ABSTRACT
An inter-comparison of three boron determination techniques was carried out between laboratories from INFN-University of Pavia (Italy) and CNEA (Argentina): alpha spectrometry (alpha-spect), neutron capture radiography (NCR) and quantitative autoradiography (QTA). Samples of different nature were analysed: liquid standards, liver homogenates and tissue samples from different treatment protocols. The techniques showed a good agreement in a concentration range of interest in BNCT (1-100ppm), thus demonstrating their applicability as precise methods to quantify boron and determine its distribution in tissues.
Subject(s)
Boron Neutron Capture Therapy/standards , Boron/analysis , Argentina , Autoradiography , Humans , Isotopes/analysis , Italy , Laboratories/standards , Liver/chemistry , Neutrons , Radiography , Spectrum Analysis , Tissue DistributionABSTRACT
From 2008 to 2011, several planned modifications were implemented at the RA-6 reactor in Argentina, leading to significant benefits for future BNCT treatments. New capabilities have been implemented in NCTPlan treatment planning system. To assess the performance of the new BNCT facility, a dosimetric reevaluation of previous clinical cases was performed, taking into account the modifications carried out in the new facility and compared the results of the original treatment plans with optimized plans that are considered as feasible patient setups.
Subject(s)
Boron Neutron Capture Therapy/standards , Patient Positioning/standards , Quality Assurance, Health Care , Quality Improvement/standards , Radiometry/standards , Radiotherapy Planning, Computer-Assisted/standards , Radiotherapy Setup Errors/prevention & control , Argentina , HumansABSTRACT
A dosimetry intercomparison between the boron neutron capture therapy groups of the Massachusetts Institute of Technology (MIT) and the Comisión Nacional de Energía Atómica (CNEA), Argentina was performed to enable combined analyses of NCT patient data between the different centers. In-air and dose versus depth measurements in a rectangular water phantom were performed at the hyperthermal neutron beam facility of the RA-6 reactor, Bariloche. Calculated dose profiles from the CNEA treatment planning system NCTPlan that were calibrated against in-house measurements required normalizations of 1.0 (thermal neutrons), 1.13 (photons), and 0.74 (fast neutrons) to match the dosimetry of MIT.