Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 280
Filter
1.
J Gene Med ; 26(7): e3711, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967638

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the death of upper and lower motor neurons with an unknown etiology. The difficulty of recovering biological material from patients led to employ lymphoblastoid cell lines (LCLs) as a model for ALS because many pathways, typically located in neurons, are also activated in these cells. METHODS: To investigate the expression of coding and long non-coding RNAs in LCLs, a transcriptomic profiling of sporadic ALS (SALS) and mutated patients (FUS, TARDBP, C9ORF72 and SOD1) and matched controls was realized. Thus, differentially expressed genes (DEGs) were investigated among the different subgroups of patients. Peripheral blood mononuclear cells (PBMCs) were isolated and immortalized into LCLs via Epstein-Barr virus infection; RNA was extracted, and RNA-sequencing analysis was performed. RESULTS: Gene expression profiles of LCLs were genetic-background-specific; indeed, only 12 genes were commonly deregulated in all groups. Nonetheless, pathways enriched by DEGs in each group were also compared, and a total of 89 Kyoto Encyclopedia of Genes and Genomes (KEGG) terms were shared among all patients. Eventually, the similarity of affected pathways was also assessed when our data were matched with a transcriptomic profile realized in the PBMCs of the same patients. CONCLUSIONS: We conclude that LCLs are a good model for the study of RNA deregulation in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Gene Expression Profiling , Mutation , Transcriptome , Humans , Amyotrophic Lateral Sclerosis/genetics , Female , Male , Middle Aged , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Leukocytes, Mononuclear/metabolism , Superoxide Dismutase-1/genetics , Cell Line , Aged , Gene Expression Regulation , DNA-Binding Proteins , RNA-Binding Protein FUS
2.
Stem Cell Reports ; 19(7): 957-972, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38876108

ABSTRACT

Induced pluripotent stem cell (iPSC)-derived motor neurons (MNs) from patients with amyotrophic lateral sclerosis (ALS) and the C9ORF72 hexanucleotide repeat expansion (HRE) have multiple cellular phenotypes, but which of these accurately reflect the biology underlying the cell-specific vulnerability of ALS is uncertain. We therefore compared phenotypes due to the C9ORF72 HRE in MNs with sensory neurons (SNs), which are relatively spared in ALS. The iPSC models were able to partially reproduce the differential gene expression seen between adult SNs and MNs. We demonstrated that the typical hallmarks of C9ORF72-ALS, including RNA foci and dipeptide formation, as well as specific axonal transport defects, occurred equally in MNs and SNs, suggesting that these in vitro phenotypes are not sufficient to explain the cell-type selectivity of ALS in isolation.


Subject(s)
Amyotrophic Lateral Sclerosis , Axonal Transport , C9orf72 Protein , DNA Repeat Expansion , Induced Pluripotent Stem Cells , Motor Neurons , Phenotype , Sensory Receptor Cells , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Humans , Motor Neurons/metabolism , Sensory Receptor Cells/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , DNA Repeat Expansion/genetics
3.
Nat Commun ; 15(1): 4893, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849340

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a debilitating motor neuron disease and lacks effective disease-modifying treatments. This study utilizes a comprehensive multiomic approach to investigate the early and sex-specific molecular mechanisms underlying ALS. By analyzing the prefrontal cortex of 51 patients with sporadic ALS and 50 control subjects, alongside four transgenic mouse models (C9orf72-, SOD1-, TDP-43-, and FUS-ALS), we have uncovered significant molecular alterations associated with the disease. Here, we show that males exhibit more pronounced changes in molecular pathways compared to females. Our integrated analysis of transcriptomes, (phospho)proteomes, and miRNAomes also identified distinct ALS subclusters in humans, characterized by variations in immune response, extracellular matrix composition, mitochondrial function, and RNA processing. The molecular signatures of human subclusters were reflected in specific mouse models. Our study highlighted the mitogen-activated protein kinase (MAPK) pathway as an early disease mechanism. We further demonstrate that trametinib, a MAPK inhibitor, has potential therapeutic benefits in vitro and in vivo, particularly in females, suggesting a direction for developing targeted ALS treatments.


Subject(s)
Amyotrophic Lateral Sclerosis , Disease Models, Animal , MAP Kinase Signaling System , Mice, Transgenic , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/metabolism , Humans , Female , Animals , Male , Mice , MAP Kinase Signaling System/drug effects , Pyridones/pharmacology , Pyridones/therapeutic use , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/genetics , Prefrontal Cortex/metabolism , Transcriptome , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Middle Aged , MicroRNAs/genetics , MicroRNAs/metabolism , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Sex Characteristics , Aged , Sex Factors , Pyrimidinones
4.
Life Sci Alliance ; 7(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-38906677

ABSTRACT

Mitochondrial dysfunction is a common feature of C9orf72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD); however, it remains unclear whether this is a cause or consequence of the pathogenic process. Analysing multiple aspects of mitochondrial biology across several Drosophila models of C9orf72-ALS/FTD, we found morphology, oxidative stress, and mitophagy are commonly affected, which correlated with progressive loss of locomotor performance. Notably, only genetic manipulations that reversed the oxidative stress levels were also able to rescue C9orf72 locomotor deficits, supporting a causative link between mitochondrial dysfunction, oxidative stress, and behavioural phenotypes. Targeting the key antioxidant Keap1/Nrf2 pathway, we found that genetic reduction of Keap1 or pharmacological inhibition by dimethyl fumarate significantly rescued the C9orf72-related oxidative stress and motor deficits. Finally, mitochondrial ROS levels were also elevated in C9orf72 patient-derived iNeurons and were effectively suppressed by dimethyl fumarate treatment. These results indicate that mitochondrial oxidative stress is an important mechanistic contributor to C9orf72 pathogenesis, affecting multiple aspects of mitochondrial function and turnover. Targeting the Keap1/Nrf2 signalling pathway to combat oxidative stress represents a therapeutic strategy for C9orf72-related ALS/FTD.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Disease Models, Animal , Frontotemporal Dementia , Kelch-Like ECH-Associated Protein 1 , Mitochondria , NF-E2-Related Factor 2 , Oxidative Stress , Phenotype , Signal Transduction , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Mitochondria/metabolism , Animals , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Humans , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Reactive Oxygen Species/metabolism , Mitophagy/genetics , Dimethyl Fumarate/pharmacology , Male
5.
Stem Cell Res ; 78: 103447, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38796984

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Clinical heterogeneity and complex genetics pose challenges to understanding disease mechanisms and producing effective cures. To model clinical heterogeneity, we generated human induced pluripotent stem cells (iPSCs) from two sporadic ALS patients (sporadic ALS and sporadic ALS with frontotemporal dementia), two familial ALS patients (familial SOD1 mutation positive and familial C9orf72 repeat expansion positive), and four age- and sex-matched healthy controls. These iPSCs can be used to generate 2D and 3D in vitro models of ALS to investigate mechanisms of disease and screen for therapeutics.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Frontotemporal Dementia , Induced Pluripotent Stem Cells , Superoxide Dismutase-1 , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/metabolism , Induced Pluripotent Stem Cells/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/metabolism , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Female , Male , Cell Line , Middle Aged
6.
Nucleic Acids Res ; 52(11): 6707-6717, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38738637

ABSTRACT

The abnormal expansion of GGGGCC/GGCCCC hexanucleotide repeats (HR) in C9orf72 is associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Structural polymorphisms of HR result in the multifactorial pathomechanism of ALS/FTD. Consequently, many ongoing studies are focused at developing therapies targeting pathogenic HR RNA. One of them involves small molecules blocking sequestration of important proteins, preventing formation of toxic nuclear foci. However, rational design of potential therapeutics is hindered by limited number of structural studies of RNA-ligand complexes. We determined the crystal structure of antisense HR RNA in complex with ANP77 ligand (1.1 Šresolution) and in the free form (0.92 and 1.5 Šresolution). HR RNA folds into a triplex structure composed of four RNA chains. ANP77 interacted with two neighboring single-stranded cytosines to form pseudo-canonical base pairs by adopting sandwich-like conformation and adjusting the position of its naphthyridine units to the helical twist of the RNA. In the unliganded structure, the cytosines formed a peculiar triplex i-motif, assembled by trans C•C+ pair and a third cytosine located at the Hoogsteen edge of the C•C+ pair. These results extend our knowledge of the structural polymorphisms of HR and can be used for rational design of small molecules targeting disease-related RNAs.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Humans , Ligands , RNA, Antisense/genetics , RNA, Antisense/chemistry , RNA, Antisense/metabolism , Nucleic Acid Conformation , DNA Repeat Expansion/genetics , Crystallography, X-Ray , Models, Molecular
7.
Mol Ther ; 32(7): 2176-2189, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38734896

ABSTRACT

The disassembly of the neuromuscular junction (NMJ) is an early event in amyotrophic lateral sclerosis (ALS), ultimately leading to motor dysfunction and lethal respiratory paralysis. The hexanucleotide GGGGCC repeat expansion in the C9orf72 gene is the most common genetic mutation, and the dipeptide repeat (DPR) proteins have been shown to cause neurodegeneration. While no drugs can treat ALS patients efficiently, new treatment strategies are urgently needed. Here, we report that a MuSK agonist antibody alleviates poly-PR-induced NMJ deficits in C9orf72-ALS mice. The HB9-PRF/F mice, which express poly-PR proteins in motor neurons, exhibited impaired motor behavior and NMJ deficits. Mechanistically, poly-PR proteins interacted with Agrin to disrupt the interaction between Agrin and Lrp4, leading to attenuated activation of MuSK. Treatment with a MuSK agonist antibody rescued NMJ deficits, and extended the lifespan of C9orf72-ALS mice. Moreover, impaired NMJ transmission was observed in C9orf72-ALS patients. These findings identify the mechanism by which poly-PR proteins attenuate MuSK activation and NMJ transmission, highlighting the potential of promoting MuSK activation with an agonist antibody as a therapeutic strategy to protect NMJ function and prolong the lifespan of ALS patients.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Disease Models, Animal , Neuromuscular Junction , Receptor Protein-Tyrosine Kinases , Animals , Neuromuscular Junction/metabolism , Neuromuscular Junction/drug effects , Mice , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/drug therapy , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Humans , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Longevity/drug effects , Motor Neurons/metabolism , Motor Neurons/drug effects , Agrin/metabolism , Agrin/genetics , Mice, Transgenic , Antibodies/pharmacology , Receptors, Cholinergic/metabolism , Receptors, Cholinergic/genetics , LDL-Receptor Related Proteins/metabolism , LDL-Receptor Related Proteins/genetics
8.
PLoS One ; 19(5): e0301267, 2024.
Article in English | MEDLINE | ID: mdl-38753768

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive and fatal neurodegenerative diseases for which at present no cure is available. Despite the extensive research the progress from diagnosis to prognosis in ALS and frontotemporal dementia (FTD) has been slow which represents suboptimal understanding of disease pathophysiological processes. In recent studies, several genes have been associated with the ALS and FTD diseases such as SOD1, TDP43, and TBK1, whereas the hexanucleotide GGGGCC repeat expansion (HRE) in C9orf72 gene is a most frequent cause of ALS and FTD, that has changed the understanding of these diseases. METHODS: The goal of this study was to identify and spatially determine differential gene expression signature differences between cerebellum and frontal cortex in C9orf72-associated ALS (C9-ALS), to study the network properties of these differentially expressed genes, and to identify miRNAs targeting the common differentially expressed genes in both the tissues. This study thus highlights underlying differential cell susceptibilities to the disease mechanisms in C9-ALS and suggesting therapeutic target selection in C9-ALS. RESULTS: In this manuscript, we have identified that the genes involved in neuron development, protein localization and transcription are mostly enriched in cerebellum of C9-ALS patients, while the UPR-related genes are enriched in the frontal cortex. Of note, UPR pathway genes were mostly dysregulated both in the C9-ALS cerebellum and frontal cortex. Overall, the data presented here show that defects in normal RNA processing and the UPR pathway are the pathological hallmarks of C9-ALS. Interestingly, the cerebellum showed more strong transcriptome changes than the frontal cortex. CONCLUSION: Interestingly, the cerebellum region showed more significant transcriptomic changes as compared to the frontal cortex region suggesting its active participation in the disease process. This nuanced understanding may offer valuable insights for the development of targeted therapeutic strategies aimed at mitigating disease progression in C9-ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Cerebellum , Frontal Lobe , Aged , Female , Humans , Male , Middle Aged , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/metabolism , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Cerebellum/metabolism , Cerebellum/pathology , Frontal Lobe/metabolism , Frontal Lobe/pathology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
9.
Cell Stem Cell ; 31(4): 519-536.e8, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38579683

ABSTRACT

Traumatic brain injury (TBI) strongly correlates with neurodegenerative disease. However, it remains unclear which neurodegenerative mechanisms are intrinsic to the brain and which strategies most potently mitigate these processes. We developed a high-intensity ultrasound platform to inflict mechanical injury to induced pluripotent stem cell (iPSC)-derived cortical organoids. Mechanically injured organoids elicit classic hallmarks of TBI, including neuronal death, tau phosphorylation, and TDP-43 nuclear egress. We found that deep-layer neurons were particularly vulnerable to injury and that TDP-43 proteinopathy promotes cell death. Injured organoids derived from C9ORF72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) patients displayed exacerbated TDP-43 dysfunction. Using genome-wide CRISPR interference screening, we identified a mechanosensory channel, KCNJ2, whose inhibition potently mitigated neurodegenerative processes in vitro and in vivo, including in C9ORF72 ALS/FTD organoids. Thus, targeting KCNJ2 may reduce acute neuronal death after brain injury, and we present a scalable, genetically flexible cerebral organoid model that may enable the identification of additional modifiers of mechanical stress.


Subject(s)
Amyotrophic Lateral Sclerosis , Brain Injuries, Traumatic , Frontotemporal Dementia , Neurodegenerative Diseases , Potassium Channels, Inwardly Rectifying , Humans , Amyotrophic Lateral Sclerosis/etiology , Amyotrophic Lateral Sclerosis/pathology , Brain/metabolism , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/therapy , C9orf72 Protein/metabolism , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/etiology , Frontotemporal Dementia/pathology , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/pathology , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Potassium Channels, Inwardly Rectifying/metabolism
10.
STAR Protoc ; 5(2): 103013, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38613779

ABSTRACT

DNA-binding proteins perform diverse functions, including regulating cellular growth and orchestrating chromatin architecture. Here, we present a protocol to discover proteins specifically interacting with a hexanucleotide repeat DNA, the expansion of which is known as the most frequent genetic cause of familial C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia. We describe steps to fish out DNA-binding proteins recognizing double-stranded repeat DNAs using a SILAC (stable isotope labelling by amino acids in cell culture)-based approach and validate the results using electrophoretic mobility shift assay. For complete details on the use and execution of this protocol, please refer to Liu et al.1.


Subject(s)
DNA-Binding Proteins , DNA , DNA/metabolism , DNA/genetics , Humans , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Electrophoretic Mobility Shift Assay/methods , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Isotope Labeling/methods
11.
Acta Neuropathol Commun ; 12(1): 69, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664831

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that primarily affects motor neurons, leading to progressive muscle weakness and loss of voluntary muscle control. While the exact cause of ALS is not fully understood, emerging research suggests that dysfunction of the nuclear envelope (NE) may contribute to disease pathogenesis and progression. The NE plays a role in ALS through several mechanisms, including nuclear pore defects, nucleocytoplasmic transport impairment, accumulation of mislocalized proteins, and nuclear morphology abnormalities. The LINC complex is the second biggest multi-protein complex in the NE and consists of the SUN1/2 proteins spanning the inner nuclear membrane and Nesprin proteins embedded in the outer membrane. The LINC complex, by interacting with both the nuclear lamina and the cytoskeleton, transmits mechanical forces to the nucleus regulating its morphology and functional homeostasis. In this study we show extensive alterations to the LINC complex in motor and cortical iPSC-derived neurons and spinal cord organoids carrying the ALS causative mutation in the C9ORF72 gene (C9). Importantly, we show that such alterations are present in vivo in a cohort of sporadic ALS and C9-ALS postmortem spinal cord and motor cortex specimens. We also found that LINC complex disruption strongly correlated with nuclear morphological alterations occurring in ALS neurons, independently of TDP43 mislocalization. Altogether, our data establish morphological and functional alterations to the LINC complex as important events in ALS pathogenic cascade, making this pathway a possible target for both biomarker and therapy development.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/metabolism , Humans , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/metabolism , Male , Motor Neurons/pathology , Motor Neurons/metabolism , Spinal Cord/pathology , Spinal Cord/metabolism , Nuclear Envelope/metabolism , Nuclear Envelope/pathology , Female , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Middle Aged , Aged , Motor Cortex/pathology , Motor Cortex/metabolism
12.
Acta Neuropathol ; 147(1): 73, 2024 04 19.
Article in English | MEDLINE | ID: mdl-38641715

ABSTRACT

The most prominent genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) is a repeat expansion in the gene C9orf72. Importantly, the transcriptomic consequences of the C9orf72 repeat expansion remain largely unclear. Here, we used short-read RNA sequencing (RNAseq) to profile the cerebellar transcriptome, detecting alterations in patients with a C9orf72 repeat expansion. We focused on the cerebellum, since key C9orf72-related pathologies are abundant in this neuroanatomical region, yet TDP-43 pathology and neuronal loss are minimal. Consistent with previous work, we showed a reduction in the expression of the C9orf72 gene and an elevation in homeobox genes, when comparing patients with the expansion to both patients without the C9orf72 repeat expansion and control subjects. Interestingly, we identified more than 1000 alternative splicing events, including 4 in genes previously associated with ALS and/or FTLD. We also found an increase of cryptic splicing in C9orf72 patients compared to patients without the expansion and controls. Furthermore, we demonstrated that the expression level of select RNA-binding proteins is associated with cryptic splice junction inclusion. Overall, this study explores the presence of widespread transcriptomic changes in the cerebellum, a region not confounded by severe neurodegeneration, in post-mortem tissue from C9orf72 patients.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Cerebellum , Frontotemporal Lobar Degeneration , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Cerebellum/pathology , DNA Repeat Expansion/genetics , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Gene Expression Profiling , Transcriptome
13.
J Neurosci ; 44(25)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38658168

ABSTRACT

Hexanucleotide repeat expansions within the gene C9ORF72 are the most common cause of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). This disease-causing expansion leads to a reduction in C9ORF72 expression levels in patients, suggesting loss of C9ORF72 function could contribute to disease. To further understand the consequences of C9ORF72 deficiency in vivo, we generated a c9orf72 mutant zebrafish line. Analysis of the adult female spinal cords revealed no appreciable neurodegenerative pathology such as loss of motor neurons or increased levels of neuroinflammation. However, detailed examination of adult female c9orf72-/- retinas showed prominent neurodegenerative features, including a decrease in retinal thickness, gliosis, and an overall reduction in neurons of all subtypes. Analysis of rod and cone cells within the photoreceptor layer showed a disturbance in their outer segment structure and rhodopsin mislocalization from rod outer segments to their cell bodies and synaptic terminals. Thus, C9ORF72 may play a previously unappreciated role in retinal homeostasis and suggests C9ORF72 deficiency can induce tissue specific neuronal loss.


Subject(s)
C9orf72 Protein , Retina , Zebrafish , Animals , Female , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Retina/metabolism , Retina/pathology , Animals, Genetically Modified , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/deficiency , Proteins/genetics , Proteins/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Spinal Cord/metabolism , Spinal Cord/pathology
14.
EMBO Rep ; 25(5): 2479-2510, 2024 May.
Article in English | MEDLINE | ID: mdl-38684907

ABSTRACT

The most prevalent genetic cause of both amyotrophic lateral sclerosis and frontotemporal dementia is a (GGGGCC)n nucleotide repeat expansion (NRE) occurring in the first intron of the C9orf72 gene (C9). Brain glucose hypometabolism is consistently observed in C9-NRE carriers, even at pre-symptomatic stages, but its role in disease pathogenesis is unknown. Here, we show alterations in glucose metabolic pathways and ATP levels in the brains of asymptomatic C9-BAC mice. We find that, through activation of the GCN2 kinase, glucose hypometabolism drives the production of dipeptide repeat proteins (DPRs), impairs the survival of C9 patient-derived neurons, and triggers motor dysfunction in C9-BAC mice. We also show that one of the arginine-rich DPRs (PR) could directly contribute to glucose metabolism and metabolic stress by inhibiting glucose uptake in neurons. Our findings provide a potential mechanistic link between energy imbalances and C9-ALS/FTD pathogenesis and suggest a feedforward loop model with potential opportunities for therapeutic intervention.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Frontotemporal Dementia , Glucose , Phenotype , ran GTP-Binding Protein , Animals , Mice , Adenosine Triphosphate/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Brain/metabolism , Brain/pathology , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Disease Models, Animal , DNA Repeat Expansion/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Glucose/metabolism , Mice, Transgenic , Neurons/metabolism , Protein Biosynthesis , ran GTP-Binding Protein/metabolism
15.
Stem Cell Res ; 77: 103412, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38613988

ABSTRACT

Genetic expansions of the hexanucleotide repeats (GGGGCC) in the C9orf72 gene appear in approximately 40% of patients with familial ALS and 7% of patients with sporadic ALS in the European population, making this mutation one of the most prevalent genetic mutations in ALS. Here, we generated a human induced pluripotent stem cell (hiPSC) line from the dermal fibroblasts of a patient carrying a 56-repeat expansion in an ALS disease-causing allele of C9orf72. These iPSCs showed stable amplification in vitro with normal karyotype and high expression of pluripotent markers and differentiated spontaneously in vivo into three germ layers.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , DNA Repeat Expansion , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Cell Differentiation , Fibroblasts/metabolism , Cell Line , Male
16.
Proc Natl Acad Sci U S A ; 121(17): e2307814121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38621131

ABSTRACT

Efforts to genetically reverse C9orf72 pathology have been hampered by our incomplete understanding of the regulation of this complex locus. We generated five different genomic excisions at the C9orf72 locus in a patient-derived induced pluripotent stem cell (iPSC) line and a non-diseased wild-type (WT) line (11 total isogenic lines), and examined gene expression and pathological hallmarks of C9 frontotemporal dementia/amyotrophic lateral sclerosis in motor neurons differentiated from these lines. Comparing the excisions in these isogenic series removed the confounding effects of different genomic backgrounds and allowed us to probe the effects of specific genomic changes. A coding single nucleotide polymorphism in the patient cell line allowed us to distinguish transcripts from the normal vs. mutant allele. Using digital droplet PCR (ddPCR), we determined that transcription from the mutant allele is upregulated at least 10-fold, and that sense transcription is independently regulated from each allele. Surprisingly, excision of the WT allele increased pathologic dipeptide repeat poly-GP expression from the mutant allele. Importantly, a single allele was sufficient to supply a normal amount of protein, suggesting that the C9orf72 gene is haplo-sufficient in induced motor neurons. Excision of the mutant repeat expansion reverted all pathology (RNA abnormalities, dipeptide repeat production, and TDP-43 pathology) and improved electrophysiological function, whereas silencing sense expression did not eliminate all dipeptide repeat proteins, presumably because of the antisense expression. These data increase our understanding of C9orf72 gene regulation and inform gene therapy approaches, including antisense oligonucleotides (ASOs) and CRISPR gene editing.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Alleles , Amyotrophic Lateral Sclerosis/metabolism , Frontotemporal Dementia/metabolism , Motor Neurons/metabolism , Mutation , DNA Repeat Expansion/genetics , Dipeptides/metabolism
17.
Fluids Barriers CNS ; 21(1): 34, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605366

ABSTRACT

The blood-brain barrier (BBB) serves as a highly intricate and dynamic interface connecting the brain and the bloodstream, playing a vital role in maintaining brain homeostasis. BBB dysfunction has been associated with multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS); however, the role of the BBB in neurodegeneration is understudied. We developed an ALS patient-derived model of the BBB by using cells derived from 5 patient donors carrying C9ORF72 mutations. Brain microvascular endothelial-like cells (BMEC-like cells) derived from C9ORF72-ALS patients showed altered gene expression, compromised barrier integrity, and increased P-glycoprotein transporter activity. In addition, mitochondrial metabolic tests demonstrated that C9ORF72-ALS BMECs display a significant decrease in basal glycolysis accompanied by increased basal and ATP-linked respiration. Moreover, our study reveals that C9-ALS derived astrocytes can further affect BMECs function and affect the expression of the glucose transporter Glut-1. Finally, C9ORF72 patient-derived BMECs form leaky barriers through a cell-autonomous mechanism and have neurotoxic properties towards motor neurons.


Subject(s)
Amyotrophic Lateral Sclerosis , Blood-Brain Barrier , Endothelial Cells , Humans , Amyotrophic Lateral Sclerosis/genetics , Blood-Brain Barrier/metabolism , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Endothelial Cells/metabolism
18.
Exp Neurol ; 376: 114768, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38556190

ABSTRACT

Hexanucleotide repeat expansion in C9ORF72 (C9) is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). One of the proposed pathogenic mechanisms is the neurotoxicity arising from dipeptide repeat (DPR) proteins produced by repeat-associated non-AUG (RAN) translation. Therefore, reducing DPR levels emerges as a potential therapeutic strategy for C9ORF72-ALS/FTD. We previously identified an RNA helicase, DEAD-box helicase 3 X-linked (DDX3X), modulates RAN translation. DDX3X overexpression decreases poly-GP accumulation in C9ORF72-ALS/FTD patient-derived induced pluripotent stem cell (iPSC)-differentiated neurons (iPSNs) and reduces the glutamate-induced neurotoxicity. In this study, we examined the in vivo efficacy of DDX3X overexpression using a mouse model. We expressed exogenous DDX3X or GFP in the central nervous system (CNS) of the C9-500 ALS/FTD BAC transgenic or non-transgenic control mice using adeno-associated virus serotype 9 (AAV9). The DPR levels were significantly reduced in the brains of DDX3X-expressing C9-BAC mice compared to the GFP control even twelve months after virus delivery. Additionally, p62 aggregation was also decreased. No neuronal loss or neuroinflammatory response were detected in the DDX3X overexpressing C9-BAC mice. This work demonstrates that DDX3X overexpression effectively reduces DPR levels in vivo without provoking neuroinflammation or neurotoxicity, suggesting the potential of increasing DDX3X expression as a therapeutic strategy for C9ORF72-ALS/FTD.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , DEAD-box RNA Helicases , Disease Models, Animal , Frontotemporal Dementia , Animals , Humans , Male , Mice , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Dipeptides/metabolism , DNA Repeat Expansion/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Mice, Transgenic
19.
Cell Rep ; 43(3): 113892, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38431841

ABSTRACT

Hexanucleotide repeat expansions in the C9orf72 gene are the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Due to the lack of trunk neuromuscular organoids (NMOs) from ALS patients' induced pluripotent stem cells (iPSCs), an organoid system was missing to model the trunk spinal neuromuscular neurodegeneration. With the C9orf72 ALS patient-derived iPSCs and isogenic controls, we used an NMO system containing trunk spinal cord neural and peripheral muscular tissues to show that the ALS NMOs could model peripheral defects in ALS, including contraction weakness, neural denervation, and loss of Schwann cells. The neurons and astrocytes in ALS NMOs manifested the RNA foci and dipeptide repeat proteins. Acute treatment with the unfolded protein response inhibitor GSK2606414 increased the glutamatergic muscular contraction 2-fold and reduced the dipeptide repeat protein aggregation and autophagy. This study provides an organoid system for spinal neuromuscular pathologies in ALS and its application for drug testing.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Proteins/genetics , Dipeptides/pharmacology , Dipeptides/metabolism , DNA Repeat Expansion
20.
Nucleic Acids Res ; 52(10): 5928-5949, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38412259

ABSTRACT

A GGGGCC (G4C2) hexanucleotide repeat expansion in C9ORF72 causes amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), while a CGG trinucleotide repeat expansion in FMR1 leads to the neurodegenerative disorder Fragile X-associated tremor/ataxia syndrome (FXTAS). These GC-rich repeats form RNA secondary structures that support repeat-associated non-AUG (RAN) translation of toxic proteins that contribute to disease pathogenesis. Here we assessed whether these same repeats might trigger stalling and interfere with translational elongation. We find that depletion of ribosome-associated quality control (RQC) factors NEMF, LTN1 and ANKZF1 markedly boost RAN translation product accumulation from both G4C2 and CGG repeats while overexpression of these factors reduces RAN production in both reporter assays and C9ALS/FTD patient iPSC-derived neurons. We also detected partially made products from both G4C2 and CGG repeats whose abundance increased with RQC factor depletion. Repeat RNA sequence, rather than amino acid content, is central to the impact of RQC factor depletion on RAN translation-suggesting a role for RNA secondary structure in these processes. Together, these findings suggest that ribosomal stalling and RQC pathway activation during RAN translation inhibits the generation of toxic RAN products. We propose augmenting RQC activity as a therapeutic strategy in GC-rich repeat expansion disorders.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Frontotemporal Dementia , Protein Biosynthesis , Ribosomal Proteins , Trinucleotide Repeat Expansion , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Ataxia , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , DNA Repeat Expansion/genetics , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , GC Rich Sequence , HEK293 Cells , Induced Pluripotent Stem Cells/metabolism , Neurons/metabolism , Ribosomes/metabolism , Ribosomes/genetics , Tremor , Trinucleotide Repeat Expansion/genetics , Ribosomal Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...