Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29.410
Filter
1.
PLoS One ; 19(5): e0302600, 2024.
Article in English | MEDLINE | ID: mdl-38722960

ABSTRACT

Breast cancer is the second most common cancer diagnosed in women in the US with almost 280,000 new cases anticipated in 2023. Currently, on-site pathology for location guidance is not available during the collection of breast biopsies or during surgical intervention procedures. This shortcoming contributes to repeat biopsy and re-excision procedures, increasing the cost and patient discomfort during the cancer management process. Both procedures could benefit from on-site feedback, but current clinical on-site evaluation techniques are not commonly used on breast tissue because they are destructive and inaccurate. Ex-vivo microscopy is an emerging field aimed at creating histology-analogous images from non- or minimally-processed tissues, and is a promising tool for addressing this pain point in clinical cancer management. We investigated the ability structured illumination microscopy (SIM) to generate images from freshly-obtained breast tissues for structure identification and cancer identification at a speed compatible with potential on-site clinical implementation. We imaged 47 biopsies from patients undergoing a guided breast biopsy procedure using a customized SIM system and a dual-color fluorescent hematoxylin & eosin (H&E) analog. These biopsies had an average size of 0.92 cm2 (minimum 0.1, maximum 4.2) and had an average imaging time of 7:29 (minimum 0:22, maximum 37:44). After imaging, breast biopsies were submitted for standard histopathological processing and review. A board-certified pathologist returned a binary diagnostic accuracy of 96% when compared to diagnoses from gold-standard histology slides, and key tissue features including stroma, vessels, ducts, and lobules were identified from the resulting images.


Subject(s)
Breast Neoplasms , Humans , Breast Neoplasms/pathology , Breast Neoplasms/diagnosis , Breast Neoplasms/diagnostic imaging , Female , Breast/pathology , Breast/diagnostic imaging , Biopsy/methods , Microscopy/methods
2.
J Pak Med Assoc ; 74(4 (Supple-4)): S43-S48, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38712408

ABSTRACT

This narrative review explores the transformative potential of Artificial Intelligence (AI) and advanced imaging techniques in predicting Pathological Complete Response (pCR) in Breast Cancer (BC) patients undergoing Neo-Adjuvant Chemotherapy (NACT). Summarizing recent research findings underscores the significant strides made in the accurate assessment of pCR using AI, including deep learning and radiomics. Such AI-driven models offer promise in optimizing clinical decisions, personalizing treatment strategies, and potentially reducing the burden of unnecessary treatments, thereby improving patient outcomes. Furthermore, the review acknowledges the potential of AI to address healthcare disparities in Low- and Middle-Income Countries (LMICs), where accessible and scalable AI solutions may enhance BC management. Collaboration and international efforts are essential to fully unlock the potential of AI in BC care, offering hope for a more equitable and effective approach to treatment worldwide.


Subject(s)
Artificial Intelligence , Breast Neoplasms , Humans , Breast Neoplasms/therapy , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Female , Neoadjuvant Therapy/methods , Deep Learning , Chemotherapy, Adjuvant
3.
J Pak Med Assoc ; 74(4 (Supple-4)): S72-S78, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38712412

ABSTRACT

Radio genomics is an exciting new area that uses diagnostic imaging to discover genetic features of diseases. In this review, we carefully examined existing literature to evaluate the role of artificial intelligence (AI) and machine learning (ML) on dynamic contrastenhanced MRI (DCE-MRI) data to distinguish molecular subtypes of breast cancer (BC). Implications to noninvasive assessment of molecular subtype include reduction in procedure risks, tailored treatment approaches, ability to examine entire lesion, follow-up of tumour biology in response to treatment and evaluation of treatment resistance and failure secondary to tumour heterogeneity. Recent studies leverage radiomics and AI on DCE-MRI data for reliable, non-invasive breast cancer subtype classification. This review recognizes the potential of AI to predict the molecular subtypes of breast cancer non-invasively.


Subject(s)
Artificial Intelligence , Breast Neoplasms , Contrast Media , Magnetic Resonance Imaging , Humans , Breast Neoplasms/genetics , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Magnetic Resonance Imaging/methods , Female , Machine Learning
4.
BMC Health Serv Res ; 24(1): 616, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730486

ABSTRACT

BACKGROUND: The role of clinical breast examination (CBE) for early detection of breast cancer is extremely important in lower-middle-income countries (LMICs) where access to breast imaging is limited. Our study aimed to describe the outcomes of a community outreach breast education, home CBE and referral program for early recognition of breast abnormalities and improvement of breast cancer awareness in a rural district of Pakistan. METHODS: Eight health care workers (HCW) and a gynecologist were educated on basic breast cancer knowledge and trained to create breast cancer awareness and conduct CBE in the community. They were then deployed in the Dadu district of Pakistan where they carried out home visits to perform CBE in the community. Breast cancer awareness was assessed in the community using a standardized questionnaire and standard educational intervention was performed. Clinically detectable breast lesions were identified during home CBE and women were referred to the study gynecologist to confirm the presence of clinical abnormalities. Those confirmed to have clinical abnormalities were referred for imaging. Follow-up home visits were carried out to assess reasons for non-compliance in patients who did not follow-through with the gynecologist appointment or prescribed imaging and re-enforce the need for follow-up. RESULTS: Basic breast cancer knowledge of HCWs and study gynecologist improved post-intervention. HCWs conducted home CBE in 8757 women. Of these, 149 were warranted a CBE by a physician (to avoid missing an abnormality), while 20 were found to have a definitive lump by HCWs, all were referred to the study gynecologist (CBE checkpoint). Only 50% (10/20) of those with a suspected lump complied with the referral to the gynecologist, where 90% concordance was found between their CBEs. Follow-up home visits were conducted in 119/169 non-compliant patients. Major reasons for non-compliance were a lack of understanding of the risks and financial constraints. A significant improvement was observed in the community's breast cancer knowledge at the follow-up visits using the standardized post-test. CONCLUSIONS: Basic and focused education of HCWs can increase their knowledge and dispel myths. Hand-on structured training can enable HCWs to perform CBE. Community awareness is essential for patient compliance and for early-detection, diagnosis, and treatment.


Subject(s)
Breast Neoplasms , Early Detection of Cancer , Referral and Consultation , Rural Population , Humans , Pakistan , Female , Breast Neoplasms/diagnosis , Breast Neoplasms/diagnostic imaging , Adult , Middle Aged , Physical Examination , Health Knowledge, Attitudes, Practice , Surveys and Questionnaires
5.
Breast Cancer Res ; 26(1): 77, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745321

ABSTRACT

BACKGROUND: Early prediction of pathological complete response (pCR) is important for deciding appropriate treatment strategies for patients. In this study, we aimed to quantify the dynamic characteristics of dynamic contrast-enhanced magnetic resonance images (DCE-MRI) and investigate its value to improve pCR prediction as well as its association with tumor heterogeneity in breast cancer patients. METHODS: The DCE-MRI, clinicopathologic record, and full transcriptomic data of 785 breast cancer patients receiving neoadjuvant chemotherapy were retrospectively included from a public dataset. Dynamic features of DCE-MRI were computed from extracted phase-varying radiomic feature series using 22 CAnonical Time-sereis CHaracteristics. Dynamic model and radiomic model were developed by logistic regression using dynamic features and traditional radiomic features respectively. Various combined models with clinical factors were also developed to find the optimal combination and the significance of each components was evaluated. All the models were evaluated in independent test set in terms of area under receiver operating characteristic curve (AUC). To explore the potential underlying biological mechanisms, radiogenomic analysis was implemented on patient subgroups stratified by dynamic model to identify differentially expressed genes (DEGs) and enriched pathways. RESULTS: A 10-feature dynamic model and a 4-feature radiomic model were developed (AUC = 0.688, 95%CI: 0.635-0.741 and AUC = 0.650, 95%CI: 0.595-0.705) and tested (AUC = 0.686, 95%CI: 0.594-0.778 and AUC = 0.626, 95%CI: 0.529-0.722), with the dynamic model showing slightly higher AUC (train p = 0.181, test p = 0.222). The combined model of clinical, radiomic, and dynamic achieved the highest AUC in pCR prediction (train: 0.769, 95%CI: 0.722-0.816 and test: 0.762, 95%CI: 0.679-0.845). Compared with clinical-radiomic combined model (train AUC = 0.716, 95%CI: 0.665-0.767 and test AUC = 0.695, 95%CI: 0.656-0.714), adding the dynamic component brought significant improvement in model performance (train p < 0.001 and test p = 0.005). Radiogenomic analysis identified 297 DEGs, including CXCL9, CCL18, and HLA-DPB1 which are known to be associated with breast cancer prognosis or angiogenesis. Gene set enrichment analysis further revealed enrichment of gene ontology terms and pathways related to immune system. CONCLUSION: Dynamic characteristics of DCE-MRI were quantified and used to develop dynamic model for improving pCR prediction in breast cancer patients. The dynamic model was associated with tumor heterogeniety in prognostic-related gene expression and immune-related pathways.


Subject(s)
Breast Neoplasms , Contrast Media , Magnetic Resonance Imaging , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Magnetic Resonance Imaging/methods , Middle Aged , Adult , Retrospective Studies , Neoadjuvant Therapy , Prognosis , ROC Curve , Transcriptome , Aged , Treatment Outcome
6.
Folia Med (Plovdiv) ; 66(2): 213-220, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38690816

ABSTRACT

INTRODUCTION: The density of breast tissue, radiologically referred to as fibroglandular mammary tissue, was found to be a predisposing factor for breast cancer (BC). However, the stated degree of elevated BC risk varies widely in the literature.


Subject(s)
Breast Density , Breast Neoplasms , Mammography , Humans , Female , Breast Neoplasms/epidemiology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Egypt/epidemiology , Incidence , Middle Aged , Adult , Aged
7.
PLoS One ; 19(5): e0300171, 2024.
Article in English | MEDLINE | ID: mdl-38701062

ABSTRACT

PURPOSE: To investigate the treatment efficacy of intra-arterial (IA) trastuzumab treatment using multiparametric magnetic resonance imaging (MRI) in a human breast cancer xenograft model. MATERIALS AND METHODS: Human breast cancer cells (BT474) were stereotaxically injected into the brains of nude mice to obtain a xenograft model. The mice were divided into four groups and subjected to different treatments (IA treatment [IA-T], intravenous treatment [IV-T], IA saline injection [IA-S], and the sham control group). MRI was performed before and at 7 and 14 d after treatment to assess the efficacy of the treatment. The tumor volume, apparent diffusion coefficient (ADC), and dynamic contrast-enhanced (DCE) MRI parameters (Ktrans, Kep, Ve, and Vp) were measured. RESULTS: Tumor volumes in the IA-T group at 14 d after treatment were significantly lower than those in the IV-T group (13.1 mm3 [interquartile range 8.48-16.05] vs. 25.69 mm3 [IQR 20.39-30.29], p = 0.005), control group (IA-S, 33.83 mm3 [IQR 32.00-36.30], p<0.01), and sham control (39.71 mm3 [IQR 26.60-48.26], p <0.001). The ADC value in the IA-T group was higher than that in the control groups (IA-T, 7.62 [IQR 7.23-8.20] vs. IA-S, 6.77 [IQR 6.48-6.87], p = 0.044 and vs. sham control, 6.89 [IQR 4.93-7.48], p = 0.004). Ktrans was significantly decreased following the treatment compared to that in the control groups (p = 0.002 and p<0.001 for vs. IA-S and sham control, respectively). Tumor growth was decreased in the IV-T group compared to that in the sham control group (25.69 mm3 [IQR 20.39-30.29] vs. 39.71 mm3 [IQR 26.60-48.26], p = 0.27); there was no significant change in the MRI parameters. CONCLUSION: IA treatment with trastuzumab potentially affects the early response to treatment, including decreased tumor growth and decrease of Ktrans, in a preclinical brain tumor model.


Subject(s)
Breast Neoplasms , Injections, Intra-Arterial , Mice, Nude , Trastuzumab , Xenograft Model Antitumor Assays , Trastuzumab/administration & dosage , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Animals , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Female , Mice , Cell Line, Tumor , Multiparametric Magnetic Resonance Imaging/methods , Tumor Burden/drug effects , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/therapeutic use , Mice, Inbred BALB C
9.
J Cancer Res Clin Oncol ; 150(5): 254, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748373

ABSTRACT

OBJECTIVE: The aim of this study is to conduct a systematic evaluation of the diagnostic efficacy of Breast Imaging Reporting and Data System (BI-RADS) 4 benign and malignant breast lesions using magnetic resonance imaging (MRI) radiomics. METHODS: A systematic search identified relevant studies. Eligible studies were screened, assessed for quality, and analyzed for diagnostic accuracy. Subgroup and sensitivity analyses explored heterogeneity, while publication bias, clinical relevance and threshold effect were evaluated. RESULTS: This study analyzed a total of 11 studies involving 1,915 lesions in 1,893 patients with BI-RADS 4 classification. The results showed that the combined sensitivity and specificity of MRI radiomics for diagnosing BI-RADS 4 lesions were 0.88 (95% CI 0.83-0.92) and 0.79 (95% CI 0.72-0.84). The positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) were 4.2 (95% CI 3.1-5.7), 0.15 (95% CI: 0.10-0.22), and 29.0 (95% CI 15-55). The summary receiver operating characteristic (SROC) analysis yielded an area under the curve (AUC) of 0.90 (95% CI 0.87-0.92), indicating good diagnostic performance. The study found no significant threshold effect or publication bias, and heterogeneity among studies was attributed to various factors like feature selection algorithm, radiomics algorithms, etc. Overall, the results suggest that MRI radiomics has the potential to improve the diagnostic accuracy of BI-RADS 4 lesions and enhance patient outcomes. CONCLUSION: MRI-based radiomics is highly effective in diagnosing BI-RADS 4 benign and malignant breast lesions, enabling improving patients' medical outcomes and quality of life.


Subject(s)
Breast Neoplasms , Magnetic Resonance Imaging , Humans , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/diagnosis , Breast Neoplasms/pathology , Magnetic Resonance Imaging/methods , Female , Sensitivity and Specificity , Breast/diagnostic imaging , Breast/pathology , Radiomics
10.
PLoS One ; 19(5): e0302486, 2024.
Article in English | MEDLINE | ID: mdl-38743917

ABSTRACT

BACKGROUND AND OBJECTIVES: Correct identification of estrogen receptor (ER) status in breast cancer (BC) is crucial to optimize treatment; however, standard of care, involving biopsy and immunohistochemistry (IHC), and other diagnostic tools such as 2-deoxy-2-[18F]fluoro-D-glucose or 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG), can yield inconclusive results. 16α-[18F]fluoro-17ß-fluoroestradiol ([18F]FES) can be a powerful tool, providing high diagnostic accuracy of ER-positive disease. The aim of this study was to estimate the budget impact and cost-effectiveness of adding [18F]FES PET/CT to biopsy/IHC in the determination of ER-positive status in metastatic (mBC) and recurrent breast cancer (rBC) in the United States (US). METHODS: An Excel-based decision tree, combined with a Markov model, was developed to estimate the economic consequences of adding [18F]FES PET/CT to biopsy/IHC for determining ER-positive status in mBC and rBC over 5 years. Scenario A, where the determination of ER-positive status is carried out solely through biopsy/IHC, was compared to scenario B, where [18F]FES PET/CT is used in addition to biopsy/IHC. RESULTS: The proportion of true positive and true negative test results increased by 0.2 to 8.0 percent points in scenario B compared to scenario A, while re-biopsies were reduced by 94% to 100%. Scenario B resulted in cost savings up to 142 million dollars. CONCLUSIONS: Adding [18F]FES PET/CT to biopsy/IHC may increase the diagnostic accuracy of the ER status, especially when a tumor sample cannot be obtained, or the risk of a biopsy-related complication is high. Therefore, adding [18F]FES PET/CT to biopsy/IHC would have a positive impact on US clinical and economic outcomes.


Subject(s)
Breast Neoplasms , Cost-Benefit Analysis , Positron Emission Tomography Computed Tomography , Receptors, Estrogen , Humans , Breast Neoplasms/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/economics , Breast Neoplasms/metabolism , Breast Neoplasms/diagnosis , Positron Emission Tomography Computed Tomography/economics , Positron Emission Tomography Computed Tomography/methods , Female , Receptors, Estrogen/metabolism , United States , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/diagnostic imaging , Estradiol/analogs & derivatives , Neoplasm Metastasis , Middle Aged , Fluorodeoxyglucose F18 , Radiopharmaceuticals
11.
BMC Med Imaging ; 24(1): 108, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745134

ABSTRACT

BACKGROUND: The purpose of this research is to study the sonographic and clinicopathologic characteristics that associate with axillary lymph node metastasis (ALNM) for pure mucinous carcinoma of breast (PMBC). METHODS: A total of 176 patients diagnosed as PMBC after surgery were included. According to the status of axillary lymph nodes, all patients were classified into ALNM group (n = 15) and non-ALNM group (n = 161). The clinical factors (patient age, tumor size, location), molecular biomarkers (ER, PR, HER2 and Ki-67) and sonographic features (shape, orientation, margin, echo pattern, posterior acoustic pattern and vascularity) between two groups were analyzed to unclose the clinicopathologic and ultrasonographic characteristics in PMBC with ALNM. RESULTS: The incidence of axillary lymph node metastasis was 8.5% in this study. Tumors located in the outer side of the breast (upper outer quadrant and lower outer quadrant) were more likely to have lymphatic metastasis, and the difference between the two group was significantly (86.7% vs. 60.3%, P = 0.043). ALNM not associated with age (P = 0.437). Although tumor size not associated with ALNM(P = 0.418), the tumor size in ALNM group (32.3 ± 32.7 mm) was bigger than non-ALNM group (25.2 ± 12.8 mm). All the tumors expressed progesterone receptor (PR) positively, and 90% of all expressed estrogen receptor (ER) positively, human epidermal growth factor receptor 2 (HER2) were positive in two cases of non-ALNM group. Ki-67 high expression was observed in 36 tumors in our study (20.5%), and it was higher in ALNM group than non-ALNM group (33.3% vs. 19.3%), but the difference wasn't significantly (P = 0.338). CONCLUSIONS: Tumor location is a significant factor for ALNM in PMBC. Outer side location is more easily for ALNM. With the bigger size and/or Ki-67 higher expression status, the lymphatic metastasis seems more likely to present.


Subject(s)
Adenocarcinoma, Mucinous , Axilla , Breast Neoplasms , Lymph Nodes , Lymphatic Metastasis , Humans , Female , Lymphatic Metastasis/diagnostic imaging , Lymphatic Metastasis/pathology , Middle Aged , Breast Neoplasms/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/metabolism , Adult , Aged , Adenocarcinoma, Mucinous/diagnostic imaging , Adenocarcinoma, Mucinous/pathology , Adenocarcinoma, Mucinous/metabolism , Adenocarcinoma, Mucinous/secondary , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Ultrasonography/methods , Biomarkers, Tumor/metabolism
12.
Nat Commun ; 15(1): 4021, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740751

ABSTRACT

The unexplained protective effect of childhood adiposity on breast cancer risk may be mediated via mammographic density (MD). Here, we investigate a complex relationship between adiposity in childhood and adulthood, puberty onset, MD phenotypes (dense area (DA), non-dense area (NDA), percent density (PD)), and their effects on breast cancer. We use Mendelian randomization (MR) and multivariable MR to estimate the total and direct effects of adiposity and age at menarche on MD phenotypes. Childhood adiposity has a decreasing effect on DA, while adulthood adiposity increases NDA. Later menarche increases DA/PD, but when accounting for childhood adiposity, this effect is attenuated. Next, we examine the effect of MD on breast cancer risk. DA/PD have a risk-increasing effect on breast cancer across all subtypes. The MD SNPs estimates are heterogeneous, and additional analyses suggest that different mechanisms may be linking MD and breast cancer. Finally, we evaluate the role of MD in the protective effect of childhood adiposity on breast cancer. Mediation MR analysis shows that 56% (95% CIs [32%-79%]) of this effect is mediated via DA. Our finding suggests that higher childhood adiposity decreases mammographic DA, subsequently reducing breast cancer risk. Understanding this mechanism is important for identifying potential intervention targets.


Subject(s)
Adiposity , Breast Density , Breast Neoplasms , Mammography , Menarche , Mendelian Randomization Analysis , Humans , Breast Neoplasms/genetics , Breast Neoplasms/diagnostic imaging , Female , Adiposity/genetics , Risk Factors , Child , Body Size , Adult , Polymorphism, Single Nucleotide , Middle Aged
13.
J Biomed Opt ; 29(9): 093503, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38715717

ABSTRACT

Significance: Hyperspectral dark-field microscopy (HSDFM) and data cube analysis algorithms demonstrate successful detection and classification of various tissue types, including carcinoma regions in human post-lumpectomy breast tissues excised during breast-conserving surgeries. Aim: We expand the application of HSDFM to the classification of tissue types and tumor subtypes in pre-histopathology human breast lumpectomy samples. Approach: Breast tissues excised during breast-conserving surgeries were imaged by the HSDFM and analyzed. The performance of the HSDFM is evaluated by comparing the backscattering intensity spectra of polystyrene microbead solutions with the Monte Carlo simulation of the experimental data. For classification algorithms, two analysis approaches, a supervised technique based on the spectral angle mapper (SAM) algorithm and an unsupervised technique based on the K-means algorithm are applied to classify various tissue types including carcinoma subtypes. In the supervised technique, the SAM algorithm with manually extracted endmembers guided by H&E annotations is used as reference spectra, allowing for segmentation maps with classified tissue types including carcinoma subtypes. Results: The manually extracted endmembers of known tissue types and their corresponding threshold spectral correlation angles for classification make a good reference library that validates endmembers computed by the unsupervised K-means algorithm. The unsupervised K-means algorithm, with no a priori information, produces abundance maps with dominant endmembers of various tissue types, including carcinoma subtypes of invasive ductal carcinoma and invasive mucinous carcinoma. The two carcinomas' unique endmembers produced by the two methods agree with each other within <2% residual error margin. Conclusions: Our report demonstrates a robust procedure for the validation of an unsupervised algorithm with the essential set of parameters based on the ground truth, histopathological information. We have demonstrated that a trained library of the histopathology-guided endmembers and associated threshold spectral correlation angles computed against well-defined reference data cubes serve such parameters. Two classification algorithms, supervised and unsupervised algorithms, are employed to identify regions with carcinoma subtypes of invasive ductal carcinoma and invasive mucinous carcinoma present in the tissues. The two carcinomas' unique endmembers used by the two methods agree to <2% residual error margin. This library of high quality and collected under an environment with no ambient background may be instrumental to develop or validate more advanced unsupervised data cube analysis algorithms, such as effective neural networks for efficient subtype classification.


Subject(s)
Algorithms , Breast Neoplasms , Mastectomy, Segmental , Microscopy , Humans , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/surgery , Breast Neoplasms/pathology , Female , Mastectomy, Segmental/methods , Microscopy/methods , Breast/diagnostic imaging , Breast/pathology , Breast/surgery , Hyperspectral Imaging/methods , Margins of Excision , Monte Carlo Method , Image Processing, Computer-Assisted/methods
14.
Balkan Med J ; 41(3): 213-221, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700366

ABSTRACT

Background: The level of tumor-infiltrating lymphocytes (TILs) in human epidermal growth factor receptor type 2 (HER2)-positive breast cancer (BC) is positively correlated with pathological complete response. Aims: To investigate the relationship between ultrasound (US) and magnetic resonance imaging (MRI) features and the level of CD8-positive TILs (CD8+-TILs) in patients with HER2-positive BC. Study Design: Retrospective cohort study. Methods: This retrospective study included 155 consecutive women with HER2-positive BC. Patients were divided into two groups: CD8+-TILlow (< 35%) and CD8+-TILhigh (≥ 35%) groups. US and MRI features were evaluated using the BI-RADS lexicon, and the apparent diffusion coefficient (ADC) value was calculated using RadiAnt software. Univariate and multivariate analyses revealed the optimal US and MRI features for predicting CD8+-TIL levels. Receiver operating characteristic analysis and the Delong test were used to compare the diagnostic performance of US and MRI features. Furthermore, implementing a nomogram will increase clinical utility. Results: Univariate analysis of US features showed significant differences in shape, orientation, and posterior echo between the two groups; however, there were no significant differences in margins, internal echo, and microcalcification. Multifactorial analysis revealed that shape, orientation, and posterior echo were independent risk factors, with odds ratios of 11.62, 2.70, and 0.16, respectively. In terms of MRI features, ADC was an independent predictor of CD8+-TIL levels. These three US features and the ADC performed well, with area under the curve (AUC) values of 0.802 and 0.705, respectively. The combination of US and ADC values had higher predictive efficacy (AUC = 0.888) than either US or ADC alone (p = 0.009, US_ADC vs. US; p < 0.001, US_ADC vs. ADC). Conclusion: US features (shape, orientation, and posterior echo) and ADC value may be a valuable tool for estimating CD8+-TIL levels in HER2-positive BC. The nomogram may help clinicians in making decisions.


Subject(s)
Breast Neoplasms , CD8-Positive T-Lymphocytes , Magnetic Resonance Imaging , Receptor, ErbB-2 , Humans , Female , Breast Neoplasms/diagnostic imaging , Retrospective Studies , Middle Aged , Adult , Magnetic Resonance Imaging/methods , Receptor, ErbB-2/analysis , Aged , Ultrasonography/methods , Ultrasonography/statistics & numerical data , Cohort Studies , Lymphocytes, Tumor-Infiltrating
15.
Sci Rep ; 14(1): 10412, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710744

ABSTRACT

The proposed work contains three major contribution, such as smart data collection, optimized training algorithm and integrating Bayesian approach with split learning to make privacy of the patent data. By integrating consumer electronics device such as wearable devices, and the Internet of Things (IoT) taking THz image, perform EM algorithm as training, used newly proposed slit learning method the technology promises enhanced imaging depth and improved tissue contrast, thereby enabling early and accurate disease detection the breast cancer disease. In our hybrid algorithm, the breast cancer model achieves an accuracy of 97.5 percent over 100 epochs, surpassing the less accurate old models which required a higher number of epochs, such as 165.


Subject(s)
Algorithms , Breast Neoplasms , Wearable Electronic Devices , Humans , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/diagnosis , Internet of Things , Female , Terahertz Imaging/methods , Bayes Theorem , Diagnostic Imaging/methods , Image Processing, Computer-Assisted/methods , Machine Learning
16.
Sci Rep ; 14(1): 10001, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693256

ABSTRACT

Interval breast cancers are diagnosed between scheduled screenings and differ in many respects from screening-detected cancers. Studies comparing the survival of patients with interval and screening-detected cancers have reported differing results. The aim of this study was to investigate the radiological and histopathological features and growth rates of screening-detected and interval breast cancers and subsequent survival. This retrospective study included 942 female patients aged 50-69 years with breast cancers treated and followed-up at Kuopio University Hospital between January 2010 and December 2016. The screening-detected and interval cancers were classified as true, minimal-signs, missed, or occult. The radiological features were assessed on mammograms by one of two specialist breast radiologists with over 15 years of experience. A χ2 test was used to examine the association between radiological and pathological variables; an unpaired t test was used to compare the growth rates of missed and minimal-signs cancers; and the Kaplan-Meier estimator was used to examine survival after screening-detected and interval cancers. Sixty occult cancers were excluded, so a total of 882 women (mean age 60.4 ± 5.5 years) were included, in whom 581 had screening-detected cancers and 301 interval cancers. Disease-specific survival, overall survival and disease-free survival were all worse after interval cancer than after screening-detected cancer (p < 0.001), with a mean follow-up period of 8.2 years. There were no statistically significant differences in survival between the subgroups of screening-detected or interval cancers. Missed interval cancers had faster growth rates (0.47% ± 0.77%/day) than missed screening-detected cancers (0.21% ± 0.11%/day). Most cancers (77.2%) occurred in low-density breasts (< 25%). The most common lesion types were masses (73.9%) and calcifications (13.4%), whereas distortions (1.8%) and asymmetries (1.7%) were the least common. Survival was worse after interval cancers than after screening-detected cancers, attributed to their more-aggressive histopathological characteristics, more nodal and distant metastases, and faster growth rates.


Subject(s)
Breast Neoplasms , Early Detection of Cancer , Mammography , Humans , Female , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/diagnosis , Middle Aged , Aged , Mammography/methods , Early Detection of Cancer/methods , Finland/epidemiology , Retrospective Studies , Mass Screening/methods , Disease-Free Survival
17.
Cancer Epidemiol Biomarkers Prev ; 33(5): 638-640, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38689574

ABSTRACT

Novel breast cancer screening methods that detect greater numbers of occult (nonpalpable) tumors have been rapidly incorporated into clinical practice, with the aim of reducing mortality. Yet, tumor detection has never been validated as a proper surrogate outcome measure for breast cancer mortality. Moreover, the detection of greater numbers of occult cancers increases the risk of overdiagnosis, which refers to detection of tumors that pose no threat to life and would never have been detected in the absence of screening. With recent advances in breast cancer therapy, many cancers that were previously curable only if detected as occult tumors with mammography screening are perhaps now curable even when detected as small palpable tumors, thereby giving us an opportunity to deescalate screening and mitigate the risk of overdiagnosis. Thus, a randomized trial comparing screening mammography versus screening clinical breast examination (CBE), with breast cancer mortality as the endpoint, is now warranted. In such a trial, hand-held ultrasound might aid in the interpretation of screening CBE findings. In conclusion, recent improvements in breast cancer therapy provide the justification to assess the deescalation of breast cancer screening. See related article by Farber et al., p. 671.


Subject(s)
Breast Neoplasms , Early Detection of Cancer , Mammography , Humans , Breast Neoplasms/diagnosis , Breast Neoplasms/diagnostic imaging , Female , Early Detection of Cancer/methods , Mammography/methods
18.
J Biomed Opt ; 29(6): 066001, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38737790

ABSTRACT

Significance: Achieving pathologic complete response (pCR) after neoadjuvant chemotherapy (NACT) is a significant predictor of increased likelihood of survival in breast cancer patients. Early prediction of pCR is of high clinical value as it could allow personalized adjustment of treatment regimens in non-responding patients for improved outcomes. Aim: We aim to assess the association between hemoglobin-based functional imaging biomarkers derived from diffuse optical tomography (DOT) and the pathological outcome represented by pCR at different timepoints along the course of NACT. Approach: Twenty-two breast cancer patients undergoing NACT were enrolled in a multimodal DOT and X-ray digital breast tomosynthesis (DBT) imaging study in which their breasts were imaged at different compression levels. Logistic regressions were used to study the associations between DOT-derived imaging markers evaluated after the first and second cycles of chemotherapy, respectively, with pCR status determined after the conclusion of NACT at the time of surgery. Receiver operating characteristic curve analysis was also used to explore the predictive performance of selected DOT-derived markers. Results: Normalized tumor HbT under half compression was significantly lower in the pCR group compared to the non-pCR group after two chemotherapy cycles (p=0.042). In addition, the change in normalized tumor StO2 upon reducing compression from full to half mammographic force was identified as another potential indicator of pCR at an earlier time point, i.e., after the first chemo cycle (p=0.038). Exploratory predictive assessments showed that AUCs using DOT-derived functional imaging markers as predictors reach as high as 0.75 and 0.71, respectively, after the first and second chemo cycle, compared to AUCs of 0.50 and 0.53 using changes in tumor size measured on DBT and MRI. Conclusions: These findings suggest that breast DOT could be used to assist response assessment in women undergoing NACT, a critical but unmet clinical need, and potentially enable personalized adjustments of treatment regimens.


Subject(s)
Breast Neoplasms , Neoadjuvant Therapy , Tomography, Optical , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Female , Neoadjuvant Therapy/methods , Middle Aged , Tomography, Optical/methods , Adult , Hemodynamics , Treatment Outcome , Mammography/methods , Breast/diagnostic imaging , Breast/pathology , Hemoglobins/analysis , Aged , Biomarkers, Tumor/analysis , ROC Curve
19.
Zhonghua Zhong Liu Za Zhi ; 46(5): 428-437, 2024 May 23.
Article in Chinese | MEDLINE | ID: mdl-38742356

ABSTRACT

Objective: This study aims to explore the predictive value of T2-weighted imaging (T2WI), apparent diffusion coefficient (ADC), and early-delayed phases enhanced magnetic resonance imaging (DCE-MRI) radiomics prediction model in determining human epidermal growth factor receptor 2 status in breast cancer. Methods: A retrospective study was conducted, involving 187 patients with confirmed breast cancer by postsurgical pathology at Zhenjiang First People's Hospital during January 2021 and May 2023. Immunohistochemistry or fluorescence in situ hybridization was used to determine the HER-2 status of these patients, with 48 cases classified as HER-2 positive and 139 cases as HER-2 negative. The training set was used to construct the prediction models and the validation set was used to verify the prediction models. Layers of T2WI, ADC, and early-delayed phase DCE-MRI images were used to delineate the volumeof interest and 960 radiomic features were extracted from each case using Pyradiomic. After screening and dimensionality reduction by intraclass correlation coefficient, Pearson correlation analysis, least absolute shrinkage, and selection operator, the radiomics labels were established. Logistic regression analysis was used to construct the T2WI radiomics model, ADC radiomics model, DCE-2 radiomics model, DCE-6 radiomics model, and the joint sequence radiomics model to predict the HER-2 expression status of breast cancer, respectively. Based on the clinical, pathological, and MRI image characteristics of patients, univariate and multivariate logistic regression analysis wasused to construct a clinicopathological MRI feature model. The radscore of every patient and the clinicopathological MRI features which were statistically significant after screening were used to construct a nomogram model. The receiver operating characteristic (ROC) curve was used to evaluate the predictive performance of each model and the decision curve analysis wasused to evaluate the clinical usefulness. Results: The T2WI, ADC, DCE-2, DCE-6, and joint sequence radiomics models, the clinicopathological MRI feature model, and the nomogram model were successfully constructed to predict the expression status of HER-2 in breast cancer. ROC analysis showed that in the training set and validation set, the areas under the curve (AUC) of the T2WI radiomics model were 0.797 and 0.760, of the ADC radiomics model were 0.776 and 0.634, of the DCE-2 radiomics model were 0.804 and 0.759, of the DCE-6 radiomics model were 0.869 and 0.798, of the combined sequence radiomics model were 0.908 and 0.847, of the clinicopathological MRI feature model were 0.703 and 0.693, and of the nomogram model were 0.938 and 0.859, respectively. In the training set, the combined sequence radiomics model outperformed the clinicopathological features model (P<0.001). In the training and validation sets, the nomogram outperformed the clinicopathological features model (P<0.05). In addition, the diagnostic performance of the nomogram was better than that of the four single-modality radiomics models in the training cohort (P<0.05) and was better than that of DCE-2 and ADC models in the validation cohort (P<0.05). Decision curve analysis indicated that the value of individualized prediction models was higher than clinical and pathological prediction models in clinical practice. The calibration curve showed that the multimodal radiomics model had a high consistency with the actual results in predicting HER-2 expression. Conclusions: T2WI, ADC and early-delayed phase DCE-MRI imaging histology models for HER-2 expression status in breast cancer are expected to provide a non-invasive virtual pathological basis for decision-making on preoperative neoadjuvant regimens in breast cancer.


Subject(s)
Breast Neoplasms , Magnetic Resonance Imaging , Receptor, ErbB-2 , Humans , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Receptor, ErbB-2/metabolism , Magnetic Resonance Imaging/methods , ROC Curve , Radiomics
20.
BMC Cancer ; 24(1): 549, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693523

ABSTRACT

BACKGROUND: Accurate assessment of axillary status after neoadjuvant therapy for breast cancer patients with axillary lymph node metastasis is important for the selection of appropriate subsequent axillary treatment decisions. Our objectives were to accurately predict whether the breast cancer patients with axillary lymph node metastases could achieve axillary pathological complete response (pCR). METHODS: We collected imaging data to extract longitudinal CT image features before and after neoadjuvant chemotherapy (NAC), analyzed the correlation between radiomics and clinicopathological features, and developed models to predict whether patients with axillary lymph node metastasis can achieve axillary pCR after NAC. The clinical utility of the models was determined via decision curve analysis (DCA). Subgroup analyses were also performed. Then, a nomogram was developed based on the model with the best predictive efficiency and clinical utility and was validated using the calibration plots. RESULTS: A total of 549 breast cancer patients with metastasized axillary lymph nodes were enrolled in this study. 42 independent radiomics features were selected from LASSO regression to construct a logistic regression model with clinicopathological features (LR radiomics-clinical combined model). The AUC of the LR radiomics-clinical combined model prediction performance was 0.861 in the training set and 0.891 in the testing set. For the HR + /HER2 - , HER2 + , and Triple negative subtype, the LR radiomics-clinical combined model yields the best prediction AUCs of 0.756, 0.812, and 0.928 in training sets, and AUCs of 0.757, 0.777 and 0.838 in testing sets, respectively. CONCLUSIONS: The combination of radiomics features and clinicopathological characteristics can effectively predict axillary pCR status in NAC breast cancer patients.


Subject(s)
Axilla , Breast Neoplasms , Lymph Nodes , Lymphatic Metastasis , Neoadjuvant Therapy , Nomograms , Tomography, X-Ray Computed , Humans , Female , Breast Neoplasms/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Lymphatic Metastasis/diagnostic imaging , Middle Aged , Lymph Nodes/pathology , Lymph Nodes/diagnostic imaging , Tomography, X-Ray Computed/methods , Neoadjuvant Therapy/methods , Adult , Aged , Retrospective Studies , Radiomics
SELECTION OF CITATIONS
SEARCH DETAIL
...