other day for 12 weeks. The nutrient digestibility of rats in each group was measured using the indigestible indicator (chromium oxide, Cr2 O3, 0.20%). At the end of the experiment, animals were decapitated by cervical dislocation and jejunum, and liver samples were taken from each animal. The nutrient transporters and lipid-regulated transcription factors were determined by RT-PCR. RESULTS: The nutrient digestibility (except for ash) was increased by SPP and BA supplementation (p < 0.05). SPP and BA-supplemented rats had higher jejunal glucose transporter 1 (GLUT1), GLUT2, GLUT5, sodium-dependent glucose transporter 1 (SGLT1), fatty acid transport protein-1 (FATP1), and FATP4 mRNA expression levels compared to nonsupplemented rats (p < 0.0001). BA-supplemented rats had remarkably higher peroxisome proliferator-activated receptor gamma (PPARγ) levels than nonsupplemented rats (p < 0.0001). In contrast, sterol regulatory element-binding protein 1c (SREBP-1c), liver X receptor alpha (LxR-α), and fatty acid synthase (FAS) levels decreased by SPP supplementation compared to other groups (p < 0.05). DISCUSSION: SPP and BA administration enhanced nutrient digestibility, intestinal nutrient transporters, and liver lipid metabolism in rats.


Subject(s)
Intestines , Lipid Metabolism , Rats , Animals , Glucose Transporter Type 1/metabolism , Liver , Boron Compounds/metabolism , Boron Compounds/pharmacology
7.
FEBS J ; 290(4): 962-969, 2023 02.
Article in English | MEDLINE | ID: mdl-34862749

ABSTRACT

Clostridioides difficile is classified as an urgent antibiotic resistance threat by the Centers for Disease Control and Prevention (CDC). C. difficile infection (CDI) is mainly caused by the C. difficile exotoxin TcdB, which invades host cells via receptor-mediated endocytosis. However, many natural variants of TcdB have been identified including some from the hypervirulent strains, which pose significant challenges for developing effective CDI therapies. Here, we review the recent research progress on the molecular mechanisms by which TcdB recognizes Frizzed proteins (FZDs) and chondroitin sulfate proteoglycan 4 (CSPG4) as two major host receptors. We suggest that the receptor-binding sites and several previously identified neutralizing epitopes on TcdB are ideal targets for the development of broad-spectrum inhibitors to protect against diverse TcdB variants.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Bacterial Toxins/metabolism , Boron Compounds/metabolism , Protein Binding , Bacterial Proteins/metabolism
8.
BMC Res Notes ; 15(1): 371, 2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36528767

ABSTRACT

OBJECTIVE: The cleavage and polyadenylation endonuclease CPSF73 is thought to be the target of the anti-trypanosomal benzoxaboroles AN7973, acoziborole and AN11736. We previously showed that AN7973 inhibits mRNA processing. We here investigated whether the drug candidates acoziborole (for human sleeping sickness) and AN11736 (for nagana in cattle) have the same effect. We also affinity purified tagged CPSF73 from parasites without, or after, AN7973 treatment, and analysed differentially co-purified proteins by mass spectrometry. RESULTS: AN11736 and acoziborole both inhibited mRNA processing, as demonstrated by decreased levels of spliced mRNAs and accumulation of di- and tri-cistronic mRNAs from the alpha-beta tubulin locus. Treating the cells with AN7973 for 30 min. did not significantly affect the proteins that copurified with CPSF73.


Subject(s)
Trypanosoma brucei brucei , Trypanosomiasis, African , Humans , Cattle , Animals , Trypanosoma brucei brucei/genetics , Boron Compounds/metabolism , Boron Compounds/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism
9.
Chembiochem ; 23(3): e202100366, 2022 02 04.
Article in English | MEDLINE | ID: mdl-34636113

ABSTRACT

Hydrogen peroxide is the most stable reactive oxygen species generated endogenously, participating in numerous physiological processes and abnormal pathological conditions. Mounting evidence suggests that a higher level of H2 O2 exists in various disease conditions. Thus, H2 O2 functions as an ideal target for site-specific bioimaging and therapeutic targeting. The unique reactivity of organoborons with H2 O2 provides a method for developing chemoselective molecules for biological and biomedical applications. This review highlights the design and application of boron-derived molecules for H2 O2 detection, and the utility of boron moieties toward masking reactive compounds leading to the development of metal prochelators and prodrugs for selectively delivering an active species at the target sites with elevated H2 O2 levels. Additionally, the emergence of H2 O2 -responsive theranostic agents consisting of both therapeutic and diagnostic moieties in one integrated system are discussed. The purpose of this review is to provide a better understanding of the role of boron-derived molecules toward biological and pharmacological applications.


Subject(s)
Boron Compounds/chemistry , Hydrogen Peroxide/analysis , Boron Compounds/chemical synthesis , Boron Compounds/metabolism , Molecular Structure
10.
Reprod Domest Anim ; 57(2): 196-199, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34748661

ABSTRACT

C11-BODIPY581/591 is a fluorescent probe that has been successfully used to evaluate lipid peroxidation in different species, but it has not been completely studied in the dog. Thus, the aim of the present study was to assess lipid peroxidation of dog spermatozoa using C11-BODIPY581/591 and compare different positive controls of the technique. Twenty-four ejaculates were collected from 8 adult male dogs. Routine seminal characteristics were evaluated in raw semen. Lipid peroxidation evaluation was performed as described in other species. Samples were divided in three aliquots, exposed to UV radiation, incubated with hydrogen peroxide or left without treatment (control). Lipid peroxidation was significantly greater only in UV-exposed samples than in the control ones (91 ± 6% vs. 8.3 ± 3.5%, p Ë‚ .01). In conclusion, C11-BODIPY581/591 is useful to evaluate lipid peroxidation of dog spermatozoa and UV radiation is a good promoter of membrane oxidation, so irradiated samples can be used as a positive control of this technique.


Subject(s)
Fluorescent Dyes , Spermatozoa , Animals , Boron Compounds/metabolism , Dogs , Fluorescent Dyes/metabolism , Lipid Peroxidation , Male , Spermatozoa/metabolism
11.
Bioorg Chem ; 117: 105410, 2021 12.
Article in English | MEDLINE | ID: mdl-34700109

ABSTRACT

Cholesterol is not only a major component of the cell membrane, but also plays an important role in a wide range of biological processes and pathologies. It is therefore crucial to develop appropriate tools for visualizing intracellular cholesterol transport. Here, we describe new cationic analogues of BODIPY-Cholesterol (TopFluor-Cholesterol, TF-Chol), which combine a positive charge on the sterol side chain and a BODIPY group connected via a C-4 linker. In contrast to TF-Chol, the new analogues TF-1 and TF-3 possessing acetyl groups on the A ring (C-3 position on steroid) internalized much faster and displayed slightly different levels of intracellular localization. Their applicability for cholesterol monitoring was indicated by the fact that they strongly label compartments with accumulated cholesterol in cells carrying a mutation of the Niemann-Pick disease-associated cholesterol transporter, NPC1.


Subject(s)
Boron Compounds/analysis , Cholesterol/analysis , Biological Transport , Boron Compounds/chemical synthesis , Boron Compounds/chemistry , Boron Compounds/metabolism , Cell Line , Cholesterol/analogs & derivatives , Cholesterol/chemical synthesis , Cholesterol/metabolism , Humans , Optical Imaging
12.
Adv Mater ; 33(45): e2103137, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34553436

ABSTRACT

While the interaction between 2D materials and cells is of key importance to the development of nanomedicines and safe applications of nanotechnology, still little is known about the biological interactions of many emerging 2D materials. Here, an investigation of how hexagonal boron nitride (hBN) interacts with the cell membrane is carried out by combining molecular dynamics (MD), liquid-phase exfoliation, and in vitro imaging methods. MD simulations reveal that a sharp hBN wedge can penetrate a lipid bilayer and form a cross-membrane water channel along its exposed polar edges, while a round hBN sheet does not exhibit this behavior. It is hypothesized that such water channels can facilitate cross-membrane transport, with important consequences including lysosomal membrane permeabilization, an emerging mechanism of cellular toxicity that involves the release of cathepsin B and generation of radical oxygen species leading to cell apoptosis. To test this hypothesis, two types of hBN nanosheets, one with a rhomboidal, cornered morphology and one with a round morphology, are prepared, and human lung epithelial cells are exposed to both materials. The cornered hBN with lateral polar edges results in a dose-dependent cytotoxic effect, whereas round hBN does not cause significant toxicity, thus confirming our premise.


Subject(s)
Boron Compounds/chemistry , Lipid Bilayers/metabolism , Lysosomes/metabolism , Nanostructures/chemistry , Boron Compounds/metabolism , Cell Line, Tumor , Cell Membrane/chemistry , Cell Membrane/metabolism , Cell Survival/drug effects , Humans , Lipid Bilayers/chemistry , Molecular Dynamics Simulation , Nanostructures/toxicity
13.
J Med Chem ; 64(14): 9649-9676, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34254805

ABSTRACT

Translocator protein 18 kDa [TSPO or peripheral-type benzodiazepine receptor (PBR)] was identified in the search of binding sites for benzodiazepine anxiolytic drugs in peripheral regions. In these areas, binding sites for TSPO ligands were recognized in steroid-producing tissues. TSPO plays an important role in many cellular functions, and its coding sequence is highly conserved across species. TSPO is located predominantly on the membrane of mitochondria and is overexpressed in several solid cancers. TSPO basal expression in the CNS is low, but it becomes high in neurodegenerative conditions. Thus, TSPO constitutes not only as an outstanding drug target but also as a valuable marker for the diagnosis of a number of diseases. The aim of the present article is to show the lesson we have learned from our activity in TSPO medicinal chemistry and in approaching the targeted delivery to mitochondria by means of TSPO ligands.


Subject(s)
Benzodiazepines/pharmacology , Boron Compounds/metabolism , Mitochondria/drug effects , Receptors, GABA/metabolism , Benzodiazepines/chemistry , Chemistry, Pharmaceutical , Humans , Ligands , Mitochondria/metabolism , Molecular Structure , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Receptors, GABA/genetics
14.
Angew Chem Int Ed Engl ; 60(36): 19912-19920, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34227724

ABSTRACT

Developing Type-I photosensitizers is considered as an efficient approach to overcome the deficiency of traditional photodynamic therapy (PDT) for hypoxic tumors. However, it remains a challenge to design photosensitizers for generating reactive oxygen species by the Type-I process. Herein, we report a series of α,ß-linked BODIPY dimers and a trimer that exclusively generate superoxide radical (O2-. ) by the Type-I process upon light irradiation. The triplet formation originates from an effective excited-state relaxation from the initially populated singlet (S1 ) to triplet (T1 ) states via an intermediate triplet (T2 ) state. The low reduction potential and ultralong lifetime of the T1 state facilitate the efficient generation of O2-. by inter-molecular charge transfer to molecular oxygen. The energy gap of T1 -S0 is smaller than that between 3 O2 and 1 O2 thereby precluding the generation of singlet oxygen by the Type-II process. The trimer exhibits superior PDT performance under the hypoxic environment.


Subject(s)
Boron Compounds/metabolism , Neoplasms/metabolism , Photochemotherapy , Photosensitizing Agents/metabolism , Singlet Oxygen/metabolism , Superoxides/metabolism , Boron Compounds/chemistry , Boron Compounds/therapeutic use , Humans , Light , Molecular Structure , Neoplasms/drug therapy , Photosensitizing Agents/chemistry , Photosensitizing Agents/therapeutic use , Singlet Oxygen/chemistry , Superoxides/chemistry
15.
Eur J Med Chem ; 223: 113607, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34171656

ABSTRACT

A series of adenosine and 2'-deoxyadenosine pairs modified with a 1,12-dicarba-closo-dodecaborane cluster or alternatively with a phenyl group at the same position was synthesized, and their affinity was determined at A1, A2A, A2B and A3 adenosine receptors (ARs). While AR affinity differences were noted, a general tendency to preferentially bind A3 AR over other ARs was observed for most tested ligands. In particular, 5'-ethylcarbamoyl-N6-(3-phenylpropyl)adenosine (18), N6-(3-phenylpropyl)-2-chloroadenosine (24) and N6-(3-phenylpropyl)adenosine (40) showed nanomolar A3 affinity (Ki 4.5, 6.4 and 7.5 nM, respectively). Among the boron cluster-containing compounds, the highest A3 affinity (Ki 206 nM) was for adenosine derivative 41 modified at C2. In the matched molecular pairs, analogs bearing boron clusters were found to show lower binding affinity for adenosine receptors than the corresponding phenyl analogs. Nevertheless, interestingly, several boron cluster modified adenosine ligands showed significantly higher A3 receptor selectivity than the corresponding phenyl analogs: 7vs. 8, 15vs. 16, 17vs. 18.


Subject(s)
Adenosine A3 Receptor Agonists/pharmacology , Adenosine/analogs & derivatives , Adenosine/pharmacology , Receptor, Adenosine A3/metabolism , Adenosine/metabolism , Adenosine A3 Receptor Agonists/chemical synthesis , Adenosine A3 Receptor Agonists/metabolism , Animals , Boron Compounds/chemical synthesis , Boron Compounds/metabolism , Boron Compounds/pharmacology , CHO Cells , Cricetulus , HEK293 Cells , Humans , Ligands , Molecular Structure , Platelet Aggregation Inhibitors/chemical synthesis , Platelet Aggregation Inhibitors/metabolism , Platelet Aggregation Inhibitors/pharmacology , Structure-Activity Relationship
16.
Chembiochem ; 22(18): 2741-2761, 2021 09 14.
Article in English | MEDLINE | ID: mdl-33939874

ABSTRACT

This review describes recent progress in the design and development of inhibitors of human carbonic anhydrase IX (CA IX) based on space-filling carborane and cobalt bis(dicarbollide) clusters. CA IX enzyme is known to play a crucial role in cancer cell proliferation and metastases. The new class of potent and selective CA IX inhibitors combines the structural motif of a bulky inorganic cluster with an alkylsulfamido or alkylsulfonamido anchor group for Zn2+ ion in the enzyme active site. Detailed structure-activity relationship (SAR) studies of a large series containing 50 compounds uncovered structural features of the cluster-containing inhibitors that are important for efficient and selective inhibition of CA IX activity. Preclinical evaluation of selected compounds revealed low toxicity, favorable pharmacokinetics and ability to reduce tumor growth. Cluster-containing inhibitors of CA IX can thus be considered as promising candidates for drug development and/or for combination therapy in boron neutron capture therapy (BNCT).


Subject(s)
Boron Compounds/chemistry , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase Inhibitors/chemistry , Binding Sites , Boron Compounds/metabolism , Boron Compounds/therapeutic use , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/metabolism , Carbonic Anhydrase Inhibitors/therapeutic use , Humans , Molecular Dynamics Simulation , Neoplasms/drug therapy , Organometallic Compounds/chemistry , Structure-Activity Relationship , Sulfonamides/chemistry
17.
J Med Chem ; 64(6): 2971-2981, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33711229

ABSTRACT

Tumor hypoxia is correlated with increased resistance to chemotherapy and poor overall prognoses across a number of cancer types. We present here a cancer cell-selective and hypoxia-responsive probe (fol-BODIPY) designed on the basis of density functional theory (DFT)-optimized quantum chemical calculations. The fol-BODIPY probe was found to provide a rapid fluorescence "off-on" response to hypoxia relative to controls, which lack the folate or nitro-benzyl moieties. In vitro confocal microscopy and flow cytometry analyses, as well as in vivo near-infrared optical imaging of CT26 solid tumor-bearing mice, provided support for the contention that fol-BODIPY is more readily accepted by folate receptor-positive CT26 cancer cells and provides a superior fluorescence "off-on" signal under hypoxic conditions than the controls. Based on the findings of this study, we propose that fol-BODIPY may serve as a tumor-targeting, hypoxia-activatable probe that allows for direct cancer monitoring both in vitro and in vivo.


Subject(s)
Fluorescent Dyes/metabolism , Neoplasms/diagnostic imaging , Nitroreductases/metabolism , Optical Imaging/methods , Tumor Hypoxia , Animals , Boron Compounds/chemistry , Boron Compounds/metabolism , Cell Line, Tumor , Fluorescent Dyes/chemistry , Humans , Male , Mice, Inbred BALB C , Microscopy, Fluorescence , Models, Molecular , Neoplasms/metabolism
18.
BMC Cancer ; 21(1): 72, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33446132

ABSTRACT

BACKGROUND: p-Boronophenylalanine (10BPA) is a powerful 10B drug used in current clinical trials of BNCT. For BNCT to be successful, a high (500 mg/kg) dose of 10BPA must be administered over a few hours. Here, we report BNCT efficacy after rapid, ultralow-dose administration of either tumor vasculature-specific annexin A1-targeting IFLLWQR (IF7)-conjugated 10BPA or borocaptate sodium (10BSH). METHODS: (1) IF7 conjugates of either 10B drugs intravenously injected into MBT2 bladder tumor-bearing mice and biodistribution of 10B in tumors and normal organs analyzed by prompt gamma-ray analysis. (2) Therapeutic effect of IF7-10B drug-mediated BNCT was assessed by either MBT2 bladder tumor bearing C3H/He mice and YTS-1 tumor bearing nude mice. RESULTS: Intravenous injection of IF7C conjugates of either 10B drugs into MBT2 bladder tumor-bearing mice promoted rapid 10B accumulation in tumor and suppressed tumor growth. Moreover, multiple treatments at ultralow (10-20 mg/kg) doses of IF7-10B drug-mediated BNCT significantly suppressed tumor growth in a mouse model of human YTS-1 bladder cancer, with increased Anxa1 expression in tumors and infiltration by CD8-positive lymphocytes. CONCLUSIONS: We conclude that IF7 serves as an efficient 10B delivery vehicle by targeting tumor tissues via the tumor vasculature and could serve as a relevant vehicle for BNCT drugs.


Subject(s)
Annexin A1/metabolism , Boron Compounds/administration & dosage , Boron Neutron Capture Therapy/methods , Neovascularization, Pathologic/radiotherapy , Peptide Fragments/metabolism , Phenylalanine/analogs & derivatives , Urinary Bladder Neoplasms/radiotherapy , Animals , Apoptosis , Boron Compounds/chemistry , Boron Compounds/metabolism , Cell Proliferation , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Nude , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Phenylalanine/administration & dosage , Phenylalanine/chemistry , Phenylalanine/metabolism , Tumor Cells, Cultured , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology , Xenograft Model Antitumor Assays
19.
Org Biomol Chem ; 19(10): 2203-2212, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33496698

ABSTRACT

Here were report the combination of biocompatible click chemistry of ω-azidosphinganine with fluorescence microscopy and mass spectrometry as a powerful tool to elaborate the sphingolipid metabolism. The azide probe was efficiently synthesized over 13 steps starting from l-serine in an overall yield of 20% and was used for live-cell fluorescence imaging of the endoplasmic reticulum in living cells by bioorthogonal click reaction with a DBCO-labeled fluorophore revealing that the incorporated analogue is mainly localized in the endoplasmic membrane like the endogenous species. A LC-MS(/MS)-based microsomal in vitro assay confirmed that ω-azidosphinganine mimics the natural species enabling the identification and analysis of metabolic breakdown products of sphinganine as a key starting intermediate in the complex sphingolipid biosynthetic pathways. Furthermore, the sphinganine-fluorophore conjugate after click reaction was enzymatically tolerated to form its dihydroceramide and ceramide metabolites. Thus, ω-azidosphinganine represents a useful biofunctional tool for metabolic investigations both by in vivo fluorescence imaging of the sphingolipid subcellular localization in the ER and by in vitro high-resolution mass spectrometry analysis. This should reveal novel insights of the molecular mechanisms sphingolipids and their processing enzymes have e.g. in infection.


Subject(s)
Azides/metabolism , Sphingolipids/analysis , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Animals , Azides/chemical synthesis , Boron Compounds/chemical synthesis , Boron Compounds/metabolism , Cell Line, Tumor , Chlorocebus aethiops , Click Chemistry , Endoplasmic Reticulum/metabolism , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/metabolism , Humans , Microscopy, Confocal , Microscopy, Fluorescence , Sphingolipids/biosynthesis
20.
Cell Mol Life Sci ; 78(3): 1113-1129, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32607595

ABSTRACT

Protein homeostasis is essential for life in eukaryotes. Organisms respond to proteotoxic stress by activating heat shock transcription factors (HSFs), which play important roles in cytoprotection, longevity and development. Of six human HSFs, HSF1 acts as a proteostasis guardian regulating stress-induced transcriptional responses, whereas HSF2 has a critical role in development, in particular of brain and reproductive organs. Unlike HSF1, that is a stable protein constitutively expressed, HSF2 is a labile protein and its expression varies in different tissues; however, the mechanisms regulating HSF2 expression remain poorly understood. Herein we demonstrate that the proteasome inhibitor anticancer drug bortezomib (Velcade), at clinically relevant concentrations, triggers de novo HSF2 mRNA transcription in different types of cancers via HSF1 activation. Similar results were obtained with next-generation proteasome inhibitors ixazomib and carfilzomib, indicating that induction of HSF2 expression is a general response to proteasome dysfunction. HSF2-promoter analysis, electrophoretic mobility shift assays, and chromatin immunoprecipitation studies unexpectedly revealed that HSF1 is recruited to a heat shock element located at 1.397 bp upstream from the transcription start site in the HSF2-promoter. More importantly, we found that HSF1 is critical for HSF2 gene transcription during proteasome dysfunction, representing an interesting example of transcription factor involved in controlling the expression of members of the same family. Moreover, bortezomib-induced HSF2 was found to localize in the nucleus, interact with HSF1, and participate in bortezomib-mediated control of cancer cell migration. The results shed light on HSF2-expression regulation, revealing a novel level of HSF1/HSF2 interplay that may lead to advances in pharmacological modulation of these fundamental transcription factors.


Subject(s)
Heat Shock Transcription Factors/metabolism , Heat-Shock Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Transcription Factors/metabolism , Boron Compounds/chemistry , Boron Compounds/metabolism , Bortezomib/chemistry , Bortezomib/metabolism , Bortezomib/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Nucleus/metabolism , Electrophoretic Mobility Shift Assay , Glycine/analogs & derivatives , Glycine/chemistry , Glycine/metabolism , Heat Shock Transcription Factors/antagonists & inhibitors , Heat Shock Transcription Factors/genetics , Heat-Shock Proteins/antagonists & inhibitors , Heat-Shock Proteins/genetics , Humans , Promoter Regions, Genetic , Proteasome Endopeptidase Complex/chemistry , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/metabolism , Proteasome Inhibitors/pharmacology , RNA Interference , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Transcription Initiation Site , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...