Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.967
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731814

ABSTRACT

In this study, a rutabaga (Brassica napus ssp. napobrassica) donor parent FGRA106, which exhibited broad-spectrum resistance to 17 isolates representing 16 pathotypes of Plasmodiophora brassicae, was used in genetic crosses with the susceptible spring-type canola (B. napus ssp. napus) accession FG769. The F2 plants derived from a clubroot-resistant F1 plant were screened against three P. brassicae isolates representing pathotypes 3A, 3D, and 3H. Chi-square (χ2) goodness-of-fit tests indicated that the F2 plants inherited two major clubroot resistance genes from the CR donor FGRA106. The total RNA from plants resistant (R) and susceptible (S) to each pathotype were pooled and subjected to bulked segregant RNA-sequencing (BSR-Seq). The analysis of gene expression profiles identified 431, 67, and 98 differentially expressed genes (DEGs) between the R and S bulks. The variant calling method indicated a total of 12 (7 major + 5 minor) QTLs across seven chromosomes. The seven major QTLs included: BnaA5P3A.CRX1.1, BnaC1P3H.CRX1.2, and BnaC7P3A.CRX1.1 on chromosomes A05, C01, and C07, respectively; and BnaA8P3D.CRX1.1, BnaA8P3D.RCr91.2/BnaA8P3H.RCr91.2, BnaA8P3H.Crr11.3/BnaA8P3D.Crr11.3, and BnaA8P3D.qBrCR381.4 on chromosome A08. A total of 16 of the DEGs were located in the major QTL regions, 13 of which were on chromosome C07. The molecular data suggested that clubroot resistance in FGRA106 may be controlled by major and minor genes on both the A and C genomes, which are deployed in different combinations to confer resistance to the different isolates. This study provides valuable germplasm for the breeding of clubroot-resistant B. napus cultivars in Western Canada.


Subject(s)
Brassica napus , Disease Resistance , Plant Breeding , Plant Diseases , Plasmodiophorida , Quantitative Trait Loci , Brassica napus/genetics , Brassica napus/parasitology , Disease Resistance/genetics , Plant Diseases/parasitology , Plant Diseases/genetics , Plasmodiophorida/physiology , Plasmodiophorida/pathogenicity , RNA-Seq , Chromosome Mapping , Gene Expression Regulation, Plant , Chromosomes, Plant/genetics
2.
BMC Plant Biol ; 24(1): 400, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38745278

ABSTRACT

XTH genes are key genes that regulate the hydrolysis and recombination of XG components and plays role in the structure and composition of plant cell walls. Therefore, clarifying the changes that occur in XTHs during plant defense against abiotic stresses is informative for the study of the plant stress regulatory mechanism mediated by plant cell wall signals. XTH proteins in Arabidopsis thaliana was selected as the seed sequences in combination with its protein structural domains, 80 members of the BnXTH gene family were jointly identified from the whole genome of the Brassica napus ZS11, and analyzed for their encoded protein physicochemical properties, phylogenetic relationships, covariance relationships, and interoperating miRNAs. Based on the transcriptome data, the expression patterns of BnXTHs were analyzed in response to different abiotic stress treatments. The relative expression levels of some BnXTH genes under Al, alkali, salt, and drought treatments after 0, 6, 12 and 24 h were analyzed by using qRT-PCR to explore their roles in abiotic stress tolerance in B. napus. BnXTHs showed different expression patterns in response to different abiotic stress signals, indicating that the response mechanisms of oilseed rape against different abiotic stresses are also different. This paper provides a theoretical basis for clarifying the function and molecular genetic mechanism of the BnXTH gene family in abiotic stress tolerance in rapeseed.


Subject(s)
Brassica napus , Gene Expression Regulation, Plant , Glycosyltransferases , Multigene Family , Phylogeny , Stress, Physiological , Brassica napus/genetics , Brassica napus/enzymology , Stress, Physiological/genetics , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Genes, Plant , Arabidopsis/genetics , Arabidopsis/enzymology
3.
Physiol Plant ; 176(3): e14315, 2024.
Article in English | MEDLINE | ID: mdl-38693794

ABSTRACT

Rapeseed (Brassica napus L.) is an oil-containing crop of great economic value but with considerable nitrogen requirement. Breeding root systems that efficiently absorb nitrogen from the soil could be a driver to ensure genetic gains for more sustainable rapeseed production. The aim of this study is to identify genomic regions that regulate root morphology in response to nitrate availability. The natural variability offered by 300 inbred lines was screened at two experimental locations. Seedlings grew hydroponically with low or elevated nitrate levels. Fifteen traits related to biomass production and root morphology were measured. On average across the panel, a low nitrate level increased the root-to-shoot biomass ratio and the lateral root length. A large phenotypic variation was observed, along with important heritability values and genotypic effects, but low genotype-by-nitrogen interactions. Genome-wide association study and bulk segregant analysis were used to identify loci regulating phenotypic traits. The first approach nominated 319 SNPs that were combined into 80 QTLs. Three QTLs identified on the A07 and C07 chromosomes were stable across nitrate levels and/or experimental locations. The second approach involved genotyping two groups of individuals from an experimental F2 population created by crossing two accessions with contrasting lateral root lengths. These individuals were found in the tails of the phenotypic distribution. Co-localized QTLs found in both mapping approaches covered a chromosomal region on the A06 chromosome. The QTL regions contained some genes putatively involved in root organogenesis and represent selection targets for redesigning the root morphology of rapeseed.


Subject(s)
Brassica napus , Nitrogen , Phenotype , Plant Roots , Quantitative Trait Loci , Plant Roots/genetics , Plant Roots/anatomy & histology , Plant Roots/growth & development , Plant Roots/metabolism , Nitrogen/metabolism , Quantitative Trait Loci/genetics , Brassica napus/genetics , Brassica napus/growth & development , Brassica napus/anatomy & histology , Brassica napus/metabolism , Genotype , Genome-Wide Association Study , Polymorphism, Single Nucleotide/genetics , Biomass , Nitrates/metabolism , Chromosome Mapping , Genetic Variation
4.
Theor Appl Genet ; 137(6): 129, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740615

ABSTRACT

KEY MESSAGE: Through comprehensive genomic and transcriptomic analyses, we identified a set of 23 genes that act up- or downstream of erucic acid content (EAC) production in rapeseed seeds. We selected example genes to showcase the distribution of single nucleotide polymorphisms, haplotypes associated with EAC phenotypes, and the creation of molecular markers differentiating low EAC and high EAC genotypes. Erucic acid content (EAC) is a crucial trait in rapeseed, with low LEAC oil recognized for its health benefits and high EA oil holding industrial value. Despite its significance, the genomic consequences of intensive LEAC-cultivar selection and the genetic basis underlying EA regulation remain largely unexplored. To address this knowledge gap, we conducted selective signal analyses, genome-wide association studies (GWAS), and transcriptome analyses. Our investigation unveiled the genetic footprints resulting from LEAC selection in germplasm populations, drawing attention to specific loci that contribute to enriching diversity. By integrating GWAS and transcriptome analyses, we identified a set of 23 genes that play a significant role in determining EAC in seeds or are downstream consequences of EA-level alterations. These genes have emerged as promising candidates for elucidating the potential mechanisms governing EAC in rapeseed. To exemplify the findings, we selected specific genes to demonstrate the distribution of single nucleotide polymorphisms and haplotypes associated with different EAC phenotypes. Additionally, we showcased to develop molecular markers distinguishing between LEAC and high EAC genotypes.


Subject(s)
Brassica napus , Erucic Acids , Polymorphism, Single Nucleotide , Seeds , Seeds/genetics , Seeds/growth & development , Brassica napus/genetics , Erucic Acids/metabolism , Phenotype , Haplotypes , Transcriptome , Genome-Wide Association Study , Genotype , Gene Expression Profiling , Genomics/methods , Gene Expression Regulation, Plant , Quantitative Trait Loci
5.
J Hazard Mater ; 471: 134262, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38640678

ABSTRACT

Cadmium (Cd) hazard is a serious limitation to plants, soils and environments. Cd-toxicity causes stunted growth, chlorosis, necrosis, and plant yield loss. Thus, ecofriendly strategies with understanding of molecular mechanisms of Cd-tolerance in plants is highly demandable. The Cd-toxicity caused plant growth retardation, leaf chlorosis and cellular damages, where the glutathione (GSH) enhanced plant fitness and Cd-toxicity in Brassica through Cd accumulation and antioxidant defense. A high-throughput proteome approach screened 4947 proteins, wherein 370 were differently abundant, 164 were upregulated and 206 were downregulated. These proteins involved in energy and carbohydrate metabolism, CO2 assimilation and photosynthesis, signal transduction and protein metabolism, antioxidant defense response, heavy metal detoxification, cytoskeleton and cell wall structure, and plant development in Brassica. Interestingly, several key proteins including glutathione S-transferase F9 (A0A078GBY1), ATP sulfurylase 2 (A0A078GW82), cystine lyase CORI3 (A0A078FC13), ferredoxin-dependent glutamate synthase 1 (A0A078HXC0), glutaredoxin-C5 (A0A078ILU9), glutaredoxin-C2 (A0A078HHH4) actively involved in antioxidant defense and sulfur assimilation-mediated Cd detoxification process confirmed by their interactome analyses. These candidate proteins shared common gene networks associated with plant fitness, Cd-detoxification and tolerance in Brassica. The proteome insights may encourage breeders for enhancing multi-omics assisted Cd-tolerance in Brassica, and GSH-mediated hazard free oil seed crop production for global food security.


Subject(s)
Brassica napus , Cadmium , Glutathione , Plant Proteins , Proteomics , Cadmium/toxicity , Brassica napus/drug effects , Brassica napus/genetics , Brassica napus/metabolism , Glutathione/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Soil Pollutants/toxicity , Proteome/drug effects , Proteome/metabolism , Antioxidants/metabolism
6.
Int J Mol Sci ; 25(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38612746

ABSTRACT

Signal peptide peptidase (SPP) and its homologs, signal peptide peptidase-like (SPPL) proteases, are members of the GxGD-type aspartyl protease family, which is widespread in plants and animals and is a class of transmembrane proteins with significant biological functions. SPP/SPPLs have been identified; however, the functions of SPP/SPPL in rapeseed (Brassica napus L.) have not been reported. In this study, 26 SPP/SPPLs were identified in rapeseed and categorized into three groups: SPP, SPPL2, and SPPL3. These members mainly contained the Peptidase_A22 and PA domains, which were distributed on 17 out of 19 chromosomes. Evolutionary analyses indicated that BnaSPP/SPPLs evolved with a large number of whole-genome duplication (WGD) events and strong purifying selection. Members are widely expressed and play a key role in the growth and development of rapeseed. The regulation of rapeseed pollen fertility by the BnaSPPL4 gene was further validated through experiments based on bioinformatics analysis, concluding that BnaSPPL4 silencing causes male sterility. Cytological observation showed that male infertility caused by loss of BnaSPPL4 gene function occurs late in the mononucleate stage due to microspore dysplasia.


Subject(s)
Brassica napus , Brassica rapa , Infertility, Male , Animals , Humans , Male , Brassica napus/genetics , Aspartic Acid Endopeptidases , Fertility/genetics , Peptide Hydrolases
7.
BMC Plant Biol ; 24(1): 329, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664610

ABSTRACT

BACKGROUND: Advancement in agricultural biotechnology has resulted in increasing numbers of commercial varieties of genetically modified (GM) crops worldwide. Though several databases on GM crops are available, these databases generally focus on collecting and providing information on transgenic crops rather than on screening strategies. To overcome this, we constructed a novel tool named, Genetically Modified Organisms Identification Tool (GMOIT), designed to integrate basic and genetic information on genetic modification events and detection methods. RESULTS: At present, data for each element from 118 independent genetic modification events in soybean, maize, canola, and rice were included in the database. Particularly, GMOIT allows users to customize assay ranges and thus obtain the corresponding optimized screening strategies using common elements or specific locations as the detection targets with high flexibility. Using the 118 genetic modification events currently included in GMOIT as the range and algorithm selection results, a "6 + 4" protocol (six exogenous elements and four endogenous reference genes as the detection targets) covering 108 events for the four crops was established. Plasmids pGMOIT-1 and pGMOIT-2 were constructed as positive controls or calibrators in qualitative and quantitative transgene detection. CONCLUSIONS: Our study provides a simple, practical tool for selecting, detecting, and screening strategies for a sustainable and efficient application of genetic modification.


Subject(s)
Crops, Agricultural , Glycine max , Oryza , Plants, Genetically Modified , Crops, Agricultural/genetics , Plants, Genetically Modified/genetics , Oryza/genetics , Glycine max/genetics , Zea mays/genetics , Transgenes , Brassica napus/genetics
8.
Planta ; 259(5): 122, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619628

ABSTRACT

MAIN CONCLUSION: Overexpression of BnaC02.TPS8 increased low N and high sucrose-induced anthocyanin accumulation. Anthocyanin plays a crucial role in safeguarding photosynthetic tissues against high light, UV radiation, and oxidative stress. Their accumulation is triggered by low nitrogen (N) stress and elevated sucrose levels in Arabidopsis. Trehalose-6-phosphate (T6P) serves as a pivotal signaling molecule, sensing sucrose availability, and carbon (C) metabolism. However, the mechanisms governing the regulation of T6P synthase (TPS) genes responsible for anthocyanin accumulation under conditions of low N and high sucrose remain elusive. In a previous study, we demonstrated the positive impact of a cytoplasm-localized class II TPS protein 'BnaC02.TPS8' on photosynthesis and seed yield improvement in Brassica napus. The present research delves into the biological role of BnaC02.TPS8 in response to low N and high sucrose. Ectopic overexpression of BnaC02.TPS8 in Arabidopsis seedlings resulted in elevated shoot T6P levels under N-sufficient conditions, as well as an increased carbon-to-nitrogen (C/N) ratio, sucrose accumulation, and starch storage under low N conditions. Overexpression of BnaC02.TPS8 in Arabidopsis heightened sensitivity to low N stress and high sucrose levels, accompanied by increased anthocyanin accumulation and upregulation of genes involved in flavonoid biosynthesis and regulation. Metabolic profiling revealed increased levels of intermediate products of carbon metabolism, as well as anthocyanin and flavonoid derivatives in BnaC02.TPS8-overexpressing Arabidopsis plants under low N conditions. Furthermore, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) analyses demonstrated that BnaC02.TPS8 interacts with both BnaC08.TPS9 and BnaA01.TPS10. These findings contribute to our understanding of how TPS8-mediated anthocyanin accumulation is modulated under low N and high sucrose conditions.


Subject(s)
Arabidopsis , Brassica napus , Sugar Phosphates , Trehalose , Anthocyanins , Arabidopsis/genetics , Brassica napus/genetics , Carbon , Flavonoids , Nitrogen , Trehalose/analogs & derivatives , Two-Hybrid System Techniques
9.
Plant Physiol Biochem ; 210: 108566, 2024 May.
Article in English | MEDLINE | ID: mdl-38554537

ABSTRACT

As a primary proton pump, plasma membrane (PM) H+-ATPase plays critical roles in regulating plant growth, development, and stress responses. PM H+-ATPases have been well characterized in many plant species. However, no comprehensive study of PM H+-ATPase genes has been performed in Brassica napus (rapeseed). In this study, we identified 32 PM H+-ATPase genes (BnHAs) in the rapeseed genome, and they were distributed on 16 chromosomes. Phylogenetical and gene duplication analyses showed that the BnHA genes were classified into five subfamilies, and the segmental duplication mainly contributed to the expansion of the rapeseed PM H+-ATPase gene family. The conserved domain and subcellular analyses indicated that BnHAs encoded canonical PM H+-ATPase proteins with 14 highly conserved domains and localized on PM. Cis-acting regulatory element and expression pattern analyses indicated that the expression of BnHAs possessed tissue developmental stage specificity. The 25 upstream open reading frames with the canonical initiation codon ATG were predicted in the 5' untranslated regions of 11 BnHA genes and could be used as potential target sites for improving rapeseed traits. Protein interaction analysis showed that BnBRI1.c associated with BnHA2 and BnHA17, indicating that the conserved activity regulation mechanism of BnHAs may be present in rapeseed. BnHA9 overexpression in Arabidopsis enhanced the salt tolerance of the transgenic plants. Thus, our results lay a foundation for further research exploring the biological functions of PM H+-ATPases in rapeseed.


Subject(s)
Brassica napus , Cell Membrane , Gene Expression Regulation, Plant , Plant Proteins , Proton-Translocating ATPases , Salt Tolerance , Brassica napus/genetics , Brassica napus/enzymology , Proton-Translocating ATPases/genetics , Proton-Translocating ATPases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Salt Tolerance/genetics , Cell Membrane/metabolism , Phylogeny , Plants, Genetically Modified , Genes, Plant
10.
Plant Commun ; 5(4): 100884, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38494786

ABSTRACT

Rapeseed (Brassica napus L.) is one of the major global sources of edible vegetable oil and is also used as a feed and pioneer crop and for sightseeing and industrial purposes. Improvements in genome sequencing and molecular marker technology have fueled a boom in functional genomic studies of major agronomic characters such as yield, quality, flowering time, and stress resistance. Moreover, introgression and pyramiding of key functional genes have greatly accelerated the genetic improvement of important traits. Here we summarize recent progress in rapeseed genomics and genetics, and we discuss effective molecular breeding strategies by exploring these findings in rapeseed. These insights will extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process, ultimately contributing to more sustainable agriculture throughout the world.


Subject(s)
Brassica napus , Brassica napus/genetics , Quantitative Trait Loci , DNA Shuffling , Plant Breeding , Genomics
11.
Theor Appl Genet ; 137(3): 65, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38430276

ABSTRACT

KEY MESSAGE: Using associative transcriptomics, our study identifies genes conferring resistance to four diverse fungal pathogens in crops, emphasizing key genetic determinants of multi-pathogen resistance. Crops are affected by several pathogens, but these are rarely studied in parallel to identify common and unique genetic factors controlling diseases. Broad-spectrum quantitative disease resistance (QDR) is desirable for crop breeding as it confers resistance to several pathogen species. Here, we use associative transcriptomics (AT) to identify candidate gene loci associated with Brassica napus constitutive QDR to four contrasting fungal pathogens: Alternaria brassicicola, Botrytis cinerea, Pyrenopeziza brassicae, and Verticillium longisporum. We did not identify any shared loci associated with broad-spectrum QDR to fungal pathogens with contrasting lifestyles. Instead, we observed QDR dependent on the lifestyle of the pathogen-hemibiotrophic and necrotrophic pathogens had distinct QDR responses and associated loci, including some loci associated with early immunity. Furthermore, we identify a genomic deletion associated with resistance to V. longisporum and potentially broad-spectrum QDR. This is the first time AT has been used for several pathosystems simultaneously to identify host genetic loci involved in broad-spectrum QDR. We highlight constitutive expressed candidate loci for broad-spectrum QDR with no antagonistic effects on susceptibility to the other pathogens studies as candidates for crop breeding. In conclusion, this study represents an advancement in our understanding of broad-spectrum QDR in B. napus and is a significant resource for the scientific community.


Subject(s)
Brassica napus , Disease Resistance , Disease Resistance/genetics , Brassica napus/genetics , Brassica napus/microbiology , Plant Breeding
12.
Int J Mol Sci ; 25(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38542283

ABSTRACT

The global expansion of rapeseed seed quality has been focused on maintaining glucosinolate (GSL) and erucic acid (EA) contents. However, the influence of seed GSL and EA contents on the germination process under drought stress remains poorly understood. Herein, 114 rapeseed accessions were divided into four groups based on GSL and EA contents to investigate their performance during seed imbibition under drought stress. Our results revealed significant variations in seed germination-related traits, particularly with higher GSL and EA, which exhibited higher germination % (G%) and lower mean germination time (MGT) under drought stress conditions. Moreover, osmoregulation, enzymatic system and hormonal regulation were improved in high GSL and high EA (HGHE) versus low GSL and low EA (LGLE) seeds, indicating the essential protective role of GSL and EA during the germination process in response to drought stress. The transcriptional regulation mechanism for coordinating GSL-EA-related pathways in response to drought stress during seed imbibition was found to involve the differential expression of sugar metabolism-, antioxidant-, and hormone-related genes with higher enrichment in HGHE compared to LGLE seeds. GO enrichment analysis showed higher variations in transcription regulator activity and DNA-binding transcription factors, as well as ATP and microtubule motor activity in GSL-EA-related pathways. Furthermore, KEGG analysis identified cellular processes, environmental information processing, and metabolism categories, with varied gene participation between GSL, EA and GSL-EA-related pathways. For further clarification, QY7 (LGLE) seeds were primed with different concentrations of GSL and EA under drought stress conditions. The results showed that 200 µmol/L of GSL and 400 µmol/L of EA significantly improved G%, MGT, and seedling fresh weight, besides regulating stress and fatty acid responsive genes during the seed germination process under drought stress conditions. Conclusively, exogenous application of GSL and EA is considered a promising method for enhancing the drought tolerance of LGLE seeds. Furthermore, the current investigation could provide a theoretical basis of GSL and EA roles and their underlying mechanisms in stress tolerance during the germination process.


Subject(s)
Brassica napus , Brassica rapa , Erucic Acids , Germination/genetics , Brassica napus/genetics , Glucosinolates/metabolism , Droughts , Seeds/genetics , Seeds/metabolism , Brassica rapa/genetics , Gene Expression Profiling
13.
Physiol Plant ; 176(2): e14247, 2024.
Article in English | MEDLINE | ID: mdl-38499953

ABSTRACT

Oilseed rape (Brassica napus) is one of the most important oil crops in the world and shows sensitivity to low phosphorus (P) availability. In many soils, organic P (Po) is the main component of the soil P pool. Po must be mineralised to Pi through phosphatases, and then taken up by plants. However, the relationship between root-secreted acid phosphatases (APase) and root morphology traits, two important P-acquisition strategies in response to P deficiency, is unclear among B. napus genotypes. This study aimed to understand their relationship and how they affect P acquisition, which is crucial for the sustainable utilisation of agricultural P resources. This study showed significant genotypic variations in root-secreted APase activity per unit root fresh weight (SAP) and total root-secreted APase activity per plant (total SAP) among 350 B. napus genotypes. Seed yield was positively correlated with total SAP but not significantly correlated with SAP. Six root traits of 18 B. napus genotypes with contrasting root biomass were compared under normal Pi, low Pi and Po. Genotypes with longer total root length (TRL) reduced SAP, but those with shorter TRL increased SAP under P deficiency. Additionally, TRL was important in P-acquisition under three P treatments, and total SAP was also important in P-acquisition under Po treatment. In conclusion, trade-offs existed between the two P-acquisition strategies among B. napus genotypes under P-deficient conditions. Total SAP was an important root trait under Po conditions. These results might help to breed B. napus with greater P-acquisition ability under low P availability conditions.


Subject(s)
Brassica napus , Phosphorus , Brassica napus/genetics , Acid Phosphatase/genetics , Phenotype , Genotype , Soil
14.
J Integr Plant Biol ; 66(3): 484-509, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38456625

ABSTRACT

Brassica napus, commonly known as rapeseed or canola, is a major oil crop contributing over 13% to the stable supply of edible vegetable oil worldwide. Identification and understanding the gene functions in the B. napus genome is crucial for genomic breeding. A group of genes controlling agronomic traits have been successfully cloned through functional genomics studies in B. napus. In this review, we present an overview of the progress made in the functional genomics of B. napus, including the availability of germplasm resources, omics databases and cloned functional genes. Based on the current progress, we also highlight the main challenges and perspectives in this field. The advances in the functional genomics of B. napus contribute to a better understanding of the genetic basis underlying the complex agronomic traits in B. napus and will expedite the breeding of high quality, high resistance and high yield in B. napus varieties.


Subject(s)
Brassica napus , Brassica napus/genetics , Quantitative Trait Loci/genetics , Plant Breeding , Genomics , Phenotype
15.
Plant Cell Rep ; 43(4): 86, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453734

ABSTRACT

KEY MESSAGE: The BrrFT paralogues exhibit distinct expression patterns and play different roles in regulating flowering time, and BrrFT4 competes with BrrFT1 and BrrFT2 to interact with BrrFD proteins. Flowering time is an important agricultural trait for Brassica crops, and early bolting strongly affects the yield and quality of Brassica rapa ssp. rapa. Flowering Locus T paralogues play an important role in regulating flowering time. In this study, we identified FT-related genes in turnip by phylogenetic classification, and four BrrFT homoeologs that shared with high identities with BraFT genes were isolated. The different gene structures, promoter binding sites, and expression patterns observed indicated that these genes may play different roles in flowering time regulation. Further genetic and biochemical experiments showed that as for FT-like paralogues, BrrFT2 acted as the key floral inducer, and BrrFT1 seems to act as a mild 'florigen' protein. However, BrrFT4 acts as a floral repressor and antagonistically regulates flowering time by competing with BrrFT1 and BrrFT2 to bind BrrFD proteins. BrrFT3 may have experienced loss of function via base shift mutation. Our results revealed the potential roles of FT-related genes in flowering time regulation in turnip.


Subject(s)
Brassica napus , Brassica rapa , Brassica , Brassica/genetics , Brassica rapa/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Flowers/metabolism , Brassica napus/genetics , Gene Expression Regulation, Plant/genetics
16.
Funct Plant Biol ; 512024 Mar.
Article in English | MEDLINE | ID: mdl-38467163

ABSTRACT

Due to global warming and changes in precipitation patterns, many regions are prone to permanent drought. Rapeseed (Brassica napus ) is one of the main sources of edible oils worldwide, and its production and yield are affected by drought. In this study, gene expression alterations under drought stress are investigated with bioinformatics studies to examine evolutionary relations of conserved motifs structure and interactions among Calvin cycle and photorespiration pathways key genes in drought-tolerant (SLM046) and drought-sensitive (Hayola308) genotypes of rapeseed. Investigating the conservation and evolutionary relationships revealed high conservation in motifs of FBPase, PRK, GlyK and NADP-ME enzymes. The analysis of protein interactions showed the correlation between FTRC, FBPase1, PRKX1, GlyKX2 and NADP-ME4 genes. Furthermore, in rapeseed, for the GlyKX2 and NADP-ME4 genes, four microRNAs of the miR172 family and four members of the miR167 family were identified as post-transcriptional regulators, respectively. The expression of ferredoxin thioredoxin reductase, fructose-1,6-bisphosphatase genes, phosphoribulokinase, glycerate kinase and malic enzyme 4 genes in the two rapeseed genotypes were evaluated by real-time qPCR method under 72h of drought stress and methanol foliar application. As a result, the highest expression levels of FTRC, PRKX1, GlyKX2, NADP-ME4 and FBPase1 were observed in methanol foliar application on the SLM046 genotype at 24h. In contrast, in methanol foliar application on the Hayola308 genotype, the highest expression levels of FTRC, PRKX1, GlyKX2, NADP-ME4 and FBPase1 were observed 8h after the treatment. Our study illustrated that methanol foliar application enhanced plant tolerance under drought stress.


Subject(s)
Brassica napus , Brassica rapa , Brassica napus/genetics , Methanol/pharmacology , Droughts , NADP/pharmacology , Brassica rapa/genetics , Photosynthesis
17.
Nat Commun ; 15(1): 2082, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453909

ABSTRACT

Rapeseed (Brassica napus) is one of the important oil crops worldwide. Its production is often threatened by drought stress. Here, we identify a transcription factor (BnaA9.NF-YA7) that negatively regulates drought tolerance through genome-wide association study in B. napus. The presence of two SNPs within a CCAAT cis element leads to downregulation of BnaA9.NF-YA7 expression. In addition, the M63I (G-to-C) substitution in the transactivation domain can activate low level expression of BnaA4.DOR, which is an inhibitory factor of ABA-induced stomatal closure. Furthermore, we determine that Bna.ABF3/4s directly regulate the expression of BnaA9.NF-YA7, and BnaA9.NF-YA7 indirectly suppresses the expression of Bna.ABF3/4s by regulation of Bna.ASHH4s. Our findings uncover that BnaA9.NF-YA7 serves as a supplementary role for ABA signal balance under drought stress conditions, and provide a potential molecular target to breed drought-tolerant B. napus cultivars.


Subject(s)
Brassica napus , Drought Resistance , Brassica napus/genetics , Brassica napus/metabolism , Genome-Wide Association Study , Plant Breeding , Transcription Factors/metabolism , Droughts , Gene Expression Regulation, Plant
18.
Mol Omics ; 20(4): 265-282, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38334713

ABSTRACT

Clubroot is a destructive root disease of canola (Brassica napus L.) caused by Plasmodiophora brassicae Woronin. Despite extensive research into the molecular responses of B. napus to P. brassicae, there is limited information on proteome- and metabolome-level changes in response to the pathogen, especially during the initial stages of infection. In this study, we have investigated the proteome- and metabolome- level changes in the roots of clubroot-resistant (CR) and -susceptible (CS) doubled-haploid (DH) B. napus lines, in response to P. brassicae pathotype 3H at 1-, 4-, and 7-days post-inoculation (DPI). Root proteomes were analyzed using nanoflow liquid chromatography coupled with tandem mass spectrometry (nano LC-MS/MS). Comparisons of pathogen-inoculated and uninoculated root proteomes revealed 2515 and 1556 differentially abundant proteins at one or more time points (1-, 4-, and 7-DPI) in the CR and CS genotypes, respectively. Several proteins related to primary metabolites (e.g., amino acids, fatty acids, and lipids), secondary metabolites (e.g., glucosinolates), and cell wall reinforcement-related proteins [e.g., laccase, peroxidases, and plant invertase/pectin methylesterase inhibitors (PInv/PMEI)] were identified. Eleven nucleotides and nucleoside-related metabolites, and eight fatty acids and sphingolipid-related metabolites were identified in the metabolomics study. To our knowledge, this is the first report of root proteome-level changes and associated alterations in metabolites during the early stages of P. brassicae infection in B. napus.


Subject(s)
Brassica napus , Metabolome , Plant Diseases , Plant Proteins , Plant Roots , Plasmodiophorida , Proteome , Brassica napus/metabolism , Brassica napus/parasitology , Brassica napus/genetics , Plant Diseases/parasitology , Plant Diseases/genetics , Proteome/metabolism , Plant Roots/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Tandem Mass Spectrometry , Proteomics/methods , Metabolomics/methods , Disease Resistance/genetics
19.
Plant Signal Behav ; 19(1): 2310963, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38314783

ABSTRACT

In higher plants, the regulatory roles of cAMP (cyclic adenosine 3',5'-monophosphate) signaling remain elusive until now. Cellular cAMP levels are generally much lower in higher plants than in animals and transiently elevated for triggering downstream signaling events. Moreover, plant adenylate cyclase (AC) activities are found in different moonlighting multifunctional proteins, which may pose additional complications in distinguishing a specific signaling role for cAMP. Here, we have developed rapeseed (Brassica napus L.) transgenic plants that overexpress an inducible plant-origin AC activity for generating high AC levels much like that in animal cells, which served the genetic model disturbing native cAMP signaling as a whole in plants. We found that overexpression of the soluble AC activity had significant impacts on the contents of indole-3-acetic acid (IAA) and stress phytohormones, i.e. jasmonic acid (JA), abscisic acid (ABA), and salicylic acid (SA) in the transgenic plants. Acute induction of the AC activity caused IAA overaccumulation, and upregulation of TAA1 and CYP83B1 in the IAA biosynthesis pathways, but also simultaneously the hyper-induction of PR4 and KIN2 expression indicating activation of JA and ABA signaling pathways. We observed typical overgrowth phenotypes related to IAA excess in the transgenic plants, including significant increases in plant height, internode length, width of leaf blade, petiole length, root length, and fresh shoot biomass, as well as the precocious seed development, as compared to wild-type plants. In addition, we identified a set of 1465 cAMP-responsive genes (CRGs), which are most significantly enriched in plant hormone signal transduction pathway, and function mainly in relevance to hormonal, abiotic and biotic stress responses, as well as growth and development. Collectively, our results support that cAMP elevation impacts phytohormone homeostasis and signaling, and modulates plant growth and development. We proposed that cAMP signaling may be critical in configuring the coordinated regulation of growth and development in higher plants.


Subject(s)
Brassica napus , Cyclopentanes , Oxylipins , Plant Growth Regulators , Animals , Plant Growth Regulators/metabolism , Brassica napus/genetics , Brassica napus/metabolism , Abscisic Acid/metabolism , Plant Proteins/metabolism , Plant Leaves/metabolism , Plants, Genetically Modified/metabolism
20.
Ecotoxicol Environ Saf ; 273: 116123, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38394754

ABSTRACT

High levels of copper released in the soil, mainly from anthropogenic activity, can be hazardous to plants, animals, and humans. The present research aimed to estimate the suitability and effectiveness of rapeseed (Brassica napus L.) as a possible soil remediation option and to uncover underlying adaptive mechanisms A pot experiment was conducted to explore the effect of copper stress on agronomic and yield traits for 32 rapeseed genotypes. The copper-tolerant genotype H2009 and copper-sensitive genotype ZYZ16 were selected for further physiological, metabolomic, and transcriptomic analyses. The results exhibited a significant genotypic variation in copper stress tolerance in rapeseed. Specifically, the ratio of seed yield under copper stress to control ranged from 0.29 to 0.74. Furthermore, the proline content and antioxidant enzymatic activities in the roots were greater than those in the shoots. The accumulated copper in the roots accounted for about 50% of the total amount absorbed by plants; thus, the genotypes possessing high root volumes can be used for rhizofiltration to uptake and sequester copper. Additionally, the pectin and hemicellulose contents were significantly increased by 15.6% and 162%, respectively, under copper stress for the copper-tolerant genotype, allowing for greater sequestration of copper ions in the cell wall and lower oxidative stress. Comparative analysis of transcriptomes and metabolomes revealed that excessive copper enhanced the up-regulation of functional genes or metabolites related to cell wall binding, copper transportation, and chelation in the copper-tolerant genotype. Our results suggest that copper-tolerant rapeseed can thrive in heavily copper-polluted soils with a 5.85% remediation efficiency as well as produce seed and vegetable oil without exceeding food quality standards for the industry. This multi-omics comparison study provides insights into breeding copper-tolerant genotypes that can be used for the phytoremediation of heavy metal-polluted soils.


Subject(s)
Brassica napus , Brassica rapa , Soil Pollutants , Humans , Brassica napus/genetics , Brassica napus/metabolism , Copper/analysis , Biodegradation, Environmental , Soil Pollutants/analysis , Plant Breeding , Brassica rapa/metabolism , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...