Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Int J Mol Sci ; 25(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39125985

ABSTRACT

Blackleg disease, caused by Leptosphaeria spp. fungi, is one of the most important diseases of Brassica napus, responsible for severe yield losses worldwide. Blackleg resistance is controlled by major R genes and minor quantitative trait loci (QTL). Due to the high adaptation ability of the pathogen, R-mediated resistance can be easily broken, while the resistance mediated via QTL is believed to be more durable. Thus, the identification of novel molecular markers linked to blackleg resistance for B. napus breeding programs is essential. In this study, 183 doubled haploid (DH) rapeseed lines were assessed in field conditions for resistance to Leptosphaeria spp. Subsequently, DArTseq-based Genome-Wide Association Study (GWAS) was performed to identify molecular markers linked to blackleg resistance. A total of 133,764 markers (96,121 SilicoDArT and 37,643 SNP) were obtained. Finally, nine SilicoDArT and six SNP molecular markers were associated with plant resistance to Leptosphaeria spp. at the highest significance level, p < 0.001. Importantly, eleven of these fifteen markers were found within ten genes located on chromosomes A06, A07, A08, C02, C03, C06 and C08. Given the immune-related functions of the orthologues of these genes in Arabidopsis thaliana, the identified markers hold great promise for application in rapeseed breeding programs.


Subject(s)
Brassica napus , Disease Resistance , Genome-Wide Association Study , Leptosphaeria , Plant Diseases , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Brassica napus/microbiology , Brassica napus/genetics , Brassica napus/immunology , Leptosphaeria/genetics , Genetic Markers , Brassica rapa/microbiology , Brassica rapa/genetics
2.
Int J Mol Sci ; 25(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000053

ABSTRACT

Sclerotinia sclerotiorum (Ss) is one of the most devastating fungal pathogens, causing huge yield loss in multiple economically important crops including oilseed rape. Plant resistance to Ss pertains to quantitative disease resistance (QDR) controlled by multiple minor genes. Genome-wide identification of genes involved in QDR to Ss is yet to be conducted. In this study, we integrated several assays including genome-wide association study (GWAS), multi-omics co-localization, and machine learning prediction to identify, on a genome-wide scale, genes involved in the oilseed rape QDR to Ss. Employing GWAS and multi-omics co-localization, we identified seven resistance-associated loci (RALs) associated with oilseed rape resistance to Ss. Furthermore, we developed a machine learning algorithm and named it Integrative Multi-Omics Analysis and Machine Learning for Target Gene Prediction (iMAP), which integrates multi-omics data to rapidly predict disease resistance-related genes within a broad chromosomal region. Through iMAP based on the identified RALs, we revealed multiple calcium signaling genes related to the QDR to Ss. Population-level analysis of selective sweeps and haplotypes of variants confirmed the positive selection of the predicted calcium signaling genes during evolution. Overall, this study has developed an algorithm that integrates multi-omics data and machine learning methods, providing a powerful tool for predicting target genes associated with specific traits. Furthermore, it makes a basis for further understanding the role and mechanisms of calcium signaling genes in the QDR to Ss.


Subject(s)
Ascomycota , Brassica napus , Calcium Signaling , Disease Resistance , Genome-Wide Association Study , Machine Learning , Plant Diseases , Ascomycota/pathogenicity , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Brassica napus/genetics , Brassica napus/microbiology , Brassica napus/immunology , Calcium Signaling/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Genomics/methods , Multiomics
3.
Nat Commun ; 15(1): 5059, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871727

ABSTRACT

Sclerotinia stem rot (SSR), caused by the necrotrophic fungus Sclerotinia sclerotiorum, is one of the most devastating diseases for several major oil-producing crops. Despite its impact, the genetic basis of SSR resistance in plants remains poorly understood. Here, through a genome-wide association study, we identify a key gene, BnaA07. MKK9, that encodes a mitogen-activated protein kinase kinase that confers SSR resistance in oilseed rape. Our functional analyses reveal that BnaA07.MKK9 interacts with BnaC03.MPK3 and BnaC03.MPK6 and phosphorylates them at the TEY activation motif, triggering a signaling cascade that initiates biosynthesis of ethylene, camalexin, and indole glucosinolates, and promotes accumulation of H2O2 and the hypersensitive response, ultimately conferring resistance. Furthermore, variations in the coding sequence of BnaA07.MKK9 alter its kinase activity and improve SSR resistance by ~30% in cultivars carrying the advantageous haplotype. These findings enhance our understanding of SSR resistance and may help engineer novel diversity for future breeding of oilseed rape.


Subject(s)
Ascomycota , Brassica napus , Disease Resistance , Genome-Wide Association Study , Plant Diseases , Plant Proteins , Ascomycota/genetics , Ascomycota/pathogenicity , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Brassica napus/microbiology , Brassica napus/genetics , Brassica napus/immunology , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/genetics , Gene Expression Regulation, Plant , Phosphorylation , Genetic Variation
4.
BMC Plant Biol ; 22(1): 21, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34996379

ABSTRACT

BACKGROUND: Brassica napus is an important agricultural species, improving stress resistance was one of the main breeding goals at present. Non-specific lipid transfer proteins (nsLTPs) are small, basic proteins which are involved in some biotic or abiotic stress responses. B. napus is susceptible to a variety of fungal diseases, so identify the BnLTPs and their expression in disease responses is very important. The common reference genome of B. napus does not contain all B. napus genes because of gene presence/absence variations between individuals. Therefore, it was necessary to search for candidate BnLTP genes in the B. napus pangenome. RESULTS: In the present study, the BnLTP genes were identified throughout the pangenome, and different BnLTP genes were presented among varieties. Totally, 246 BnLTP genes were identified and could be divided into five types (1, 2, C, D, and G). The classification, phylogenetic reconstruction, chromosome distribution, functional annotation, and gene expression were analyzed. We also identified potential cis-elements that respond to biotic and abiotic stresses in the 2 kb upstream regions of all BnLTP genes. RNA sequencing analysis showed that the BnLTP genes were involved in the response to Sclerotinia sclerotiorum infection. We identified 32 BnLTPs linked to blackleg resistance quantitative trait locus (QTL). CONCLUSION: The identification and analysis of LTP genes in the B. napus pangenome could help to elucidate the function of BnLTP family members and provide new information for future molecular breeding in B. napus.


Subject(s)
Ascomycota/pathogenicity , Brassica napus/genetics , Brassica napus/immunology , Brassica napus/microbiology , Carrier Proteins/genetics , Disease Resistance/genetics , Plant Diseases/genetics , Crops, Agricultural/genetics , Crops, Agricultural/immunology , Crops, Agricultural/microbiology , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genome, Plant
5.
Innate Immun ; 27(2): 143-157, 2021 02.
Article in English | MEDLINE | ID: mdl-33353474

ABSTRACT

Pseudomonas aeruginosa is an opportunistic bacterial pathogen of plants. Unlike the well-characterized plant defense responses to highly adapted bacterial phytopathogens, little is known about plant response to P. aeruginosa infection. In this study, we examined the Brassica napus (canola) tissue-specific response to P. aeruginosa infection using RNA sequencing. Transcriptomic analysis of canola seedlings over a 5 day P. aeruginosa infection revealed that many molecular processes involved in plant innate immunity were up-regulated, whereas photosynthesis was down-regulated. Phytohormones control many vital biological processes within plants, including growth and development, senescence, seed setting, fruit ripening, and innate immunity. The three main phytohormones involved in plant innate immunity are salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). Many bacterial pathogens have evolved multiple strategies to manipulate these hormone responses in order to infect plants successfully. Interestingly, gene expression within all three phytohormone (SA, JA, and ET) signaling pathways was up-regulated in response to P. aeruginosa infection. This study identified a unique plant hormone response to the opportunistic bacterial pathogen P. aeruginosa infection.


Subject(s)
Brassica napus/immunology , Plant Growth Regulators/metabolism , Pseudomonas Infections/immunology , Pseudomonas aeruginosa/physiology , Brassica napus/genetics , Cells, Cultured , Cyclopentanes/metabolism , Ethylenes/metabolism , Gene Expression Profiling , Immunity, Innate , Opportunistic Infections , Organ Specificity , Oxylipins/metabolism , Plant Immunity , Salicylic Acid/metabolism , Signal Transduction , Up-Regulation
6.
Mol Plant Pathol ; 21(12): 1545-1558, 2020 12.
Article in English | MEDLINE | ID: mdl-32975002

ABSTRACT

Oilseed rape residues are a crucial determinant of stem canker epidemiology as they support the sexual reproduction of the fungal pathogen Leptosphaeria maculans. The aim of this study was to characterize the impact of a resistance gene against L. maculans infection on residue microbial communities and to identify microorganisms interacting with this pathogen during residue degradation. We used near-isogenic lines to obtain healthy and infected host plants. The microbiome associated with the two types of plant residues was characterized by metabarcoding. A combination of linear discriminant analysis and ecological network analysis was used to compare the microbial communities and to identify microorganisms interacting with L. maculans. Fungal community structure differed between the two lines at harvest, but not subsequently, suggesting that the presence/absence of the resistance gene influences the microbiome at the base of the stem whilst the plant is alive, but that this does not necessarily lead to differential colonization of the residues by fungi. Direct interactions with other members of the community involved many fungal and bacterial amplicon sequence variants (ASVs). L. maculans appeared to play a minor role in networks, whereas one ASV affiliated to Plenodomus biglobosus (synonym Leptosphaeria biglobosa) from the Leptosphaeria species complex may be considered a keystone taxon in the networks at harvest. This approach could be used to identify and promote microorganisms with beneficial effects against residue-borne pathogens and, more broadly, to decipher the complex interactions between multispecies pathosystems and other microbial components in crop residues.


Subject(s)
Brassica napus/genetics , Disease Resistance/genetics , Host-Pathogen Interactions , Leptosphaeria/physiology , Microbiota , Plant Diseases/immunology , Brassica napus/immunology , Brassica napus/microbiology , Plant Diseases/microbiology
7.
Plant J ; 104(4): 892-900, 2020 11.
Article in English | MEDLINE | ID: mdl-32794614

ABSTRACT

In plants, race-specific defence against microbial pathogens is facilitated by resistance (R) genes which correspond to specific pathogen avirulence genes. This study reports the cloning of a blackleg R gene from Brassica napus (canola), Rlm9, which encodes a wall-associated kinase-like (WAKL) protein, a newly discovered class of race-specific plant RLK resistance genes. Rlm9 provides race-specific resistance against isolates of Leptosphaeria maculans carrying the corresponding avirulence gene AvrLm5-9, representing only the second WAKL-type R gene described to date. The Rlm9 protein is predicted to be cell membrane-bound and while not conclusive, our work did not indicate direct interaction with AvrLm5-9. Rlm9 forms part of a distinct evolutionary family of RLK proteins in B. napus, and while little is yet known about WAKL function, the Brassica-Leptosphaeria pathosystem may prove to be a model system by which the mechanism of fungal avirulence protein recognition by WAKL-type R genes can be determined.


Subject(s)
Brassica napus/genetics , Disease Resistance/genetics , Leptosphaeria/pathogenicity , Plant Diseases/immunology , Protein Kinases/metabolism , Brassica napus/immunology , Brassica napus/microbiology , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Kinases/genetics , Species Specificity , Virulence
8.
Plant Sci ; 285: 132-140, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31203877

ABSTRACT

Xanthomonas campestris pv. campestris (Xcc)- responsive soluble and cell wall-bound hydroxycinnamic acids (HAs) and flavonoids accumulation in relation to hormonal changes in two Brassica napus cultivars contrasting disease susceptibility were interpreted with regard to the disease resistance. At 14-day post inoculation with Xcc, disease resistance in cv. Capitol was distinguished by an accumulation of specific (HAs) and flavonoids particularly in cell-wall bound form, and was characterized by higher endogenous jasmonic acid (JA) resulting in a decrease of JA-based balance with other hormones, as well as enhanced expression of JA signaling that was concurrently based on upregulation of PAP1 (production of anthocyanin pigment 1), MYB transcription factor, and phenylpropanoid biosynthetic genes. Fourier transform infrared spectra confirmed higher amounts of esterified phenolic acids in cv. Capitol. These results indicate that enhanced JA levels and signaling in resistant cultivar was associated with a higher accumulation of HAs and flavonoids, particularly in the cell wall-bound form, and vice versa in the susceptible cultivar (cv. Mosa) with enhanced SA-, ABA-, and CK- levels and signaling. Thus the JA-mediated phenolic metabolites accumulation is an important feature for the management and breeding program to develop disease-resistant B. napus cultivar.


Subject(s)
Brassica napus/immunology , Cell Wall/metabolism , Coumaric Acids/metabolism , Cyclopentanes/metabolism , Disease Resistance , Oxylipins/metabolism , Phenols/metabolism , Plant Growth Regulators/physiology , Xanthomonas campestris , Brassica napus/metabolism , Brassica napus/microbiology , Brassica napus/physiology , Cell Wall/physiology , Disease Resistance/physiology , Disease Susceptibility/microbiology , Disease Susceptibility/physiopathology , Flavonoids/metabolism , Lipid Peroxidation , Microscopy, Electron, Scanning , Peptide Hydrolases/metabolism , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Growth Regulators/metabolism , Plant Leaves/microbiology , Plant Leaves/ultrastructure , Reactive Oxygen Species/metabolism
9.
Mol Plant Microbe Interact ; 32(8): 1001-1012, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30938576

ABSTRACT

Our study investigated disease resistance in the Brassica napus-Leptosphaeria maculans pathosystem using a combination of laser microdissection, dual RNA sequencing, and physiological validations of large-scale gene sets. The use of laser microdissection improved pathogen detection and identified putative L. maculans effectors and lytic enzymes operative during host colonization. Within 24 h of inoculation, we detected large shifts in gene activity in resistant cotyledons associated with jasmonic acid and calcium signaling pathways that accelerated the plant defense response. Sequencing data were validated through the direct quantification of endogenous jasmonic acid levels. Additionally, resistance against L. maculans was abolished when the calcium chelator EGTA was applied to the inoculation site, providing physiological evidence of the role of calcium in B. napus immunity against L. maculans. We integrated gene expression data with all available information on cis-regulatory elements and transcription factor binding affinities to better understand the gene regulatory networks underpinning plant resistance to hemibiotrophic pathogens. These in silico analyses point to early cellular reprogramming during host immunity that are coordinated by CAMTA, BZIP, and bHLH transcription factors. Together, we provide compelling genetic and physiological evidence into the programming of plant resistance against fungal pathogens.


Subject(s)
Ascomycota , Brassica napus , Disease Resistance , Host-Pathogen Interactions , Transcriptome , Ascomycota/physiology , Brassica napus/genetics , Brassica napus/immunology , Brassica napus/microbiology , Disease Resistance/genetics , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology
10.
PLoS One ; 12(7): e0180807, 2017.
Article in English | MEDLINE | ID: mdl-28686731

ABSTRACT

The rape stem weevil, Ceutorhynchus napi Gyll., is a serious pest of winter oilseed rape (Brassica napus L.) crops in Europe causing severe yield loss. In currently used oilseed rape cultivars no resistance to C. napi has been identified. Resynthesized lines of B. napus have potential to broaden the genetic variability and may improve resistance to insect pests. In this study, the susceptibility to C. napi of three cultivars, one breeding line and five resynthesized lines of oilseed rape was compared in a semi-field plot experiment under multi-choice conditions. Plant acceptance for oviposition was estimated by counting the number of C. napi larvae in stems. The larval instar index and the dry body mass were assessed as indicators of larval performance. The extent of larval feeding within stems was determined by the stem injury coefficient. Morphological stem traits and stem contents of glucosinolates were assessed as potential mediators of resistance. The resynthesized line S30 had significantly fewer larvae than the cultivars Express617 and Visby and the resynthesized lines L122 and L16. The low level of larval infestation in S30 was associated with a low larval instar and stem injury index. Low numbers of larvae were not correlated with the length or diameter of stems, and the level of stem glucosinolates. As indicated by the low larval infestation and slow larval development the resistance of S30 to C. napi is based on both antixenotic and antibiotic properties of the genotypes. The resynthesized line S30 should therefore be introduced into B. napus breeding programs to enhance resistance against C. napi.


Subject(s)
Brassica napus/genetics , Ectoparasitic Infestations/prevention & control , Plant Immunity/genetics , Plant Stems/genetics , Animals , Brassica napus/immunology , Brassica napus/parasitology , Ectoparasitic Infestations/genetics , Ectoparasitic Infestations/immunology , Female , Genotype , Glucosinolates/biosynthesis , Larva/pathogenicity , Larva/physiology , Male , Oviposition/physiology , Parasite Egg Count , Plant Breeding , Plant Stems/immunology , Plant Stems/parasitology , Weevils/pathogenicity , Weevils/physiology
11.
BMC Genomics ; 18(1): 467, 2017 06 19.
Article in English | MEDLINE | ID: mdl-28629321

ABSTRACT

BACKGROUND: The biological control agent Pseudomonas chlororaphis PA23 is capable of protecting Brassica napus (canola) from the necrotrophic fungus Sclerotinia sclerotiorum via direct antagonism. While we have elucidated bacterial genes and gene products responsible biocontrol, little is known about how the host plant responds to bacterial priming on the leaf surface, including global changes in gene activity in the presence and absence of S. sclerotiorum. RESULTS: Application of PA23 to the aerial surfaces of canola plants reduced the number of S. sclerotiorum lesion-forming petals by 91.1%. RNA sequencing of the host pathogen interface showed that pretreatment with PA23 reduced the number of genes upregulated in response to S. sclerotiorum by 16-fold. By itself, PA23 activated unique defense networks indicative of defense priming. Genes encoding MAMP-triggered immunity receptors detecting flagellin and peptidoglycan were downregulated in PA23 only-treated plants, consistent with post-stimulus desensitization. Downstream, we observed reactive oxygen species (ROS) production involving low levels of H2O2 and overexpression of genes associated with glycerol-3-phosphate (G3P)-mediated systemic acquired resistance (SAR). Leaf chloroplasts exhibited increased thylakoid membrane structures and chlorophyll content, while lipid metabolic processes were upregulated. CONCLUSION: In addition to directly antagonizing S. sclerotiorum, PA23 primes the plant defense response through induction of unique local and systemic defense networks. This study provides novel insight into the effects of biocontrol agents applied to the plant phyllosphere. Understanding these interactions will aid in the development of biocontrol systems as an alternative to chemical pesticides for protection of important crop systems.


Subject(s)
Brassica napus/genetics , Brassica napus/microbiology , Gene Regulatory Networks , Pseudomonas chlororaphis/physiology , Ascomycota/physiology , Brassica napus/immunology , Brassica napus/metabolism , Chloroplasts/metabolism , Immunity, Innate/genetics , Pest Control, Biological , Plant Diseases/microbiology , Plant Leaves/metabolism , Reactive Oxygen Species/metabolism
12.
BMC Plant Biol ; 16(1): 183, 2016 08 24.
Article in English | MEDLINE | ID: mdl-27553246

ABSTRACT

BACKGROUND: Resistance to the blackleg disease of Brassica napus (canola/oilseed rape), caused by the hemibiotrophic fungal pathogen Leptosphaeria maculans, is determined by both race-specific resistance (R) genes and quantitative resistance loci (QTL), or adult-plant resistance (APR). While the introgression of R genes into breeding material is relatively simple, QTL are often detected sporadically, making them harder to capture in breeding programs. For the effective deployment of APR in crop varieties, resistance QTL need to have a reliable influence on phenotype in multiple environments and be well defined genetically to enable marker-assisted selection (MAS). RESULTS: Doubled-haploid populations produced from the susceptible B. napus variety Topas and APR varieties AG-Castle and AV-Sapphire were analysed for resistance to blackleg in two locations over 3 and 4 years, respectively. Three stable QTL were detected in each population, with two loci appearing to be common to both APR varieties. Physical delineation of three QTL regions was sufficient to identify candidate defense-related genes, including a cluster of cysteine-rich receptor-like kinases contained within a 49 gene QTL interval on chromosome A01. Individual L. maculans isolates were used to define the physical intervals for the race-specific R genes Rlm3 and Rlm4 and to identify QTL common to both field studies and the cotyledon resistance response. CONCLUSION: Through multi-environment QTL analysis we have identified and delineated four significant and stable QTL suitable for MAS of quantitative blackleg resistance in B. napus, and identified candidate genes which potentially play a role in quantitative defense responses to L. maculans.


Subject(s)
Ascomycota/physiology , Brassica napus/genetics , Plant Diseases/genetics , Protein Kinases/genetics , Quantitative Trait Loci , Brassica napus/immunology , Brassica napus/microbiology , Chromosome Mapping , Chromosomes, Plant/genetics , Phenotype , Plant Diseases/immunology , Plant Diseases/microbiology , Protein Kinases/metabolism
13.
Gene ; 590(1): 57-67, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27265030

ABSTRACT

The necrotrophic phytopathogen, Sclerotinia sclerotiorum, causes Sclerotinia stem rot, which is a serious constraint to canola (Brassica napus L.) production worldwide. To understand the detailed molecular mechanisms underlying host response to Sclerotinia infection, we analyzed the transcript level changes in canola post-infection with S. sclerotiorum in a time course of a compatible interaction using strand specific whole transcriptome sequencing. Following infection, 161 and 52 genes (P≤0.001) were induced while 24 and 23 genes were repressed at 24h post-inoculation (hpi) and 48hpi, respectively. This suggests that, a gradual increase in host cell lyses and increase virulence of the pathogen led to the expression of only a fewer host specific genes at the later stage of infection. We observed rapid induction of key pathogen responsive genes, including glucanases, chitinases, peroxidases and WRKY Transcription factors (TFs) within 24hpi, indicating early detection of the pathogen by the host. Only 16 genes were significantly induced at both the time points suggesting a coordinated suppression of host responses by the pathogen. In addition to genes involved in plant-pathogen interactions, many novel disease responsive genes, including various TF sand those associated with jasmonate (JA) and ethylene (ET) signalling were identified. This suggests that canola adopts multiple strategies in mediating plant responses to the pathogen attack. Quantitative real time PCR (qRT-PCR) validation of a selected set of genes demonstrated a similar trend as observed by RNA-Seq analysis and highlighted the potential involvement of these genes by the host to defend itself from pathogen attack. Overall, this work presents an in-depth analysis of the interaction between host susceptibility and pathogen virulence in the agriculturally important B. napus-S. sclerotiorum pathosystem.


Subject(s)
Ascomycota/pathogenicity , Brassica napus/genetics , Gene Expression Regulation, Plant , Plant Diseases/genetics , Plant Immunity/genetics , Plant Proteins/genetics , Transcriptome , Ascomycota/physiology , Brassica napus/immunology , Brassica napus/microbiology , Cyclopentanes/metabolism , Ethylenes/metabolism , Gene Expression Profiling , Gene Ontology , Host-Pathogen Interactions , Molecular Sequence Annotation , Oxylipins/metabolism , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/microbiology , Plant Proteins/metabolism , Sequence Analysis, RNA , Signal Transduction , Transcription Factors/genetics
14.
J Proteomics ; 143: 265-277, 2016 06 30.
Article in English | MEDLINE | ID: mdl-26947552

ABSTRACT

UNLABELLED: The white mould disease, caused by Sclerotinia sclerotiorum, is one of the most important diseases in the vital oil crop Brassica napus. Nevertheless, the defense mechanisms of B. napus against S. sclerotiorum are poorly understood. In this study, we performed comparative quantitative proteomics analyses to reveal B. napus defense mechanisms against S. sclerotiorum. The proteomes of B. napus leaves inoculated with S. sclerotiorum wild-type strain 1980 and nonpathogenic mutant strain Ep-1PB as well as empty agar plug as the control were analyzed using TMT label-based quantitative analysis technique. A total of 79, 299 and 173 proteins consistently differentially expressed between Ep-1PB- and mock-inoculated leaves, 1980- and mock-inoculated leaves, as well as 1980- and Ep-1PB-inoculated leaves, respectively, were identified. The differential expression of 12 selected proteins was confirmed by qRT-PCR analyses. The Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction prediction analyses revealed that redox homeostasis, lipid signaling, calcium signaling, histone and DNA methylation-mediated transcription regulation and defense-related proteins such as defensin and defensin-like proteins and cyanate lyase, contribute to defense against S. sclerotiorum. Our results provide new insights into molecular mechanisms that may be involved in defense responses of B. napus to S. sclerotiorum. SIGNIFICANCE: The Sclerotinia white mould disease is one of the most important diseases in the significant oil crop Brassica napus. Nevertheless, the defense mechanisms of B. napus against S. sclerotiorum are still largely unknown to date. In this study, we addressed this issue by performing TMT label-based comparative quantitative analyses of the proteomes of B. napus leaves inoculated with S. sclerotiorum wild-type strain 1980 and nonpathogenic mutant strain Ep-1PB as well as empty agar plug as the control. Through comparative analyses on 79, 299, and 173 proteins that are consistently differentially expressed in between Ep-1PB-inoculated and the control leaves, 1980-inoculated and the control leaves, as well as 1980-inoculated and Ep-1PB-inoculated leaves, respectively, we revealed that redox homeostasis, lipid signaling, calcium signaling, histone and DNA methylation-mediated transcription regulation and defense-related proteins such as defensin and defensin-like proteins as well as cyanate lyase, contribute to B. napus defenses against S. sclerotiorum. Notably, the potential role of lipid signaling, calcium signaling, histone and DNA methylation-mediated transcription regulation and cyanate lyase in B. napus defense against S. sclerotiorum are not reported previously but rather unveiled for the first time in this study. The current study represents the most extensive analysis of the protein profile of B. napus in response to S. sclerotiorum inoculation and includes for the first time the results from comparison between plants inoculated with the wild-type strain and a nonpathogenic mutant strain of S. sclerotiorum. Collectively, our results provide new insights into the molecular mechanisms of interactions between B. napus and S. sclerotiorum.


Subject(s)
Ascomycota/pathogenicity , Brassica napus/immunology , Plant Diseases/immunology , Proteomics/methods , Ascomycota/immunology , Brassica napus/microbiology , Disease Resistance , Gene Expression Regulation, Plant/immunology , Plant Leaves/chemistry , Plant Leaves/immunology , Plant Leaves/microbiology , Plant Proteins/analysis , Plant Proteins/immunology , Proteome/analysis
15.
Sci Rep ; 6: 19007, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26743436

ABSTRACT

Sclerotinia stem rot caused by Sclerotinia sclerotiorum is one of the most devastating diseases in many important crops including Brassica napus worldwide. Quantitative resistance is the only source for genetic improvement of Sclerotinia-resistance in B. napus, but the molecular basis for such a resistance is largely unknown. Here, we performed dynamic transcriptomic analyses to understand the differential defense response to S. sclerotiorum in a resistant line (R-line) and a susceptible line (S-line) of B. napus at 24, 48 and 96 h post-inoculation. Both the numbers of and fold changes in differentially expressed genes in the R-line were larger than those in the S-line. We identified 9001 relative differentially expressed genes in the R-line compared with the S-line. The differences between susceptibility and resistance were associated with the magnitude of expression changes in a set of genes involved in pathogen recognition, MAPK signaling cascade, WRKY transcription regulation, jasmonic acid/ethylene signaling pathways, and biosynthesis of defense-related protein and indolic glucosinolate. The results were supported by quantitation of defense-related enzyme activity and glucosinolate contents. Our results provide insights into the complex molecular mechanism of the defense response to S. sclerotiorum in B. napus and for development of effective strategies in Sclerotinia-resistance breeding.


Subject(s)
Ascomycota/physiology , Brassica napus/genetics , Disease Resistance/genetics , Gene Expression Regulation, Plant , Plant Diseases/genetics , Plant Proteins/genetics , Transcriptome , Ascomycota/pathogenicity , Brassica napus/immunology , Brassica napus/microbiology , Cyclopentanes/metabolism , Ethylenes/metabolism , Gene Expression Profiling , Gene Ontology , Gene Regulatory Networks , Glucosinolates/metabolism , MAP Kinase Signaling System , Molecular Sequence Annotation , Oxylipins/metabolism , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/microbiology , Plant Proteins/metabolism , Plant Stems/genetics , Plant Stems/immunology , Plant Stems/microbiology , Plants, Genetically Modified
16.
Mol Plant Pathol ; 17(8): 1196-210, 2016 10.
Article in English | MEDLINE | ID: mdl-26679637

ABSTRACT

Molecular interaction between the causal agent of blackleg disease, Leptosphaeria maculans (Lm), and its host, Brassica napus, is largely unknown. We applied a deep RNA-sequencing approach to gain insight into the pathogenicity mechanisms of Lm and the defence response of B. napus. RNA from the infected susceptible B. napus cultivar Topas DH16516, sampled at 2-day intervals (0-8 days), was sequenced and used for gene expression profiling. Patterns of gene expression regulation in B. napus showed multifaceted defence responses evident by the differential expression of genes encoding the pattern recognition receptor CERK1 (chitin elicitor receptor kinase 1), receptor like proteins and WRKY transcription factors. The up-regulation of genes related to salicylic acid and jasmonic acid at the initial and late stages of infection, respectively, provided evidence for the biotrophic and necrotrophic life stages of Lm during the infection of B. napus cotyledons. Lm transition from biotrophy to necrotropy was also supported by the expression function of Lm necrosis and ethylene-inducing (Nep-1)-like peptide. Genes encoding polyketide synthases and non-ribosomal peptide synthetases, with potential roles in pathogenicity, were up-regulated at 6-8 days after inoculation. Among other plant defence-related genes differentially regulated in response to Lm infection were genes involved in the reinforcement of the cell wall and the production of glucosinolates. Dual RNA-sequencing allowed us to define the Lm candidate effectors expressed during the infection of B. napus. Several candidate effectors suppressed Bax-induced cell death when transiently expressed in Nicotiana benthamaina leaves.


Subject(s)
Ascomycota/growth & development , Brassica napus/genetics , Brassica napus/microbiology , Gene Expression Profiling , Gene Expression Regulation, Fungal , Seedlings/genetics , Seedlings/microbiology , Biological Assay , Brassica napus/immunology , Cell Death , Cotyledon/genetics , Cotyledon/microbiology , Cyclopentanes/metabolism , Models, Biological , Oxylipins/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Growth Regulators/metabolism , Salicylic Acid/metabolism , Sequence Analysis, RNA , bcl-2-Associated X Protein/metabolism
17.
Virus Res ; 210: 264-70, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26299399

ABSTRACT

The N-terminal 25 amino acids (AAs) of turnip crinkle virus (TCV) capsid protein (CP) are recognized by the resistance protein HRT to trigger a hypersensitive response (HR) and systemic resistance to TCV infection. This same region of TCV CP also contains a motif that interacts with the transcription factor TIP, as well as a nuclear localization signal (NLS). However, it is not yet known whether nuclear localization of TCV CP is needed for the induction of HRT-mediated HR and resistance. Here we present new evidence suggesting a tight correlation between nuclear inclusions formed by CP and the manifestation of HR. We show that a fraction of TCV CP localized to cell nuclei to form discrete inclusion-like structures, and a mutated CP (R6A) known to abolish HR failed to form nuclear inclusions. Notably, TIP-CP interaction augments the inclusion-forming activity of CP by tethering inclusions to the nuclear membrane. This TIP-mediated augmentation is also critical for HR resistance, as another CP mutant (R8A) known to elicit a less restrictive HR, though still self-associated into nuclear inclusions, failed to direct inclusions to the nuclear membrane due to its inability to interact with TIP. Finally, exclusion of CP from cell nuclei abolished induction of HR. Together, these results uncovered a strong correlation between nuclear localization and nuclear inclusion formation by TCV CP and induction of HR, and suggest that CP nuclear inclusions could be the key trigger of the HRT-dependent, yet TIP-reinforced, resistance to TCV.


Subject(s)
Brassica napus/immunology , Capsid Proteins/metabolism , Carmovirus/immunology , Carmovirus/physiology , Host-Pathogen Interactions , Plant Diseases/immunology , Brassica napus/virology , Cell Nucleus/chemistry , Cell Nucleus/virology , Disease Resistance , Intranuclear Inclusion Bodies/virology , Plant Diseases/virology , Plant Proteins/metabolism , Protein Binding , Transcription Factors/metabolism
18.
Viruses ; 7(8): 4169-85, 2015 Jul 27.
Article in English | MEDLINE | ID: mdl-26225990

ABSTRACT

Virus diseases greatly affect oilseed rape (Brassica napus) production. Investigating antiviral genes may lead to the development of disease-resistant varieties of oilseed rape. In this study, we examined the effects of the suppressor of gene silencing 3 in Brassica napus (BnSGS3, a putative antiviral gene) with different genus viruses by constructing BnSGS3-overexpressing (BnSGS3-Ov) and BnSGS3-silenced (BnSGS3-Si) oilseed rape (cv. Zhongshuang No. 6) plants. These three viruses are Oilseed rape mosaic virus (ORMV), Turnip mosaic virus (TuMV) and Cucumber mosaic virus (CMV). The native BnSGS3 expressed in all examined tissues with the highest expression in siliques. All three viruses induced BnSGS3 expression, but ORMV induced a dramatic increase in the BnSGS3-Ov plants, followed by TuMV and CMV. Upon inoculation with three different viruses, transcript abundance of BnSGS3 gene follows: BnSGS3-Ov > non-transgenic plants > BnSGS3-Si. The accumulation quantities of ORMV and TuMV exhibited a similar trend. However, CMV accumulation showed an opposite trend where virus accumulations were negatively correlated with BnSGS3 expression. The results suggest that BnSGS3 selectively inhibits CMV accumulation but promotes ORMV and TuMV accumulation. BnSGS3 should be used in different ways (up- and down-regulation) for breeding virus-resistant oilseed rape varieties.


Subject(s)
Brassica napus/immunology , Brassica napus/virology , Cucumovirus/immunology , Host-Pathogen Interactions , Plant Proteins/metabolism , Potyvirus/immunology , Tobamovirus/immunology , Brassica napus/genetics , Cucumovirus/physiology , Gene Expression Profiling , Plant Proteins/genetics , Potyvirus/physiology , Tobamovirus/physiology , Viral Load
19.
Plant Physiol ; 169(1): 209-18, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26091820

ABSTRACT

Plants employ diverse responses mediated by phytohormones to defend themselves against pathogens and herbivores. Adapted pathogens and herbivores often manipulate these responses to their benefit. Previously, we demonstrated that Turnip mosaic virus (TuMV) infection suppresses callose deposition, an important plant defense induced in response to feeding by its aphid vector, the green peach aphid (Myzus persicae), and increases aphid fecundity compared with uninfected control plants. Further, we determined that production of a single TuMV protein, Nuclear Inclusion a-Protease (NIa-Pro) domain, was responsible for changes in host plant physiology and increased green peach aphid reproduction. To characterize the underlying molecular mechanisms of this phenomenon, we examined the role of three phytohormone signaling pathways, jasmonic acid, salicylic acid, and ethylene (ET), in TuMV-infected Arabidopsis (Arabidopsis thaliana), with or without aphid herbivory. Experiments with Arabidopsis mutants ethylene insensitive2 and ethylene response1, and chemical inhibitors of ET synthesis and perception (aminoethoxyvinyl-glycine and 1-methylcyclopropene, respectively), show that the ET signaling pathway is required for TuMV-mediated suppression of Arabidopsis resistance to the green peach aphid. Additionally, transgenic expression of NIa-Pro in Arabidopsis alters ET responses and suppresses aphid-induced callose formation in an ET-dependent manner. Thus, disruption of ET responses in plants is an additional function of NIa-Pro, a highly conserved potyvirus protein. Virus-induced changes in ET responses may mediate vector-plant interactions more broadly and thus represent a conserved mechanism for increasing transmission by insect vectors across generations.


Subject(s)
Aphids/physiology , Arabidopsis/immunology , Brassica napus/immunology , Insect Vectors/physiology , Plant Diseases/immunology , Plant Growth Regulators/metabolism , Potyvirus/physiology , Animals , Aphids/virology , Arabidopsis/genetics , Brassica napus/genetics , Cyclopentanes/metabolism , Ethylenes/metabolism , Host-Parasite Interactions , Insect Vectors/virology , Oxylipins/metabolism , Salicylic Acid/metabolism , Signal Transduction
20.
Plant Biotechnol J ; 13(7): 983-92, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25644479

ABSTRACT

Leucine-rich repeat receptor-like proteins (LRR-RLPs) are highly adaptable parts of the signalling apparatus for extracellular detection of plant pathogens. Resistance to blackleg disease of Brassica spp. caused by Leptosphaeria maculans is largely governed by host race-specific R-genes, including the LRR-RLP gene LepR3. The blackleg resistance gene Rlm2 was previously mapped to the same genetic interval as LepR3. In this study, the LepR3 locus of the Rlm2 Brassica napus line 'Glacier DH24287' was cloned, and B. napus transformants were analysed for recovery of the Rlm2 phenotype. Multiple B. napus, B. rapa and B. juncea lines were assessed for sequence variation at the locus. Rlm2 was found to be an allelic variant of the LepR3 LRR-RLP locus, conveying race-specific resistance to L. maculans isolates harbouring AvrLm2. Several defence-related LRR-RLPs have previously been shown to associate with the RLK SOBIR1 to facilitate defence signalling. Bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation of RLM2-SOBIR1 studies revealed that RLM2 interacts with SOBIR1 of Arabidopsis thaliana when co-expressed in Nicotiana benthamiana. The interaction of RLM2 with AtSOBIR1 is suggestive of a conserved defence signalling pathway between B. napus and its close relative A. thaliana.


Subject(s)
Brassica napus/metabolism , Plant Proteins/metabolism , Alleles , Ascomycota/pathogenicity , Brassica napus/genetics , Brassica napus/immunology , Disease Resistance/genetics , Disease Resistance/physiology , Molecular Sequence Data , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL