Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Plant Cell ; 33(11): 3487-3512, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34459915

ABSTRACT

In angiosperms, the α/ß hydrolase DWARF14 (D14), along with the F-box protein MORE AXILLARY GROWTH2 (MAX2), perceives strigolactones (SL) to regulate developmental processes. The key SL biosynthetic enzyme CAROTENOID CLEAVAGE DIOXYGENASE8 (CCD8) is present in the moss Physcomitrium patens, and PpCCD8-derived compounds regulate moss extension. The PpMAX2 homolog is not involved in the SL response, but 13 PpKAI2LIKE (PpKAI2L) genes homologous to the D14 ancestral paralog KARRIKIN INSENSITIVE2 (KAI2) encode candidate SL receptors. In Arabidopsis thaliana, AtKAI2 perceives karrikins and the elusive endogenous KAI2-Ligand (KL). Here, germination assays of the parasitic plant Phelipanche ramosa suggested that PpCCD8-derived compounds are likely noncanonical SLs. (+)-GR24 SL analog is a good mimic for PpCCD8-derived compounds in P. patens, while the effects of its enantiomer (-)-GR24, a KL mimic in angiosperms, are minimal. Interaction and binding assays of seven PpKAI2L proteins pointed to the stereoselectivity toward (-)-GR24 for a single clade of PpKAI2L (eu-KAI2). Enzyme assays highlighted the peculiar behavior of PpKAI2L-H. Phenotypic characterization of Ppkai2l mutants showed that eu-KAI2 genes are not involved in the perception of PpCCD8-derived compounds but act in a PpMAX2-dependent pathway. In contrast, mutations in PpKAI2L-G, and -J genes abolished the response to the (+)-GR24 enantiomer, suggesting that PpKAI2L-G, and -J proteins are receptors for moss SLs.


Subject(s)
Bryopsida/genetics , Heterocyclic Compounds, 3-Ring/metabolism , Lactones/metabolism , Orobanchaceae/physiology , Plant Proteins/genetics , Bryopsida/metabolism , Bryopsida/parasitology , Plant Proteins/metabolism
2.
PLoS One ; 16(4): e0249637, 2021.
Article in English | MEDLINE | ID: mdl-33831039

ABSTRACT

Plant pathogens often exploit a whole range of effectors to facilitate infection. The RXLR effector AVR1 produced by the oomycete plant pathogen Phytophthora infestans suppresses host defense by targeting Sec5. Sec5 is a subunit of the exocyst, a protein complex that is important for mediating polarized exocytosis during plant development and defense against pathogens. The mechanism by which AVR1 manipulates Sec5 functioning is unknown. In this study, we analyzed the effect of AVR1 on Sec5 localization and functioning in the moss Physcomitrium patens. P. patens has four Sec5 homologs. Two (PpSec5b and PpSec5d) were found to interact with AVR1 in yeast-two-hybrid assays while none of the four showed a positive interaction with AVR1ΔT, a truncated version of AVR1. In P. patens lines carrying ß-estradiol inducible AVR1 or AVR1ΔT transgenes, expression of AVR1 or AVR1ΔT caused defects in the development of caulonemal protonema cells and abnormal morphology of chloronema cells. Similar phenotypes were observed in Sec5- or Sec6-silenced P. patens lines, suggesting that both AVR1 and AVR1ΔT affect exocyst functioning in P. patens. With respect to Sec5 localization we found no differences between ß-estradiol-treated and untreated transgenic AVR1 lines. Sec5 localizes at the plasma membrane in growing caulonema cells, also during pathogen attack, and its subcellular localization is the same, with or without AVR1 in the vicinity.


Subject(s)
Bryopsida/growth & development , Gene Expression Regulation, Plant , Host-Pathogen Interactions , Phytophthora infestans/pathogenicity , Plant Diseases/immunology , Plant Proteins/metabolism , Virulence Factors/metabolism , Bryopsida/parasitology , Plant Diseases/parasitology , Plant Proteins/genetics , Virulence Factors/genetics
3.
PLoS One ; 13(11): e0200049, 2018.
Article in English | MEDLINE | ID: mdl-30408037

ABSTRACT

Schlechtendalia chinensis, a gall-inducing aphid, has two host plants in its life cycle. Its wintering host is a moss (typically Plagiomnium maximoviczii) and its main host is Rhus chinensis (Sumac), on which it forms galls during the summer. This study investigated bacteria associated with S. chinensis living on the two different host plants by sequencing 16S rRNAs. A total of 183 Operational Taxonomic Units (OTUs) from 50 genera were identified from aphids living on moss, whereas 182 OTUs from 49 genera were found from aphids living in Sumac galls. The most abundant bacterial genus among identified OTUs from aphids feeding on both hosts was Buchnera. Despite similar numbers of OTUs, the composition of bacterial taxa showed significant differences between aphids living on moss and those living on R. chinensis. Specifically, there were 12 OTUs from 5 genera (family) unique to aphids living on moss, and 11 OTUs from 4 genera (family) unique to aphids feeding in galls on R. chinensis. Principal Coordinate Analysis (PCoA) also revealed that bacteria from moss-residing aphids clustered differently from aphids collected from galls. Our results provide a foundation for future analyses on the roles of symbiotic bacteria in plant-aphid interactions in general, and how gall-specific symbionts differ in this respect.


Subject(s)
Aphids/microbiology , Bacteria/isolation & purification , Bryopsida/parasitology , Microbiota , Rhus/parasitology , Animals , Bacteria/classification , Bacteria/genetics , Cluster Analysis , Principal Component Analysis , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics
4.
J Microsc ; 263(2): 171-80, 2016 08.
Article in English | MEDLINE | ID: mdl-27027911

ABSTRACT

Live-cell imaging of plant-pathogen interactions is often hampered by the tissue complexity and multicell layered nature of the host. Here, we established a novel pathosystem with the moss Physcomitrella patens as host for Phytophthora. The tip-growing protonema cells of this moss are ideal for visualizing interactions with the pathogen over time using high-resolution microscopy. We tested four Phytophthora species for their ability to infect P. patens and showed that P. sojae and P. palmivora were only rarely capable to infect P. patens. In contrast, P. infestans and P. capsici frequently and successfully penetrated moss protonemal cells, showed intracellular hyphal growth and formed sporangia. Next to these successful invasions, many penetration attempts failed. Here the pathogen was blocked by a barrier of cell wall material deposited in papilla-like structures, a defence response that is common in higher plants. Another common response is the upregulation of defence-related genes upon infection and also in moss we observed this upregulation in tissues infected with Phytophthora. For more advanced analyses of the novel pathosystem we developed a special set-up that allowed live-cell imaging of subcellular defence processes by high-resolution microscopy. With this set-up, we revealed that Phytophthora infection of moss induces repositioning of the nucleus, accumulation of cytoplasm and rearrangement of the actin cytoskeleton, but not of microtubules.


Subject(s)
Bryopsida/cytology , Bryopsida/parasitology , Intracellular Space , Microscopy/methods , Phytophthora/pathogenicity , Plant Diseases/parasitology , Actins/metabolism , Cell Nucleus/metabolism , Cell Survival , Cell Wall/metabolism , Cytoplasm/metabolism , Phytophthora/physiology
5.
J Eukaryot Microbiol ; 53(4): 275-9, 2006.
Article in English | MEDLINE | ID: mdl-16872295

ABSTRACT

Moss communities are commonly found in temperate forests and form a nearly continuous understory in some high latitude forests. However, little is known about the microbial component of these communities, especially the non-testate amoeboid protists. Fifty morphospecies of naked amoebae were identified in samples collected at eight sites in a northeastern North American forest. The mean number (+/-SE) of morphospecies found per sample site based on laboratory cultures was 17+/-2.1. The density of amoebae expressed as number/g dry weight of moss ranged from 3.5+/-0.04 x 10(3) to 4.3+/-0.2 x 10(4) and was positively correlated with the moss moisture content (r=0.9, P<0.001, df=26). Densities of gymnamoebae in the moss are generally higher than found in the surrounding soil, but this may be due in part to the greater weight of soil per unit volume compared with moss. The percentage of encysted forms was inversely related to the moisture content of the moss sample.


Subject(s)
Amoebida/classification , Bryopsida/parasitology , Animals , Ecosystem , New York , Trees
SELECTION OF CITATIONS
SEARCH DETAIL