Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 15: 146, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26081944

ABSTRACT

BACKGROUND: Natural hybridization in plants is universal and plays an important role in evolution. Based on morphology it has been presumed that hybridization occurred in the genus Buddleja, though genetic studies confirming this assumption have not been conducted to date. The two species B. crispa and B. officinalis overlap in their distributions over a wide range in South-West China, and we aimed to provide genetic evidence for ongoing hybridization in this study. RESULTS: We investigated the occurrence of hybrids between the two species at the southern-most edge of the distribution of B. crispa using five nuclear loci and pollination experiments. The genetic data suggest substantial differentiation between the two species as species-specific alleles are separated by at least 7-28 mutations. The natural hybrids found were nearly all F1s (21 of 23), but backcrosses were detected, and some individuals, morphologically indistinguishable from the parental species, showed introgression. Pollen viability test shows that the percentage of viable pollen grains was 50 ± 4% for B. crispa, and 81 ± 2% for B. officinalis. This difference is highly significant (t = 7.382, p < 0.0001). Hand cross-pollination experiments showed that B. crispa is not successful as pollen-parent, but B. officinalis is able to pollinate B. crispa to produce viable hybrid seed. Inter-specific seed-set is low (8 seeds per fruit, as opposed to about 65 for intra-specific pollinations), suggesting post-zygotic reproductive barriers. In addition, one of the reference populations also suggests a history of introgression at other localities. CONCLUSIONS: The occurrence of morphologically intermediate individuals between B. crispa and B. officinalis at Xishan Mountain is unequivocally linked to hybridization and almost all examined individuals of the putative hybrids were likely F1s. Despite pollination experiments indicating higher chances for introgression into B. officinalis (hybrids only produced viable seed when crossed with B. officinalis), observed introgression was asymmetrical into B. crispa. This could be due to seeds produced by hybrids not contributing to seedlings, or other factors favoring the establishment of backcrosses towards B. crispa. However, further research will be needed to confirm these observations, as the small number of plants used for the pollination experiments could have introduced an artifact, for example if used individuals were more or less compatible than the species average, and also the small number of loci used could convey a picture of introgression that is not representative for the whole genome.


Subject(s)
Buddleja/genetics , Hybridization, Genetic , Inbreeding , Buddleja/anatomy & histology , Cell Nucleus/genetics , Gene Dosage , Genes, Plant , Geography , Haplotypes/genetics , Pollen/physiology , Pollination , Sequence Analysis, DNA , Species Specificity
2.
Plant Biol (Stuttg) ; 17(1): 245-55, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24841694

ABSTRACT

Traditionally, plant-pollinator interactions have been interpreted as pollination syndrome. However, the validity of pollination syndrome has been widely doubted in modern studies of pollination ecology. The pollination ecology of five Asian Buddleja species, B. asiatica, B. crispa, B. forrestii, B. macrostachya and B. myriantha, in the Sino-Himalayan region in Asia, flowering in different local seasons, with scented inflorescences were investigated during 2011 and 2012. These five species exhibited diverse floral traits, with narrow and long corolla tubes and concealed nectar. According to their floral morphology, larger bees and Lepidoptera were expected to be the major pollinators. However, field observations showed that only larger bees (honeybee/bumblebee) were the primary pollinators, ranging from 77.95% to 97.90% of total visits. In this study, floral scents of each species were also analysed using coupled gas chromatography and mass spectrometry (GC-MS). Although the five Buddleja species emitted differentiated floral scent compositions, our results showed that floral scents of the five species are dominated by substances that can serve as attractive signals to bees, including species-specific scent compounds and principal compounds with larger relative amounts. This suggests that floral scent compositions are closely associated with the principal pollinator assemblages in these five species. Therefore, we conclude that floral scent compositions rather than floral morphology traits should be used to interpret plant-pollinator interactions in these Asian Buddleja species.


Subject(s)
Bees/physiology , Buddleja/physiology , Flowers/physiology , Oils, Volatile/metabolism , Pollination/physiology , Scrophulariaceae/physiology , Animals , Buddleja/anatomy & histology , Ecology , Flowers/anatomy & histology , Phenotype , Plant Nectar/physiology , Reproduction/physiology , Scrophulariaceae/anatomy & histology , Species Specificity
3.
Biotechnol Bioeng ; 107(5): 795-801, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20672330

ABSTRACT

Buddleja davidii is a unique biomass that has many attractive agroenergy features, especially its wide range of growth habitat. The anatomical characteristics of B. davidii were investigated before and after ethanol organosolv pretreatment (one of the leading pretreatment technologies) in order to further understand the alterations that occur to the cellular structure of the biomass which can then be correlated with its enzymatic digestibility. Results showed that the ethanol organosolv pretreatment of B. davidii selectively removes lignin from the middle lamella (ML), which does not significantly disrupt the crystalline structure of cellulose. The removal of ML lignin is a major factor in enhancing enzymatic cellulose-to-glucose hydrolysis. The pretreatment also causes cell deformation, resulting in cracks and breaks in the cell wall. These observations, together with characterization analysis of the cell wall polymer material, lend support to the hypothesis that the physical distribution of lignin in the biomass matrix is an important structural feature affecting biomass enzymatic digestibility.


Subject(s)
Biomass , Buddleja/anatomy & histology , Buddleja/metabolism , Glucose/metabolism , Plant Extracts/metabolism , Buddleja/drug effects , Chemical Fractionation , Ethanol/metabolism , Fermentation , Lignin/isolation & purification , Solvents/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL