Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 807
Filter
1.
Sci Rep ; 14(1): 12336, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811622

ABSTRACT

Hard ticks are known vectors of various pathogens, including the severe fever with thrombocytopenia syndrome virus, Rickettsia spp., Coxiella burnetii, Borrelia spp., Anaplasma phagocytophilum, and Ehrlichia spp. This study aims to investigate the distribution and prevalence of tick-borne pathogens in southwestern Korea from 2019 to 2022. A total of 13,280 ticks were collected during the study period, with H. longicornis accounting for 86.1% of the collected ticks. H. flava, I. nipponensis and A. testudinarium comprised 9.4%, 3.6%, and 0.8% of the ticks, respectively. Among 983 pools tested, Rickettsia spp. (216 pools, 1.6% MIR) were the most prevalent pathogens across all tick species, with R. japonica and R. monacensis frequently detected in I. nipponensis and Haemaphysalis spp., respectively. Borrelia spp. (28 pools, 0.2% MIR) were predominantly detected in I. nipponensis (27 pools, 13.8% MIR, P < 0.001). Co-infections, mainly involving Rickettsia monacensis and Borrelia afzelii, were detected in I. nipponensis. Notably, this study identified R. monacensis for the first time in A. testudinarium in South Korea. These findings offer valuable insights into the tick population and associated pathogens in the region, underscoring the importance of tick-borne disease surveillance and prevention measures.


Subject(s)
Rickettsia , Animals , Republic of Korea/epidemiology , Rickettsia/isolation & purification , Rickettsia/genetics , Ticks/microbiology , Ticks/virology , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/virology , Prevalence , Borrelia/isolation & purification , Borrelia/genetics , Anaplasma phagocytophilum/isolation & purification , Ehrlichia/isolation & purification , Ehrlichia/genetics , Coxiella burnetii/isolation & purification , Coxiella burnetii/genetics , Phlebovirus/isolation & purification , Phlebovirus/genetics
2.
BMC Genomics ; 25(1): 380, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632506

ABSTRACT

BACKGROUND: Trombiculid mites are globally distributed, highly diverse arachnids that largely lack molecular resources such as whole mitogenomes for the elucidation of taxonomic relationships. Trombiculid larvae (chiggers) parasitise vertebrates and can transmit bacteria (Orientia spp.) responsible for scrub typhus, a zoonotic febrile illness. Orientia tsutsugamushi causes most cases of scrub typhus and is endemic to the Asia-Pacific Region, where it is transmitted by Leptotrombidium spp. chiggers. However, in Dubai, Candidatus Orientia chuto was isolated from a case of scrub typhus and is also known to circulate among rodents in Saudi Arabia and Kenya, although its vectors remain poorly defined. In addition to Orientia, chiggers are often infected with other potential pathogens or arthropod-specific endosymbionts, but their significance for trombiculid biology and public health is unclear. RESULTS: Ten chigger species were collected from rodents in southwestern Saudi Arabia. Chiggers were pooled according to species and screened for Orientia DNA by PCR. Two species (Microtrombicula muhaylensis and Pentidionis agamae) produced positive results for the htrA gene, although Ca. Orientia chuto DNA was confirmed by Sanger sequencing only in P. agamae. Metagenomic sequencing of three pools of P. agamae provided evidence for two other bacterial associates: a spirochaete and a Wolbachia symbiont. Phylogenetic analysis of 16S rRNA and multi-locus sequence typing genes placed the spirochaete in a clade of micromammal-associated Borrelia spp. that are widely-distributed globally with no known vector. For the Wolbachia symbiont, a genome assembly was obtained that allowed phylogenetic localisation in a novel, divergent clade. Cytochrome c oxidase I (COI) barcodes for Saudi Arabian chiggers enabled comparisons with global chigger diversity, revealing several cases of discordance with classical taxonomy. Complete mitogenome assemblies were obtained for the three P. agamae pools and almost 50 SNPs were identified, despite a common geographic origin. CONCLUSIONS: P. agamae was identified as a potential vector of Ca. Orientia chuto on the Arabian Peninsula. The detection of an unusual Borrelia sp. and a divergent Wolbachia symbiont in P. agamae indicated links with chigger microbiomes in other parts of the world, while COI barcoding and mitogenomic analyses greatly extended our understanding of inter- and intraspecific relationships in trombiculid mites.


Subject(s)
Borrelia , Microbiota , Orientia tsutsugamushi , Scrub Typhus , Trombiculidae , Wolbachia , Animals , Scrub Typhus/epidemiology , Scrub Typhus/microbiology , Trombiculidae/genetics , Trombiculidae/microbiology , Wolbachia/genetics , Phylogeny , Borrelia/genetics , Multilocus Sequence Typing , RNA, Ribosomal, 16S/genetics , Saudi Arabia , Orientia tsutsugamushi/genetics , Rodentia/genetics , DNA , Orientia
3.
Parasit Vectors ; 17(1): 196, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685096

ABSTRACT

BACKGROUND: Ixodes inopinatus was described from Spain on the basis of morphology and partial sequencing of 16S ribosomal DNA. However, several studies suggested that morphological differences between I. inopinatus and Ixodes ricinus are minimal and that 16S rDNA lacks the power to distinguish the two species. Furthermore, nuclear and mitochondrial markers indicated evidence of hybridization between I. inopinatus and I. ricinus. In this study, we tested our hypothesis on tick dispersal from North Africa to Southern Europe and determined the prevalence of selected tick-borne pathogens (TBPs) in I. inopinatus, I. ricinus, and their hybrids. METHODS: Ticks were collected in Italy and Algeria by flagging, identified by sequencing of partial TROSPA and COI genes, and screened for Borrelia burgdorferi s.l., B. miyamotoi, Rickettsia spp., and Anaplasma phagocytophilum by polymerase chain reaction and sequencing of specific markers. RESULTS: Out of the 380 ticks, in Italy, 92 were I. ricinus, 3 were I. inopinatus, and 136 were hybrids of the two species. All 149 ticks from Algeria were I. inopinatus. Overall, 60% of ticks were positive for at least one TBP. Borrelia burgdorferi s.l. was detected in 19.5% of ticks, and it was significantly more prevalent in Ixodes ticks from Algeria than in ticks from Italy. Prevalence of Rickettsia spotted fever group (SFG) was 51.1%, with significantly greater prevalence in ticks from Algeria than in ticks from Italy. Borrelia miyamotoi and A. phagocytophilum were detected in low prevalence (0.9% and 5.2%, respectively) and only in ticks from Italy. CONCLUSIONS: This study indicates that I. inopinatus is a dominant species in Algeria, while I. ricinus and hybrids were common in Italy. The higher prevalence of B. burgdorferi s.l. and Rickettsia SFG in I. inopinatus compared with that in I. ricinus might be due to geographical and ecological differences between these two tick species. The role of I. inopinatus in the epidemiology of TBPs needs further investigation in the Mediterranean Basin.


Subject(s)
Ixodes , Rickettsia , Animals , Ixodes/microbiology , Italy/epidemiology , Algeria/epidemiology , Rickettsia/isolation & purification , Rickettsia/genetics , Rickettsia/classification , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology , Prevalence , Borrelia/genetics , Borrelia/isolation & purification , Borrelia/classification , Anaplasma phagocytophilum/genetics , Anaplasma phagocytophilum/isolation & purification , Anaplasma phagocytophilum/classification , Female , Hybridization, Genetic , Male , RNA, Ribosomal, 16S/genetics , Borrelia burgdorferi/genetics , Borrelia burgdorferi/isolation & purification , Borrelia burgdorferi/classification
4.
Biomed Res Int ; 2024: 9997082, 2024.
Article in English | MEDLINE | ID: mdl-38456098

ABSTRACT

Lyme disease caused by the Borrelia species is a growing health concern in many parts of the world. Current treatments for the disease may have side effects, and there is also a need for new therapies that can selectively target the bacteria. Pathogens responsible for Lyme disease include B. burgdorferi, B. afzelii, and B. garinii. In this study, we employed structural docking-based screening to identify potential lead-like inhibitors against the bacterium. We first identified the core essential genome fraction of the bacterium, using 37 strains. Later, we screened a library of lead-like marine microbial metabolites (n = 4730) against the arginine deiminase (ADI) protein of Borrelia garinii. This protein plays a crucial role in the survival of the bacteria, and inhibiting it can kill the bacterium. The prioritized lead compounds demonstrating favorable binding energies and interactions with the active site of ADI were then evaluated for their drug-like and pharmacokinetic parameters to assess their suitability for development as drugs. Results from molecular dynamics simulation (100 ns) and other scoring parameters suggest that the compound CMNPD18759 (common name: aureobasidin; IUPAC name: 2-[(4R,6R)-4,6-dihydroxydecanoyl]oxypropan-2-yl (3S,5R)-3,5-dihydroxydecanoate) holds promise as a potential drug candidate for the treatment of Lyme disease, caused by B. garinii. However, further experimental studies are needed to validate the efficacy and safety of this compound in vivo.


Subject(s)
Borrelia burgdorferi Group , Borrelia , Lyme Disease , Humans , Borrelia burgdorferi Group/genetics , Lyme Disease/drug therapy , Lyme Disease/diagnosis , Borrelia/genetics
5.
Parasit Vectors ; 17(1): 87, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395915

ABSTRACT

BACKGROUND: Changing geographical and seasonal activity patterns of ticks may increase the risk of tick infestation and tick-borne pathogen (TBP) transmission for both humans and animals. METHODS: To estimate TBP exposure of dogs and cats, 3000 female I. ricinus from these hosts were investigated for Anaplasma phagocytophilum and Borrelia species. RESULTS: qPCR inhibition, which was observed for ticks of all engorgement stages but not questing ticks, was eliminated at a template volume of 2 µl. In ticks from dogs, A. phagocytophilum and Borrelia spp. prevalence amounted to 19.0% (285/1500) and 28.5% (427/1500), respectively, while ticks from cats showed significantly higher values of 30.9% (464/1500) and 55.1% (827/1500). Accordingly, the coinfection rate with both A. phagocytophilum and Borrelia spp. was significantly higher in ticks from cats (17.5%, 262/1500) than dogs (6.9%, 104/1500). Borrelia prevalence significantly decreased with increasing engorgement duration in ticks from both host species, whereas A. phagocytophilum prevalence decreased only in ticks from dogs. While A. phagocytophilum copy numbers in positive ticks did not change significantly over the time of engorgement, those of Borrelia decreased initially in dog ticks. In ticks from cats, copy numbers of neither A. phagocytophilum nor Borrelia spp. were affected by engorgement. Borrelia species differentiation was successful in 29.1% (365/1254) of qPCR-positive ticks. The most frequently detected species in ticks from dogs were B. afzelii (39.3% of successfully differentiated infections; 70/178), B. miyamotoi (16.3%; 29/178), and B. valaisiana (15.7%; 28/178), while B. afzelii (40.1%; 91/227), B. spielmanii (21.6%; 49/227), and B. miyamotoi (14.1%; 32/227) occurred most frequently in ticks from cats. CONCLUSIONS: The differences in pathogen prevalence and Borrelia species distribution between ticks collected from dogs and cats may result from differences in habitat overlap with TBP reservoir hosts. The declining prevalence of A. phagocytophilum with increasing engorgement duration, without a decrease in copy numbers, could indicate transmission to dogs over the time of attachment. The fact that this was not observed in ticks from cats may indicate less efficient transmission. In conclusion, the high prevalence of A. phagocytophilum and Borrelia spp. in ticks collected from dogs and cats underlines the need for effective acaricide tick control to protect both animals and humans from associated health risks.


Subject(s)
Anaplasma phagocytophilum , Borrelia , Cat Diseases , Coinfection , Dog Diseases , Ixodes , Humans , Dogs , Animals , Cats , Female , Borrelia/genetics , Anaplasma phagocytophilum/genetics , Coinfection/epidemiology , Coinfection/veterinary , Cat Diseases/epidemiology , Dog Diseases/epidemiology , Germany/epidemiology
6.
Vector Borne Zoonotic Dis ; 24(5): 285-292, 2024 May.
Article in English | MEDLINE | ID: mdl-38346321

ABSTRACT

Background: Despite abundance of small mammals in Serbia, there is no information on their role in the epidemiology of tick-borne diseases (TBDs). This retrospective study aimed to identify different tick-borne pathogens (TBPs) in small mammals in Serbia collected during 2011. Materials and Methods: A total of 179 small mammals were collected from seven different localities in Serbia. The five localities belong to the capital city of Serbia-Belgrade: recreational areas-Ada Ciganlija, Titov gaj, and Kosutnjak as well as mountainous suburban areas used for hiking-Avala and Kosmaj. The locality Veliko Gradiste is a tourist place in northeastern Serbia, whereas the locality Milosev Do is a remote area in western Serbia with minor human impact on the environment. Results: The results of the presented retrospective study are the first findings of Rickettsia helvetica, Rickettsia monacensis, Neoehrlichia mikurensis, Borrelia afzelii, Borrelia miyamotoi, Babesia microti, Hepatozoon canis, and Coxiella burnetii in small mammals in Serbia. The presence of R. helvetica was confirmed in two Apodemus flavicollis, the presence of one of the following pathogens, R. monacensis, B. afzelii, H. canis, Ba. microti, and N. mikurensis was confirmed in one A. flavicollis each, whereas the presence of B. miyamotoi was confirmed in one Apodemus agrarius. Coinfection with B. afzelii and Ba. microti was confirmed in one A. flavicollis. DNA of C. burnetii was detected in 3 of 18 pools. Conclusions: The results confirm that detected pathogens circulate in the sylvatic cycle in Serbia and point to small mammals as potential reservoir hosts for the detected TBPs. Further large-scale studies on contemporary samples are needed to clarify the exact role of particular small mammal species in the epidemiology of TBDs caused by the detected pathogens.


Subject(s)
Tick-Borne Diseases , Animals , Serbia/epidemiology , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/parasitology , Retrospective Studies , Ticks/microbiology , Mammals/parasitology , Rodentia/parasitology , Babesia microti/isolation & purification , Babesia microti/genetics , Coxiella burnetii/isolation & purification , Coxiella burnetii/genetics , Borrelia/isolation & purification , Borrelia/genetics , Borrelia/classification
7.
Nat Commun ; 15(1): 747, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38272885

ABSTRACT

The worldwide decline in malaria incidence is revealing the extensive burden of non-malarial febrile illness (NMFI), which remains poorly understood and difficult to diagnose. To characterize NMFI in Senegal, we collected venous blood and clinical metadata in a cross-sectional study of febrile patients and healthy controls in a low malaria burden area. Using 16S and untargeted sequencing, we detected viral, bacterial, or eukaryotic pathogens in 23% (38/163) of NMFI cases. Bacteria were the most common, with relapsing fever Borrelia and spotted fever Rickettsia found in 15.5% and 3.8% of cases, respectively. Four viral pathogens were found in a total of 7 febrile cases (3.5%). Sequencing also detected undiagnosed Plasmodium, including one putative P. ovale infection. We developed a logistic regression model that can distinguish Borrelia from NMFIs with similar presentation based on symptoms and vital signs (F1 score: 0.823). These results highlight the challenge and importance of improved diagnostics, especially for Borrelia, to support diagnosis and surveillance.


Subject(s)
Borrelia , Malaria , Plasmodium , Humans , Senegal/epidemiology , Cross-Sectional Studies , Malaria/diagnosis , Malaria/epidemiology , Fever/epidemiology , Borrelia/genetics
8.
Emerg Infect Dis ; 30(2): 380-383, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38270112

ABSTRACT

We conducted surveillance studies in Sinaloa, Mexico, to determine the circulation of tick-borne relapsing fever spirochetes. We collected argasid ticks from a home in the village of Camayeca and isolated spirochetes. Genomic analysis indicated that Borrelia turicatae infection is a threat to those living in resource-limited settings.


Subject(s)
Borrelia Infections , Borrelia , Relapsing Fever , Ticks , Animals , Mexico/epidemiology , Borrelia/genetics , Relapsing Fever/epidemiology , Borrelia Infections/epidemiology
9.
Methods Mol Biol ; 2742: 19-35, 2024.
Article in English | MEDLINE | ID: mdl-38165612

ABSTRACT

Among the controversies in Lyme disease is the potential for Borrelia spirochetes to persist after guideline-directed antimicrobial therapy. Direct detection of the spirochetes has been essential to explore this phenomenon, given that the infection is often occult and infrequently observed in blood and other body fluids. In addition, the role of spirochetal infection has been examined in the etiology of neurodegenerative diseases through detection in affected tissues. In this chapter, we describe methodology to specifically identify Borrelia DNA, RNA, and intact organism (via protein) in tissue for studies of Lyme Borreliosis.


Subject(s)
Borrelia , Lyme Disease , Humans , Borrelia/genetics , Lyme Disease/diagnosis
10.
Methods Mol Biol ; 2742: 99-104, 2024.
Article in English | MEDLINE | ID: mdl-38165618

ABSTRACT

The high failure rate of tick-borne infection (TBI)-related testing underscores the need for novel approaches that do not rely on serology and two-tier testing. Delayed diagnosis of TBIs, especially Borrelia infections, results in high healthcare costs and great suffering. There is a significant need for a reliable blood test that can aid in the diagnosis of Lyme disease, particularly when the current FDA-approved serological test is not sensitive enough to detect early Lyme patients who have not yet produced antibodies against Borrelia. Bacteriophages are viruses that specifically associate with their bacterial hosts, particularly prophages, bacteriophages residing in bacteria, and have proven to be tightly correlated with their bacterial hosts. They are poised to have wider applications as markers to detect bacteria, particularly in infectious disease. The gene of choice depends on the prevalence of phages within a particular group of bacteria. Phage genes that have been used as molecular markers to examine phage diversity include structural genes encoding the major capsid protein, the portal protein, the DNA polymerase, and the terminase. Borrelia species carry specific phage sequences that can be used as a proxy to identify the bacteria. Using phages as a proxy for bacteria is beneficial, as phages can be detected more easily than bacteria and can be used to bypass the cryptic and tissue-bound feature that typifies human Borrelia infections.We explored a completely new way of detecting Borrelia using Borrelia-specific bacteriophages as a diagnostic tool. Our detection method, patented by Phelix R&D and Leicester University (WO2018083491A1), could potentially transform infectious disease diagnostics through the innovative use of real-time PCR to target circulating bacteriophage DNA in blood from patients with Lyme disease. Firstly, this bacteriophage-based approach offers increased sensitivity since bacteriophages are typically present in five- to tenfold excess over bacterial cells, making it more accurate and sensitive than conventional bacteria-targeting PCR tests. One of the reasons bacteria-based PCR tests are frequently negative is due to the low bacterial concentration in the blood. Bacteriophage-based PCR surpasses this barrier and offers a direct test, as phages are part of bacteria's own genetic material, in contrast to all existing indirect tests (ELISA, Western BLOT, LTT/ELISPOT test). Secondly, a phage-based test can differentiate between different Lyme disease-causing and relapsing fever-causing Borrelia subtypes (B. burgdorferi s. l., B. miyamotoi, etc.), given that bacteriophages are indicators of bacterial identity. Finally, this test can detect Lyme disease in both early and late stages.


Subject(s)
Bacteriophages , Borrelia Infections , Borrelia burgdorferi , Borrelia , Communicable Diseases , Lyme Disease , Humans , Borrelia/genetics , Bacteriophages/genetics , Lyme Disease/diagnosis , Lyme Disease/microbiology , Real-Time Polymerase Chain Reaction , Diagnostic Tests, Routine , Borrelia burgdorferi/genetics
11.
Vector Borne Zoonotic Dis ; 24(5): 278-284, 2024 May.
Article in English | MEDLINE | ID: mdl-38252532

ABSTRACT

Background: The taxonomic status of the relapsing fever spirochete Borrelia hermsii in western North America was established in 1942 and based solely on its specific association with the soft tick vector Ornithodoros hermsi. Multilocus sequence typing (MLST) of the 16S rRNA, flaB, gyrB, glpQ, and 16S-23S rRNA intergenic spacer of B. hermsii isolates collected over many years from various geographic locations and biological sources identified two distinct clades designated previously as B. hermsii Genomic Group I (GGI) and Genomic Group II (GGII). To better assess the taxonomic relationship of these two genomic groups to each other and other species of Borrelia, DNA sequences of the entire linear chromosome were determined. Materials and Methods: Genomic DNA samples were prepared from 11 spirochete isolates grown in Barbour-Stoenner-Kelly-H medium. From these preparations, DNA sequences of the entire linear chromosome of two isolates of B. hermsii belonging to each genomic group and seven additional species were determined. Results: Chromosomal sequences of four isolates of B. hermsii contained 919,212 to 922,307 base pairs. DNA sequence identities between the two genomic groups of B. hermsii were 95.86-95.99%, which were more divergent than chromosomal sequences comparing Borrelia parkeri and Borrelia turicatae (97.13%), Borrelia recurrentis and Borrelia duttonii (97.07%), and Borrelia crocidurae and B. duttonii (97.09%). The 3' end of the chromosome of the two GGII isolates also contained a unique intact oppA gene absent from all other species examined. Conclusion: Previous MLST and the chromosomal sequences presented herein support the division of the B. hermsii species complex into two species, B. hermsii sensu stricto ( = GGI) and Borrelia nietonii sp. nov. ( = GGII). We name this unique relapsing fever spirochete in honor of our late friend and colleague Dr. Nathan Nieto for his outstanding contributions to our understanding of tick-borne relapsing fever.


Subject(s)
Borrelia , Ornithodoros , Phylogeny , Relapsing Fever , Borrelia/genetics , Borrelia/isolation & purification , Borrelia/classification , Ornithodoros/microbiology , Animals , Relapsing Fever/microbiology , DNA, Bacterial/genetics , Multilocus Sequence Typing , RNA, Ribosomal, 16S/genetics , Genome, Bacterial
12.
J Bacteriol ; 206(2): e0034023, 2024 02 22.
Article in English | MEDLINE | ID: mdl-38214528

ABSTRACT

Glycerol utilization as a carbohydrate source by Borreliella burgdorferi, the Lyme disease spirochete, is critical for its successful colonization and persistence in the tick vector. The expression of the glpFKD (glp) operon, which encodes proteins for glycerol uptake/utilization, must be tightly regulated during the enzootic cycle of B. burgdorferi. Previous studies have established that the second messenger cyclic di-GMP (c-di-GMP) is required for the activation of glp expression, while an alternative sigma factor RpoS acts as a negative regulator for glp expression. In the present study, we report identification of a cis element within the 5´ untranslated region of glp that exerts negative regulation of glp expression. Further genetic screen of known and predicted DNA-binding proteins encoded in the genome of B. burgdorferi uncovered that overexpressing Borrelia host adaptation regulator (BadR), a known global regulator, dramatically reduced glp expression. Similarly, the badR mutant significantly increased glp expression. Subsequent electrophoretic mobility shift assay analyses demonstrated that BadR directly binds to this cis element, thereby repressing glp independent of RpoS-mediated repression. The efficiency of BadR binding was further assessed in the presence of c-di-GMP and various carbohydrates. This finding highlights multi-layered positive and negative regulatory mechanisms employed by B. burgdorferi to synchronize glp expression throughout its enzootic cycle.IMPORTANCEBorreliella burgdorferi, the Lyme disease pathogen, must modulate its gene expression differentially to adapt successfully to its two disparate hosts. Previous studies have demonstrated that the glycerol uptake and utilization operon, glpFKD, plays a crucial role in spirochetal survival within ticks. However, the glpFKD expression must be repressed when B. burgdorferi transitions to the mammalian host. In this study, we identified a specific cis element responsible for the repression of glpFKD. We further pinpointed Borrelia host adaptation regulator as the direct binding protein to this cis element, thereby repressing glpFKD expression. This discovery paves the way for a deeper exploration of how zoonotic pathogens sense distinct hosts and switch their carbon source utilization during transmission.


Subject(s)
Borrelia burgdorferi , Borrelia , Lyme Disease , Ticks , Animals , Borrelia/genetics , Borrelia/metabolism , Glycerol/metabolism , Host Adaptation , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Borrelia burgdorferi/genetics , Borrelia burgdorferi/metabolism , Operon , Gene Expression Regulation, Bacterial , Mammals/genetics , Mammals/metabolism
13.
Ticks Tick Borne Dis ; 15(2): 102290, 2024 03.
Article in English | MEDLINE | ID: mdl-38070273

ABSTRACT

Tick-borne microorganisms in many tick species and many areas of China are still not thoroughly investigated. In this study, 224 ticks including two species (Haemaphysalis longicornis and Haemaphysalis qinghaiensis) were collected from four cities in Hebei, Shandong, and Qinghai provinces, China. Ticks were screened for the presence of tick-borne bacterial microorganisms including Rickettsia, Anaplasmataceae (Anaplasma, Ehrlichia, Neoehrlichia, etc.), Coxiella, Borrelia, and Bartonella. Two Anaplasma species (Anaplasma ovis and Anaplasma capra) were detected in H. longicornis from Xingtai City of Hebei Province, with a positive rate of 3 % and 8 %, respectively. A Coxiella species was detected in H. longicornis ticks from all three locations in Hebei and Shandong provinces, with the positive rate ranging from 30 to 75 %. All the 16S and rpoB sequences were very similar (99.77-100 % identity) to Coxiella endosymbiont of Haemaphysalis ticks. An Ehrlichia species was detected in H. qinghaiensis (6/66, 9 %) from Xining City, Qinghai Province. The 16S and groEL sequences had 100 % and 97.40-97.85 % nucleotide identities to "Candidatus Ehrlichia pampeana" strains, respectively, suggesting that it may be a variant of "Candidatus Ehrlichia pampeana". All the ticks were negative for Rickettsia, Borrelia, and Bartonella. Because all the ticks were removed from goats or humans and were partially or fully engorged, it is possible that the microorganisms were from the blood meal but not vectored by the ticks. Our results may provide some information on the diversity and distribution of tick-borne pathogens in China.


Subject(s)
Anaplasmataceae , Bartonella , Borrelia , Ixodidae , Rickettsia , Tick-Borne Diseases , Ticks , Animals , Humans , Ticks/microbiology , Ixodidae/microbiology , Rickettsia/genetics , Anaplasma/genetics , Ehrlichia/genetics , Bartonella/genetics , Anaplasmataceae/genetics , Borrelia/genetics , Goats , China/epidemiology , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/microbiology
14.
Infect Immun ; 92(1): e0024423, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38099660

ABSTRACT

Interactions among pathogen genotypes that vary in host specificity may affect overall transmission dynamics in multi-host systems. Borrelia burgdorferi, a bacterium that causes Lyme disease, is typically transmitted among wildlife by Ixodes ticks. Despite the existence of many alleles of B. burgdorferi's sensu stricto outer surface protein C (ospC) gene, most human infections are caused by a small number of ospC alleles ["human infectious alleles" (HIAs)], suggesting variation in host specificity associated with ospC. To characterize the wildlife host association of B. burgdorferi's ospC alleles, we used metagenomics to sequence ospC alleles from 68 infected individuals belonging to eight mammalian species trapped at three sites in suburban New Brunswick, New Jersey (USA). We found that multiple allele ("mixed") infections were common. HIAs were most common in mice (Peromyscus spp.) and only one HIA was detected at a site where mice were rarely captured. ospC allele U was exclusively found in chipmunks (Tamias striatus), and although a significant number of different alleles were observed in chipmunks, including HIAs, allele U never co-occurred with other alleles in mixed infections. Our results suggest that allele U may be excluding other alleles, thereby reducing the capacity of chipmunks to act as reservoirs for HIAs.


Subject(s)
Borrelia burgdorferi , Borrelia , Coinfection , Ixodes , Lyme Disease , Animals , Humans , Borrelia burgdorferi/genetics , Borrelia/genetics , Alleles , Lyme Disease/microbiology , Ixodes/genetics , Ixodes/microbiology , Antigens, Bacterial/genetics , Bacterial Outer Membrane Proteins/genetics , Sciuridae/genetics , Host Specificity
15.
Ticks Tick Borne Dis ; 15(2): 102303, 2024 03.
Article in English | MEDLINE | ID: mdl-38113807

ABSTRACT

Ticks are obligate hematophagous parasites that can transmit to vertebrate hosts several pathogens, including viruses, bacteria, protozoa and helminths. Among these agents, some Borrelia species some Borrelia species cause disease in humans and other vertebrate hosts; therefore, they have medical and veterinary health importance. To gather additional information on Borrelia species in Brazil, the current study aimed to detect the presence of these species in Ornithodoros cavernicolous ticks collected in September 2019 from cement pipes that are used by bats as shelter in a farm located in the midwestern region of Brazil. DNA samples obtained from 18 specimens of O. cavernicolous were subjected of two polymerase chain reactions, targeting a segment of the Borrelia fla B gene. Of the samples tested, only one (6 %, 1/18) showed amplification. The nucleotide sequence of the amplified DNA showed more than 97 % (293/300) identity with a sequence of a Borrelia sp. detected in blood collected from a bat from Macaregua Cave, Colombia, and more than 97 % (292/300) detected in lungs from vampire bats from northeastern Brazil. The deduced amino acid sequences were identical to each other. Phylogenetic analysis indicated that these sequences formed a group of Borrelia species (putatively associated with bats) that is closely related to sequences of Borrelia species of the Lyme borreliosis group. Further investigations should be carried out in order to determine whether the sequence of the Borrelia sp. we found belongs to a new taxon. It will also be of great importance to determine which vertebrate hosts, besides bats, O. cavernicolous ticks can parasitize in order to investigate whether the Borrelia sp. we found may be transmitted and cause disease to the other vertebrate hosts.


Subject(s)
Acari , Argasidae , Borrelia , Chiroptera , Ornithodoros , Humans , Animals , Ornithodoros/microbiology , Argasidae/genetics , Borrelia/genetics , Acari/genetics , Brazil/epidemiology , Chiroptera/parasitology , Phylogeny , DNA
16.
Int J Mol Sci ; 24(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38069228

ABSTRACT

Lyme disease (LD) spirochetes are well known to be able to disseminate into the tissues of infected hosts, including humans. The diverse strategies used by spirochetes to avoid the host immune system and persist in the host include active immune suppression, induction of immune tolerance, phase and antigenic variation, intracellular seclusion, changing of morphological and physiological state in varying environments, formation of biofilms and persistent forms, and, importantly, incursion into immune-privileged sites such as the brain. Invasion of immune-privileged sites allows the spirochetes to not only escape from the host immune system but can also reduce the efficacy of antibiotic therapy. Here we present a case of the detection of spirochetal DNA in multiple loci in a LD patient's post-mortem brain. The presence of co-infection with Borrelia burgdorferi sensu stricto and Borrelia garinii in this LD patient's brain was confirmed by PCR. Even though both spirochete species were simultaneously present in human brain tissue, the brain regions where the two species were detected were different and non-overlapping. The presence of atypical spirochete morphology was noted by immunohistochemistry of the brain samples. Atypical morphology was also found in the tissues of experimentally infected mice, which were used as a control.


Subject(s)
Borrelia burgdorferi Group , Borrelia burgdorferi , Borrelia , Lyme Disease , Humans , Borrelia/genetics , Borrelia burgdorferi/genetics , Borrelia burgdorferi Group/genetics , Brain
17.
Microbiome ; 11(1): 250, 2023 11 11.
Article in English | MEDLINE | ID: mdl-37952001

ABSTRACT

BACKGROUND: Ticks are major vectors of diseases affecting humans such as Lyme disease or domestic animals such as anaplasmosis. Cross-alteration of the vertebrate host skin microbiome and the tick microbiome may be essential during the process of tick feeding and for the mechanism of pathogen transmission. However, it has been poorly investigated. METHODS: We used mice bitten by field-collected ticks (nymphs and adult ticks) in different experimental conditions to investigate, by 16S rRNA gene metabarcoding, the impact of blood feeding on both the mouse skin microbiome and the tick microbiome. We also investigated by PCR and 16S rRNA gene metabarcoding, the diversity of microorganisms transmitted to the host during the process of tick bite at the skin interface and the dissemination of the pathogen in host tissues (blood, heart, and spleen). RESULTS: Most of the commensal bacteria present in the skin of control mice were replaced during the blood-feeding process by bacteria originating from the ticks. The microbiome of the ticks was also impacted by the blood feeding. Several pathogens including tick-borne pathogens (Borrelia/Borreliella, Anaplasma, Neoehrlichia, Rickettsia) and opportunistic bacteria (Williamsia) were transmitted to the skin microbiome and some of them disseminated to the blood or spleen of the mice. In the different experiments of this study, skin microbiome alteration and Borrelia/Borreliella transmission were different depending on the tick stages (nymphs or adult female ticks). CONCLUSIONS: Host skin microbiome at the bite site was deeply impacted by the tick bite, to an extent which suggests a role in the tick feeding, in the pathogen transmission, and a potentially important impact on the skin physiopathology. The diversified taxonomic profiles of the tick microbiome were also modified by the blood feeding. Video Abstract.


Subject(s)
Borrelia , Ixodes , Microbiota , Tick Bites , Humans , Animals , Female , Mice , Ixodes/genetics , Ixodes/microbiology , RNA, Ribosomal, 16S/genetics , Borrelia/genetics , Nymph/microbiology
18.
Vet Microbiol ; 286: 109892, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37866329

ABSTRACT

Ticks are the main vectors for the transmission of bacterial, protist and viral pathogens in Europe affecting wildlife and domestic animals. However, some of them are zoonotic and can cause serious, sometimes fatal, problems in human health. A systematic review in PubMed/MEDLINE database was conducted to determine the spatial distribution and host and tick species ranges of a selection of tick-borne bacteria (Anaplasma spp., Borrelia spp., Coxiella spp., and Rickettsia spp.), protists (Babesia spp. and Theileria spp.), and viruses (Orthonairovirus, and flaviviruses tick-borne encephalitis virus and louping ill virus) on the European continent in a five-year period (November 2017 - November 2022). Only studies using PCR methods were selected, retrieving a total of 429 articles. Overall, up to 85 species of the selected tick-borne pathogens were reported from 36 European countries, and Anaplasma spp. was described in 37% (159/429) of the articles, followed by Babesia spp. (34%, 148/429), Borrelia spp. (34%, 147/429), Rickettsia spp. (33%, 142/429), Theileria spp. (11%, 47/429), tick-borne flaviviruses (9%, 37/429), Orthonairovirus (7%, 28/429) and Coxiella spp. (5%, 20/429). Host and tick ranges included 97 and 50 species, respectively. The highest tick-borne pathogen diversity was detected in domestic animals, and 12 species were shared between humans, wildlife, and domestic hosts, highlighting the following zoonotic species: Anaplasma phagocytophilum, Babesia divergens, Babesia microti, Borrelia afzelii, Borrelia burgdorferi s.s., Borrelia garinii, Borrelia miyamotoi, Crimean-Congo hemorrhagic fever virus, Coxiella burnetii, Rickettsia monacensis and tick-borne encephalitis virus. These results contribute to the implementation of effective interventions for the surveillance and control of tick-borne diseases.


Subject(s)
Babesia , Borrelia , Encephalitis Viruses, Tick-Borne , Ixodes , Rickettsia , Theileria , Tick-Borne Diseases , Animals , Humans , Babesia/genetics , Encephalitis Viruses, Tick-Borne/genetics , Anaplasma/genetics , Coxiella , Ixodes/microbiology , Ixodes/parasitology , Borrelia/genetics , Rickettsia/genetics , Animals, Domestic , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/microbiology , Animals, Wild
19.
Parasit Vectors ; 16(1): 337, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37752595

ABSTRACT

BACKGROUND: Borrelia persica causes tick-borne relapsing fever in Israel, the eastern Mediterranean basin, and Asia. Relapsing fever is associated with severe illness and potentially death in humans and animals. Since B. persica infection has rarely been described in wild animals, the aim of this study was to evaluate the prevalence of infection with B. persica in wild carnivores in Israel. METHODS: Spleen and blood clot samples from wild carnivores, which underwent necropsy, were tested for the presence of Borrelia DNA by real-time polymerase chain reaction (PCR). PCR products were sequenced, and the spirochete loads were quantified using a specific quantitative PCR (qPCR). RESULTS: A total of 140 samples from 74 wild carnivores were analyzed for the presence of Borrelia DNA. Six out of the 74 (8.1%) animals were found positive for B. persica by PCR and sequencing of the flagellin B gene, of which 4/74 (5.4%) were also positive by PCR for the glycerophosphodiester phosphodiesterase (glpQ) gene. Positive samples were obtained from three European badgers, and one striped hyena, golden jackal, and red fox each. All B. persica-positive animals were young males (P < 0.0001). Quantifiable results were obtained from 3/5 spleen and 4/5 blood samples. The spirochete loads in the blood were significantly higher than those found in the spleen (P = 0.034). CONCLUSIONS: The prevalence of B. persica infection found in wild carnivores brought for necropsy was unexpectedly high, suggesting that this infection is widespread in some wild animal species in Israel. This is the first report of B. persica infection in the European badger and striped hyena. These carnivores have a wide geographical range of activity, and the results of this survey raise the possibility that they may serve as reservoir hosts for B. persica.


Subject(s)
Borrelia Infections , Borrelia , Hyaenidae , Mustelidae , Relapsing Fever , Humans , Male , Animals , Israel/epidemiology , Borrelia/genetics , Animals, Wild , DNA
20.
Parasitol Res ; 122(10): 2367-2377, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37587388

ABSTRACT

Human contact with wild animals in synanthropic habits is often mediated by arthropod vectors such as ticks. This is an important method of spreading infectious agents that pose a risk to human health. Thus, this study aimed to molecularly detect Ehrlichia spp., Anaplasma spp., Borrelia spp., and protozoa of the order Piroplasmida in ticks collected from coatis of Iguaçu National Park (PNI), Paraná, Brazil. This study involved 553 ticks DNA, including Amblyomma spp. larvae, Haemaphysalis juxtakochi nymphs, Amblyomma brasiliense, Amblyomma coelebs, and adults of Amblyomma ovale. The DNA extracted from each sample was subjected to polymerase chain reaction (PCR) targeting the genes 23S rRNA for the Anaplasmataceae family, 16S rRNA for Anaplasma spp., dsb for Ehrlichia spp., flaB, 16S rRNA, hpt, and glpQ for Borrelia spp., and 18S rRNA for Piroplasmid protozoans. DNA from Anaplasma sp. was detected in ticks of the species A. coelebs (4/553); Borrelia sp. DNA was detected in A. coelebs (3/553), A. ovale (1/553), and Amblyomma larvae (1/553); and Theileria sp. was detected in A. coelebs (2/553). All tested samples were negative for Ehrlichia spp. Our study constitutes the newest report in South America of these microorganisms, which remain poorly studied.


Subject(s)
Borrelia , Procyonidae , Ticks , Adult , Animals , Humans , RNA, Ribosomal, 16S/genetics , Brazil , Parks, Recreational , Ecosystem , Forests , Amblyomma , Anaplasma/genetics , Borrelia/genetics , Ehrlichia/genetics , Larva
SELECTION OF CITATIONS
SEARCH DETAIL
...