Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
ACS Appl Mater Interfaces ; 16(19): 24295-24307, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38697643

ABSTRACT

Pyroptosis has garnered increasing attention because of its ability to trigger robust antitumor immunity. Pyroptosis is initiated by the activation of inflammasomes, which are regulated by various organelles. The collaboration among organelles offers several protective mechanisms to prevent activation of the inflammasome, thereby limiting the induction of efficient pyroptosis. Herein, a multiorganelle homeostasis disruptor (denoted BLL) is constructed by encapsulating liposomes and bortezomib (BTZ) within a layered double hydroxide (LDH) nanocage to continuously activate inflammasomes for inducing efficient pyroptosis. In lysosomes, the negatively charged liposomes are released to recruit the NLRP3 inflammasomes through electrostatic interactions. ER stress is induced by BTZ to enhance the activation of the NLRP3 inflammasome. Meanwhile, the BLL nanocage exhibited H+-scavenging ability due to the weak alkalinity of LDH, thus disrupting the homeostasis of the lysosome and alleviating the degradation of the NLRP3 inflammasome by lysosomal-associated autophagy. Our results suggest that the BLL nanocage induces homeostatic imbalance in various organelles and efficient pyroptosis. We hope this work can provide new insights into the design of an efficient pyroptosis inducer by disrupting the homeostatic balance of multiple organelles and promote the development of novel antineoplastic platforms.


Subject(s)
Homeostasis , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Pyroptosis/drug effects , Inflammasomes/metabolism , Inflammasomes/drug effects , Homeostasis/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Humans , Mice , Bortezomib/pharmacology , Bortezomib/chemistry , Liposomes/chemistry , Animals , Lysosomes/metabolism , Lysosomes/drug effects , Hydroxides/chemistry , Hydroxides/pharmacology , Nanostructures/chemistry , Nanoparticles/chemistry
2.
J Am Soc Mass Spectrom ; 35(6): 1063-1068, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38748611

ABSTRACT

Bortezomib, a small dipeptide-like molecule, is a proteasome inhibitor used widely in the treatment of myeloma and lymphoma. This molecule reacts with threonine side chains near the center of the 20S proteasome and disrupts proteostasis by blocking enzymatic sites that are responsible for protein degradation. In this work, we use novel mass-spectrometry-based techniques to examine the influence of bortezomib on the structures and stabilities of the 20S core particle. These studies indicate that bortezomib binding dramatically favors compact 20S structures (in which the axial gate is closed) over larger structures (in which the axial gate is open)─suppressing gate opening by factors of at least ∼400 to 1300 over the temperature range that is studied. Thus, bortezomib may also restrict degradation in the 20S proteasome by preventing substrates from entering the catalytic pore. That bortezomib influences structures at the entrance region of the pore at such a long distance (∼65 to 75 Å) from its binding sites raises a number of interesting biophysical issues.


Subject(s)
Bortezomib , Proteasome Endopeptidase Complex , Proteasome Inhibitors , Bortezomib/pharmacology , Bortezomib/chemistry , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/drug effects , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/pharmacology , Models, Molecular , Protein Conformation/drug effects , Humans
3.
Mol Pharm ; 20(1): 524-544, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36306447

ABSTRACT

Breast cancer leads to the highest mortality among women resulting in a major clinical burden. Multidrug therapy is more efficient in such patients compared to monodrug therapy. Simultaneous combinatorial or co-delivery garnered significant interest in the past years. Caffeic acid (CFA) (a natural polyphenol) has received growing attention because of its anticarcinogenic and antioxidant potential. Bortezomib (BTZ) is a proteasome inhibitor and may be explored for treating breast cancer. Despite its high anticancer activity, the low water solubility and chemical instability restrict its efficacy against solid tumors. In the present study, we designed and investigated a HP-PCL (N-2-hydroxypropylmethacrylamide-polycaprolactone) polymeric micellar (PMCs) system for the simultaneous delivery of BTZ and CFA in the treatment of breast cancer. The designed BTZ+CFA-HP-PCL PMCs were fabricated, optimized, and characterized for size, zeta potential, surface morphology, and in vitro drug release. Developed nanosized (174.6 ± 0.24 nm) PMCs showed enhanced cellular internalization and cell cytotoxicity in both MCF-7 and MDA-MB-231 cells. ROS (reactive oxygen species) levels were highest in BTZ-HP-PCL PMCs, while CFA-HP-PCL PMCs significantly (p < 0.001) scavenged the ROS generated in 2',7'-dichlorofluorescein diacetate (DCFH-DA) assay. The mitochondrial membrane potential (MMP) assay revealed intense and significant green fluorescence in both types of cancer cells when treated with BTZ-HP-PCL PMCs (p < 0.001) indicating apoptosis or cell death. The pharmacokinetic studies revealed that BTZ-HP-PCL PMCs and BTZ+CFA-HP-PCL PMCs exhibited the highest bioavailability, enhanced plasma half-life, decreased volume of distribution, and lower clearance rate than the pure combination of drugs. In the organ biodistribution studies, the combination of BTZ+CFA showed higher distribution in the spleen and the heart. Overall findings of in vitro studies surprisingly resulted in better therapeutic efficiency of BTZ-HP-PCL PMCs than BTZ+CFA-HP-PCL PMCs. However, the in vivo tumor growth inhibition study performed in tumor-induced mice concluded that the tumor growth was inhibited by both BTZ-HP-PCL PMCs and BTZ+CFA-HP-PCL PMCs (p < 0.0001) more efficiently than pure BTZ and the combination (BTZ+CFA), which may be due to the conversion of boronate ester into boronic acid. Henceforth, the combination of BTZ and CFA provides further indications to be explored in the future to support the hypothesis that BTZ may work with polyphenol (CFA) in the acidic environment of the tumor.


Subject(s)
Antineoplastic Agents , Proteasome Inhibitors , Female , Mice , Animals , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Micelles , Reactive Oxygen Species , Tissue Distribution , Drug Therapy, Combination , Leprostatic Agents/therapeutic use , Bortezomib/pharmacology , Bortezomib/chemistry , Polymers/chemistry , Cell Line, Tumor , Antineoplastic Agents/chemistry
4.
Biomaterials ; 288: 121737, 2022 09.
Article in English | MEDLINE | ID: mdl-36031455

ABSTRACT

The clinical translation of nanomedicines has been impeded by the unfavorable tumor microenvironment (TME), particularly the tortuous vasculature networks, which significantly influence the transport and distribution of nanomedicines into tumors. In this work, a smart pH-responsive bortezomib (BTZ)-loaded polyhydralazine nanoparticle (PHDZ/BTZ) is presented, which has a great capacity to augment the accumulation of BTZ in tumors by dilating tumor blood vessels via specific release of vasodilator hydralazine (HDZ). The Lewis acid-base coordination effect between the boronic bond of BTZ and amino of HDZ empowered PHDZ/BTZ nanoparticles with great stability and high drug loading contents. Once triggered by the acidic tumor environment, HDZ could be released quickly to remodel TME through tumor vessel dilation, hypoxia attenuation, and lead to an increased intratumoral BTZ accumulation. Additionally, our investigation revealed that this pH-responsive nanoparticle dramatically suppressed tumor growth, inhibited the occurrence of lung metastasis with fewer side effects and induced immunogenic cell death (ICD), thereby eliciting immune activation including massive cytotoxic T lymphocytes (CTLs) infiltration in tumors and efficient serum proinflammatory cytokine secretion compared with free BTZ treatment. Thus, with efficient drug loading capacity and potent immune activation, PHDZ nanoparticles exhibit great potential in the delivery of boronic acid-containing drugs aimed at a wide range of diseases.


Subject(s)
Antineoplastic Agents , Nanoparticles , Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Bortezomib/chemistry , Bortezomib/pharmacology , Bortezomib/therapeutic use , Cell Line, Tumor , Humans , Hydrogen-Ion Concentration , Nanoparticles/chemistry , Neoplasms/drug therapy , Tumor Microenvironment
5.
Yakugaku Zasshi ; 142(2): 145-153, 2022.
Article in Japanese | MEDLINE | ID: mdl-35110451

ABSTRACT

The first medicine containing the boron element, bortezomib, was approved for clinical use just 18 years ago. The boronic acid substructure in bortezomib serves as an electrophilic functionality with high affinity for hydroxy groups, which are frequently found in catalytic sites of proteolytic enzymes, to create reversible covalent bonds with a slow dissociation rate. Today, boronic acid is considered an important molecule in the medicinal chemistry toolbox, which was promoted by the success of bortezomib and pioneering approaches to use boronic acid in the molecular design of serine protease inhibitors in the 1980s. In this review article, we first provide an overview of the development of bortezomib, and then summarize our achievements to construct boronic acid analogs of tyropeptin A, a naturally occurring proteasome inhibitor, with potent in vivo efficacy. Representative stereoselective synthetic methods of α-aminoboronic acid are also showcased.


Subject(s)
Antineoplastic Agents/chemical synthesis , Boronic Acids/chemistry , Bortezomib/chemical synthesis , Drug Development/methods , Molecular Targeted Therapy , Neoplasms/drug therapy , Serine Proteinase Inhibitors/chemical synthesis , Bortezomib/chemistry , Catalysis , Dipeptides/chemical synthesis , Dipeptides/chemistry , Drug Design , Serine Proteinase Inhibitors/chemistry , Stereoisomerism
6.
Yakugaku Zasshi ; 142(2): 131-137, 2022.
Article in Japanese | MEDLINE | ID: mdl-35110449

ABSTRACT

Almost all conventional drug discovery research has been based on hydrocarbon-based frameworks and common chemical elements such as nitrogen, oxygen, sulfur, and the halogens. However, triggered by the approval of bortezomib, a boronic acid-containing pharmaceutical agent, the incorporation of functionalities that are not native in biological systems has been intensively investigated. Several other boron-containing pharmaceuticals have also been marketed. Therefore, the inclusion of various elements is one of the most promising strategies for the development of novel and distinctive drug candidates. In this symposium review, the author focused on the 'elements chemistry' approaches for the structural development of biologically active compounds, particularly those involving silicon and phosphorus. The isosteric exchange of Si and C (Si/C-exchange) is one of the most-investigated forms of substituting elements. We revealed the detailed physicochemical impact of Si/C-exchange, and we proposed several applications of silyl functionalities other than the simple Si/C-exchange. Regarding phosphorus, we recently revealed that the P-B substructure can function as the isostere of C-C or Si-C substructures. In addition to these isosteric exchanges, the development of biologically active compounds bearing unique substructures such as carboranes, hydrophobic boron clusters, and ferrocene is introduced. These novel strategies provide several options for structural development, offering great potential for expanding the chemical space of medicinal chemistry.


Subject(s)
Bortezomib/chemical synthesis , Chemistry, Pharmaceutical/methods , Drug Design/methods , Drug Discovery/methods , Elements , Hydrocarbons/chemistry , Bortezomib/chemistry , Chemical Phenomena , Chemistry, Pharmaceutical/trends , Halogens/chemistry , Nitrogen/chemistry , Oxygen/chemistry , Phosphorus/chemistry , Silicon/chemistry , Sulfur/chemistry
7.
Neoplasia ; 24(1): 1-11, 2022 01.
Article in English | MEDLINE | ID: mdl-34826777

ABSTRACT

The introduction of the proteasome inhibitor bortezomib into treatment regimens for myeloma has led to substantial improvement in patient survival. However, whilst bortezomib elicits initial responses in many myeloma patients, this haematological malignancy remains incurable due to the development of acquired bortezomib resistance. With other patients presenting with disease that is intrinsically bortezomib resistant, it is clear that new therapeutic approaches are desperately required to target bortezomib-resistant myeloma. We have previously shown that targeting sphingolipid metabolism with the sphingosine kinase 2 (SK2) inhibitor K145 in combination with bortezomib induces synergistic death of bortezomib-naïve myeloma. In the current study, we have demonstrated that targeting sphingolipid metabolism with K145 synergises with bortezomib and effectively resensitises bortezomib-resistant myeloma to this proteasome inhibitor. Notably, these effects were dependent on enhanced activation of the unfolded protein response, and were observed in numerous separate myeloma models that appear to have different mechanisms of bortezomib resistance, including a new bortezomib-resistant myeloma model we describe which possesses a clinically relevant proteasome mutation. Furthermore, K145 also displayed synergy with the next-generation proteasome inhibitor carfilzomib in bortezomib-resistant and carfilzomib-resistant myeloma cells. Together, these findings indicate that targeting sphingolipid metabolism via SK2 inhibition may be effective in combination with a broad spectrum of proteasome inhibitors in the proteasome inhibitor resistant setting, and is an approach worth clinical exploration.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Enzyme Inhibitors/pharmacology , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Proteasome Inhibitors/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Bortezomib/chemistry , Bortezomib/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Enzyme Inhibitors/therapeutic use , Gene Knockout Techniques , Humans , Mice , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/therapeutic use , Structure-Activity Relationship , Unfolded Protein Response/drug effects , Xenograft Model Antitumor Assays
8.
Int J Mol Sci ; 22(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34884766

ABSTRACT

Peptides inherently feature the favorable properties of being easily synthesized, water-soluble, biocompatible, and typically non-toxic. Thus, boronic acid has been widely integrated with peptides with the goal of discovering peptide ligands with novel biological activities, and this effort has led to broad applications. Taking the integration between boronic acid and peptide as a starting point, we provide an overview of the latest research advances and highlight the versatile and robust functionalities of boronic acid. In this review, we summarize the diverse applications of peptide boronic acids in medicinal chemistry and chemical biology, including the identification of covalent reversible enzyme inhibitors, recognition, and detection of glycans on proteins or cancer cell surface, delivery of siRNAs, development of pH responsive devices, and recognition of RNA or bacterial surfaces. Additionally, we discuss boronic acid-mediated peptide cyclization and peptide modifications, as well as the facile chemical synthesis of peptide boronic acids, which paved the way for developing a growing number of peptide boronic acids.


Subject(s)
Boronic Acids/chemistry , Boronic Acids/pharmacology , Peptides/chemistry , Peptides/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Boron Compounds/chemistry , Boron Compounds/pharmacology , Boronic Acids/chemical synthesis , Bortezomib/chemistry , Bortezomib/pharmacology , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glycine/analogs & derivatives , Glycine/chemistry , Glycine/pharmacology , Humans , Peptides/chemical synthesis , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology
9.
Article in English | MEDLINE | ID: mdl-34438277

ABSTRACT

Bortezomib, a proteinase inhibitor currently used to treat multiple myeloma and mantle cell lymphoma, has a high incidence of adverse reactions and large inter-individual differences in plasma concentrations. A simple, validated LC-MS/MS method for the quantitative analysis of bortezomib in dried blood spot (DBS) samples was developed to provide support for determining the effective concentration range of bortezomib for clinical use. Fifty (i50) µL of spiked blood were added onto Whatman protein saver cards to prepare the DBS samples. Circular cards of 6 mm diameter were punched, extracted by methanol containing the internal standard (apatinib), and injected into the LC-MS/MS system. The method validation included selectivity, linearity, accuracy and precision, stability, matrix effect, recovery and hematocrit. The calibration curve showed correlation coefficient values higher than 0.999 in the range of 0.2 - 20.0 ng/mL for bortezomib. The acceptance criteria of accuracy (relative error < 12.5%) and precision (coefficient of variation < 10.7%) were met in all cases. The matrix effect was<13.2%, and the recovery was between 87.3 and 100.2%. DBS samples were shown to be stable when stored in cold conditions or at room temperature. Different hematocrit values did not significantly affect the accuracy of the measured concentrations. And there are no significant differences between bortezomib concentrations in DBS samples and plasma samples. This new method was successfully used for clinical concentration determinations of bortezomib and can be applied in future therapeutic drug monitoring and pharmacokinetic studies of bortezomib especially in pediatric patients.


Subject(s)
Bortezomib/blood , Chromatography, Liquid/methods , Dried Blood Spot Testing/methods , Tandem Mass Spectrometry/methods , Bortezomib/chemistry , Bortezomib/pharmacokinetics , Humans , Limit of Detection , Linear Models , Reproducibility of Results
10.
ACS Appl Mater Interfaces ; 13(31): 36926-36937, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34319074

ABSTRACT

Synergistic therapy holds promising potential in cancer treatment. Here, the inclusion of catechol moieties, a disulfide cross-linked structure, and pendent carboxyl into the network of polymeric nanogels with glutathione (GSH)-responsive dissociation and pH-sensitive release is first disclosed for the codelivery of doxorubicin (DOX) and bortezomib (BTZ) in synergistic cancer therapy. The pendent carboxyl groups and catechol moieties are exploited to absorb DOX through electrostatic interaction and conjugate BTZ through boronate ester, respectively. Both electrostatic interactions and boronate ester are stable at neutral or alkaline pH, while they are instable in an acidic environment to further recover the activities of BTZ and DOX. The polymeric nanogels possess a superior stability to prevent the premature leakage of drugs in a physiological environment, while their structure is destroyed in response to a typical endogenous stimulus (GSH) to unload drugs. The dissociation of the drug-loaded nanogels accelerates the intracellular release of DOX and BTZ and further enhances the therapeutic efficacy. In vitro and in vivo investigations revealed that the dual-drug loaded polymeric nanogels exhibited a strong ability to suppress tumor growth. This study thus proposes a new perspective on the production of multifunctional polymeric nanogels through the introduction of different functional monomers.


Subject(s)
Antineoplastic Agents/therapeutic use , Bortezomib/therapeutic use , Doxorubicin/therapeutic use , Drug Carriers/chemistry , Nanogels/chemistry , Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Bortezomib/chemistry , Catechols/chemistry , Cystamine/analogs & derivatives , Cystamine/metabolism , Doxorubicin/chemistry , Drug Combinations , Drug Synergism , Female , Glutathione/metabolism , Humans , MCF-7 Cells , Mice, Inbred NOD , Mice, SCID , Neoplasms/metabolism , Neoplasms/pathology , Polymers/chemistry , Xenograft Model Antitumor Assays
11.
Int J Biol Macromol ; 183: 369-378, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-33932413

ABSTRACT

Hydrophobic drugs loaded nanogels were always associated with low encapsulation efficiency and immature burst release. In this work, dopamine grafted hyaluronate nanogels were designed for bortezomib (BTZ), a hydrophobic anticancer drug and a proteasome inhibitor. It was found that there was a more efficient loading and pH-controlled release of BTZ due to the presence of dopamine groups on the skeleton of the nanogels. The drug loading content (DLC) were up to 8.58% as the nanogels modified with 29% dopamine, compared to the DLC of less than 1% for nanogels without dopamine modification. It was the pH-sensitive nature of the borated bonds between BTZ and catechol groups that endowed the pH-responsive release behavior of BTZ in vitro. In vitro study proved good biocompatibility and efficient cell uptake of the nanogels. In vivo anti-tumor experiments demonstrated that bortezomib loading into the nanogel significantly enhanced the therapeutic effect of the drug. After 14-day treatment, the average tumor volume of BTZ loaded nanogel group was reduced by 200% more than that of free BTZ group. Combined with CD44 receptor targeting ability of hyaluronate and the merits of nanogel, the catechol modified hyaluronate nanogel exhibited as an efficient chemotherapeutic formulation of BTZ for cancer treatment.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Bortezomib/chemistry , Bortezomib/therapeutic use , Dopamine/chemistry , Nanogels/chemistry , Polyethylene Glycols/chemistry , Polyethyleneimine/chemistry , Animals , Drug Carriers/chemistry , Humans , Hydrogen-Ion Concentration
12.
J Med Chem ; 64(8): 4857-4869, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33821636

ABSTRACT

LONP1 is an AAA+ protease that maintains mitochondrial homeostasis by removing damaged or misfolded proteins. Elevated activity and expression of LONP1 promotes cancer cell proliferation and resistance to apoptosis-inducing reagents. Despite the importance of LONP1 in human biology and disease, very few LONP1 inhibitors have been described in the literature. Herein, we report the development of selective boronic acid-based LONP1 inhibitors using structure-based drug design as well as the first structures of human LONP1 bound to various inhibitors. Our efforts led to several nanomolar LONP1 inhibitors with little to no activity against the 20S proteasome that serve as tool compounds to investigate LONP1 biology.


Subject(s)
ATP-Dependent Proteases/antagonists & inhibitors , Drug Design , Mitochondrial Proteins/antagonists & inhibitors , Protease Inhibitors/chemistry , ATP-Dependent Proteases/metabolism , Binding Sites , Boronic Acids/chemistry , Boronic Acids/metabolism , Boronic Acids/pharmacology , Bortezomib/chemistry , Bortezomib/metabolism , Cell Line , Cell Survival/drug effects , Humans , Mitochondrial Proteins/metabolism , Molecular Docking Simulation , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/metabolism , Protein Subunits/antagonists & inhibitors , Protein Subunits/metabolism , Structure-Activity Relationship
13.
Anticancer Agents Med Chem ; 21(1): 20-32, 2021.
Article in English | MEDLINE | ID: mdl-32781973

ABSTRACT

BACKGROUND: The ubiquitin-proteasome pathway is involved in almost all cellular processes (cell cycle, gene transcription and translation, cell survival and apoptosis, cell metabolism and protein quality control) mainly through the specific degradation of the majority of intracellular proteins (>80%) or partial processing of transcription factors (e.g., NF-κB). A growing amount of evidence now indicates that epigenetic changes are also regulated by the ubiquitin-proteasome pathway. Recent studies indicate that epigenetic regulations are equally crucial for almost all biological processes as well as for pathological conditions such as tumorigenesis, as compared to non-epigenetic control mechanisms (i.e., genetic alterations or classical signal transduction pathways). OBJECTIVE: Here, we reviewed the recent work highlighting the interaction of the ubiquitin-proteasome pathway components (e.g., ubiquitin, E1, E2 and E3 enzymes and 26S proteasome) with epigenetic regulators (histone deacetylases, histone acetyltransferases and DNA methyltransferases). RESULTS: Alterations in the regulation of the ubiquitin-proteasome pathway have been discovered in many pathological conditions. For example, a 2- to 32-fold increase in proteasomal activity and/or subunits has been noted in primary breast cancer cells. Although proteasome inhibitors have been successfully applied in the treatment of hematological malignancies (e.g., multiple myeloma), the clinical efficacy of the proteasomal inhibition is limited in solid cancers. Interestingly, recent studies show that the ubiquitin-proteasome and epigenetic pathways intersect in a number of ways through the regulation of epigenetic marks (i.e., acetylation, methylation and ubiquitylation). CONCLUSION: It is therefore believed that novel treatment strategies involving new generation ubiquitinproteasome pathway inhibitors combined with DNA methyltransferase, histone deacetylase or histone acetyltransferase inhibitors may produce more effective results with fewer adverse effects in cancer treatment as compared to standard chemotherapeutics in hematological as well as solid cancers.


Subject(s)
Epigenesis, Genetic/drug effects , Neoplasms/drug therapy , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/chemistry , Protein Processing, Post-Translational/drug effects , Ubiquitin/metabolism , Acetylation , Boron Compounds/pharmacology , Bortezomib/chemistry , Bortezomib/pharmacology , DNA Modification Methylases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Glycine/analogs & derivatives , Glycine/pharmacology , Histone Acetyltransferases/antagonists & inhibitors , Histone Deacetylases/metabolism , Humans , Hydroxamic Acids/pharmacology , Methylation , NF-kappa B/metabolism , Proteasome Inhibitors/metabolism , Proteasome Inhibitors/pharmacology , Signal Transduction , Terphenyl Compounds/pharmacology , Ubiquitination , Valproic Acid/pharmacology
14.
Cell Mol Life Sci ; 78(3): 1113-1129, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32607595

ABSTRACT

Protein homeostasis is essential for life in eukaryotes. Organisms respond to proteotoxic stress by activating heat shock transcription factors (HSFs), which play important roles in cytoprotection, longevity and development. Of six human HSFs, HSF1 acts as a proteostasis guardian regulating stress-induced transcriptional responses, whereas HSF2 has a critical role in development, in particular of brain and reproductive organs. Unlike HSF1, that is a stable protein constitutively expressed, HSF2 is a labile protein and its expression varies in different tissues; however, the mechanisms regulating HSF2 expression remain poorly understood. Herein we demonstrate that the proteasome inhibitor anticancer drug bortezomib (Velcade), at clinically relevant concentrations, triggers de novo HSF2 mRNA transcription in different types of cancers via HSF1 activation. Similar results were obtained with next-generation proteasome inhibitors ixazomib and carfilzomib, indicating that induction of HSF2 expression is a general response to proteasome dysfunction. HSF2-promoter analysis, electrophoretic mobility shift assays, and chromatin immunoprecipitation studies unexpectedly revealed that HSF1 is recruited to a heat shock element located at 1.397 bp upstream from the transcription start site in the HSF2-promoter. More importantly, we found that HSF1 is critical for HSF2 gene transcription during proteasome dysfunction, representing an interesting example of transcription factor involved in controlling the expression of members of the same family. Moreover, bortezomib-induced HSF2 was found to localize in the nucleus, interact with HSF1, and participate in bortezomib-mediated control of cancer cell migration. The results shed light on HSF2-expression regulation, revealing a novel level of HSF1/HSF2 interplay that may lead to advances in pharmacological modulation of these fundamental transcription factors.


Subject(s)
Heat Shock Transcription Factors/metabolism , Heat-Shock Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Transcription Factors/metabolism , Boron Compounds/chemistry , Boron Compounds/metabolism , Bortezomib/chemistry , Bortezomib/metabolism , Bortezomib/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Nucleus/metabolism , Electrophoretic Mobility Shift Assay , Glycine/analogs & derivatives , Glycine/chemistry , Glycine/metabolism , Heat Shock Transcription Factors/antagonists & inhibitors , Heat Shock Transcription Factors/genetics , Heat-Shock Proteins/antagonists & inhibitors , Heat-Shock Proteins/genetics , Humans , Promoter Regions, Genetic , Proteasome Endopeptidase Complex/chemistry , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/metabolism , Proteasome Inhibitors/pharmacology , RNA Interference , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Transcription Initiation Site , Transcription, Genetic
15.
Clin Cancer Res ; 26(22): 5952-5961, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32913136

ABSTRACT

PURPOSE: Proteasome inhibitors are widely used in treating multiple myeloma, but can cause serious side effects and response varies among patients. It is, therefore, important to gain more insight into which patients will benefit from proteasome inhibitors. EXPERIMENTAL DESIGN: We introduce simulated treatment learned signatures (STLsig), a machine learning method to identify predictive gene expression signatures. STLsig uses genetically similar patients who have received an alternative treatment to model which patients will benefit more from proteasome inhibitors than from an alternative treatment. STLsig constructs gene networks by linking genes that are synergistic in their ability to predict benefit. RESULTS: In a dataset of 910 patients with multiple myeloma, STLsig identified two gene networks that together can predict benefit to the proteasome inhibitor, bortezomib. In class "benefit," we found an HR of 0.47 (P = 0.04) in favor of bortezomib, while in class "no benefit," the HR was 0.91 (P = 0.68). Importantly, we observed a similar performance (HR class benefit, 0.46; P = 0.04) in an independent patient cohort. Moreover, this signature also predicts benefit for the proteasome inhibitor, carfilzomib, indicating it is not specific to bortezomib. No equivalent signature can be found when the genes in the signature are excluded from the analysis, indicating that they are essential. Multiple genes in the signature are linked to working mechanisms of proteasome inhibitors or multiple myeloma disease progression. CONCLUSIONS: STLsig can identify gene signatures that could aid in treatment decisions for patients with multiple myeloma and provide insight into the biological mechanism behind treatment benefit.


Subject(s)
Gene Regulatory Networks/drug effects , Molecular Targeted Therapy , Multiple Myeloma/drug therapy , Proteasome Inhibitors/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Bortezomib/chemistry , Bortezomib/therapeutic use , Cell Line, Tumor , Computer Simulation , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Humans , Machine Learning , Multiple Myeloma/pathology , Oligopeptides/chemistry , Oligopeptides/therapeutic use , Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/drug effects , Proteasome Inhibitors/therapeutic use
16.
Science ; 369(6504)2020 08 07.
Article in English | MEDLINE | ID: mdl-32764038

ABSTRACT

Sulfolobus acidocaldarius is the closest experimentally tractable archaeal relative of eukaryotes and, despite lacking obvious cyclin-dependent kinase and cyclin homologs, has an ordered eukaryote-like cell cycle with distinct phases of DNA replication and division. Here, in exploring the mechanism of cell division in S. acidocaldarius, we identify a role for the archaeal proteasome in regulating the transition from the end of one cell cycle to the beginning of the next. Further, we identify the archaeal ESCRT-III homolog, CdvB, as a key target of the proteasome and show that its degradation triggers division by allowing constriction of the CdvB1:CdvB2 ESCRT-III division ring. These findings offer a minimal mechanism for ESCRT-III-mediated membrane remodeling and point to a conserved role for the proteasome in eukaryotic and archaeal cell cycle control.


Subject(s)
Archaeal Proteins/physiology , Cell Division , Endosomal Sorting Complexes Required for Transport/physiology , Proteasome Endopeptidase Complex/physiology , Sulfolobus acidocaldarius/cytology , Archaeal Proteins/chemistry , Bortezomib/chemistry , Bortezomib/pharmacology , Endosomal Sorting Complexes Required for Transport/chemistry , Models, Molecular , Proteasome Endopeptidase Complex/chemistry , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/pharmacology , Proteolysis , Sulfolobus acidocaldarius/drug effects , Sulfolobus acidocaldarius/enzymology
17.
Eur J Med Chem ; 199: 112367, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32474350

ABSTRACT

Polymer-drug conjugates synthesized by binding therapeutic agents to functional polymers have long been a mainstay of prodrugs, while the slow drug release, insufficient efficacy of a single drug, and low selectivity hamper the clinical translation. By rational prodrug design, a targeted dual-acidity-labile polysaccharide-di-drugs conjugate was synthesized by one-pot simultaneous Schiff base and boronic esterification reactions between oxidized dextran (Dex-CHO) and cyclo-(Arg-Gly-Asp-D-Phe-Lys) (c(RGDfK)), doxorubicin (DOX), and bortezomib (BTZ). The polysaccharide-di-drugs conjugate (Dex-g-(DOX+BTZ)/cRGD) self-assembled into micelle with a diameter at around 80 nm and released the drugs simultaneously triggered by the acidic conditions. Dex-g-(DOX+BTZ)/cRGD specifically recognized and entered the cancer cells through the RGD-αvß3 integrin interplay, selectively released DOX and BTZ in the acidic intracellular microenvironment, and efficiently inhibited the cell proliferation in vitro. More importantly, Dex-DOX/BTZ/cRGD showed higher intratumoral accumulation and better antitumor efficacy in vivo compared with free drugs and non-targeted control prodrug Dex-g-(DOX+BTZ). The findings indicated that this study provided a facile strategy to develop smart polymer-multi-drugs conjugates for targeted cancer chemotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , Bortezomib/pharmacology , Dextrans/pharmacology , Doxorubicin/pharmacology , Melanoma/drug therapy , Polysaccharides/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Bortezomib/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dextrans/chemistry , Dose-Response Relationship, Drug , Doxorubicin/chemistry , Drug Liberation , Drug Screening Assays, Antitumor , Hydrogen-Ion Concentration , Male , Melanoma/metabolism , Melanoma/pathology , Mice , Mice, Inbred BALB C , Molecular Structure , Polysaccharides/chemistry , Structure-Activity Relationship
18.
Angew Chem Int Ed Engl ; 59(38): 16445-16450, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32521103

ABSTRACT

Herein, we show that an enzymatic reaction can generate peptide assemblies that sequestrate proteins to selectively kill cancer cells. A phosphopeptide bearing the antagonistic motif (AVPI) to the inhibitors of apoptotic proteins (IAPs) enters cancer cells and normal cells by caveolin-dependent endocytosis and macropinocytosis, respectively. The AVPI-bearing peptide assemblies sequestrates IAPs and releases bortezomib (BTZ), a proteasome inhibitor, in the cytosol of cancer cells, but rescues the normal cells (namely, HS-5 cells) by trafficking the BTZ into lysosomes. Alkaline phosphatase (ALP) acts as a context-dependent signal for trafficking the peptide/BTZ assemblies and selectively induces the death of the cancer cells. The assemblies of AVPI exhibit enhanced proteolytic resistance. This work, which utilizes the difference in endocytic uptake of enzymatically formed peptide assemblies to selectively kill cancer cells, promises a new way to develop selective cancer therapeutics.


Subject(s)
Alkaline Phosphatase/metabolism , Antineoplastic Agents/pharmacology , Bortezomib/pharmacology , Peptides/pharmacology , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Bortezomib/chemistry , Bortezomib/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , HeLa Cells , Humans , Molecular Structure , Peptides/chemistry , Peptides/metabolism , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/metabolism , Tumor Cells, Cultured
19.
J Nanobiotechnology ; 18(1): 57, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32245495

ABSTRACT

BACKGROUNDS: Intolerable toxicity and unsatisfactory therapeutic effects are still big problems retarding the use of chemotherapy against cancer. Nano-drug delivery system promised a lot in increasing the patients' compliance and therapeutic efficacy. As a unique nano-carrier, supermolecular aggregation nanovehicle has attracted increasing interests due to the following advantages: announcing drug loading efficacy, pronouncing in vivo performance and simplified production process. METHODS: In this study, the supermolecular aggregation nanovehicle of bortezomib (BTZ) was prepared to treat breast cancer. RESULTS: Although many supermolecular nanovehicles are inclined to disintegrate due to the weak intermolecular interactions among the components, the BTZ supermolecules are satisfying stable. To shed light on the reasons behind this, the forces driving the formation of the nanovehicles were detailed investigated. In other words, the interactions among BTZ and other two components were studied to characterize the nanovehicles and ensure its stability. CONCLUSIONS: Due to the promising tumor targeting ability of the BTZ nanovehicles, the supermolecule displayed promising tumor curing effects and negligible systemic toxicity.


Subject(s)
Antineoplastic Agents/pharmacology , Bortezomib/chemistry , Bortezomib/pharmacology , Drug Delivery Systems/methods , Animals , Cell Line, Tumor , Female , Humans , Materials Testing , Mice , Mice, Inbred BALB C , Nanoparticles , Surface Properties
20.
Int J Pharm ; 579: 119173, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32097684

ABSTRACT

Bortezomib (BTZ) is a proteasome inhibitor as approved by US FDA for the treatment of multiple myeloma. It exhibits significant anti-cancer properties, against solid tumors; but lacks aqueous solubility, chemical stability which hinders its successful formulation development. The present study is an attempt to deliver BTZ using N-(2-hydroxypropyl) methacrylamide (HPMA) based copolymeric conjugates and biotinylated PNPs in an effective manner. Study describes a systematic synthetic pathway to synthesize functional polymeric conjugates such as HPMA-Biotin (HP-BT) HPMA-Polylactic acid (HPLA) and HPMA-PLA-Biotin (HPLA-BT) followed by exhaustive characterization both spectroscopically and microscopically. Our strategy yielded polymeric nanoparticles (PNPs) of narrow size range of 199.7 ± 1.32 nm. Release studies were performed at pH 7.4 and 5.6. PNPs were 2-folds less hemolytic (p < 0.0001) than pure drug. BTZ loaded PNPs of HPLA-BT demonstrated significant anti-cancer activity against MCF-7 cells. IC50 value of these PNPs was 56.06 ± 0.12 nM, which was approximately two folds less than BTZ (p < 0.0001). Cellular uptake study confirmed that higher uptake of formulations might be an outcome of biotin surface tethering characteristics that enhanced selectivity and targeting of formulations efficiently. In vivo pharmacokinetics evidenced increased bioavailability (AUC0 t-∞) of DL-HPLA-BT PNPs (drug loaded) than BTZ with an improved half-life. Overall the developed PNPs led to the improved and effective BTZ delivery.


Subject(s)
Biotinylation/methods , Bortezomib/chemistry , Drug Delivery Systems/methods , Methacrylates/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Animals , Biological Availability , Bortezomib/adverse effects , Bortezomib/pharmacokinetics , Bortezomib/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Liberation , Humans , Hydrogen-Ion Concentration , Particle Size , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...