Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 466
Filter
1.
Cell Mol Neurobiol ; 43(8): 4007-4022, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37874456

ABSTRACT

Growing evidence supports the notion that brain-derived neurotrophic factor (BDNF) and lactate are potent modulators of mammalian brain function. The modulatory actions of those biomolecules influence a wide range of neuronal responses, from the shaping of neuronal excitability to the induction and expression of structural and synaptic plasticity. The biological actions of BDNF and lactate are mediated by their cognate receptors and specific transporters located in the neuronal membrane. Canonical functions of BDNF occur via the tropomyosin-related kinase B receptor (TrkB), whereas lactate acts via monocarboxylate transporters or the hydroxycarboxylic acid receptor 1 (HCAR1). Both receptors are highly expressed in the central nervous system, and some of their physiological actions are particularly well characterized in the hippocampus, a brain structure involved in the neurophysiology of learning and memory. The multifarious neuronal circuitry between the axons of the dentate gyrus granule cells, mossy fibers (MF), and pyramidal neurons of area CA3 is of great interest given its role in specific mnemonic processes and involvement in a growing number of brain disorders. Whereas the modulation exerted by BDNF via TrkB has been extensively studied, the influence of lactate via HCAR1 on the properties of the MF-CA3 circuit is an emerging field. In this review, we discuss the role of both systems in the modulation of brain physiology, with emphasis on the hippocampal CA3 network. We complement this review with original data that suggest cross-modulation is exerted by these two independent neuromodulatory systems.


Subject(s)
Brain-Derived Neurotrophic Factor , Mossy Fibers, Hippocampal , Animals , Brain-Derived Neurotrophic Factor/metabolism , Mossy Fibers, Hippocampal/metabolism , Lactic Acid/metabolism , Hippocampus/metabolism , Pyramidal Cells/metabolism , Carrier Proteins/metabolism , CA3 Region, Hippocampal/metabolism , Mammals/metabolism
2.
Genes Brain Behav ; 22(2): e12840, 2023 04.
Article in English | MEDLINE | ID: mdl-36807494

ABSTRACT

Stress is associated with contextual memory deficits, which may mediate avoidance of trauma-associated contexts in posttraumatic stress disorder. These deficits may emerge from impaired pattern separation, the independent representation of similar experiences by the dentate gyrus-Cornu Ammonis 3 (DG-CA3) circuit of the dorsal hippocampus, which allows for appropriate behavioral responses to specific environmental stimuli. Neurogenesis in the DG is controlled by mitochondrial reactive oxygen species (ROS) production, and may contribute to pattern separation. In Experiment 1, we performed RNA sequencing of the dorsal hippocampus 16 days after stress in rats that either develop conditioned place avoidance to a predator urine-associated context (Avoiders), or do not (Non-Avoiders). Weighted genome correlational network analysis showed that increased expression of oxidative phosphorylation-associated gene transcripts and decreased expression of gene transcripts for axon guidance and insulin signaling were associated with avoidance behavior. Based on these data, in Experiment 2, we hypothesized that Avoiders would exhibit elevated hippocampal (HPC) ROS production and degraded object pattern separation (OPS) compared with Nonavoiders. Stress impaired pattern separation performance in Non-Avoider and Avoider rats compared with nonstressed Controls, but surprisingly, Avoiders exhibited partly preserved pattern separation performance and significantly lower ROS production compared with Non-Avoiders. Lower ROS production was associated with better OPS performance in Stressed rats, but ROS production was not associated with OPS performance in Controls. These results suggest a strong negative association between HPC ROS production and pattern separation after stress, and that stress effects on these outcome variables may be associated with avoidance of a stress-paired context.


Subject(s)
Hippocampus , Stress Disorders, Post-Traumatic , Rats , Animals , Reactive Oxygen Species/pharmacology , Hippocampus/metabolism , CA3 Region, Hippocampal/metabolism , Avoidance Learning/physiology , Dentate Gyrus/metabolism
3.
Mol Brain ; 16(1): 12, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36670484

ABSTRACT

The N-methyl-D-aspartate receptors (NRs) in hippocampal CA3 are crucial for the synaptic transmission and plasticity within the CA3 recurrent circuit, which supports the hippocampal functions, such as pattern completion, and reverberatory association of sensory inputs. Previous study showed that synchronous activation of distinct cell populations in CA3, which correspond to distinct events, associated independent events, suggesting that the recurrent circuit expressing NRs in CA3 mediates the artificial association of memory events stored in CA3 ensembles. However, it is still unclear whether CA3 NRs are crucial for the artificial association of memory events stored in the CA3 ensembles. Here we report that the triple transgenic mice (cfos-tTA/KA1-Cre/NR1 flox/flox), which specifically lack NRs in the CA3 cell ensembles, showed impairment in artificial association between two events, which in control mice triggered artificial association. This result indicates that NRs in the hippocampal CA3 are required for the artificial association of memory events stored in the CA3 cell ensembles.


Subject(s)
Hippocampus , Receptors, N-Methyl-D-Aspartate , Mice , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Hippocampus/metabolism , Synaptic Transmission , Mice, Transgenic , CA3 Region, Hippocampal/metabolism
4.
Prog Neurobiol ; 219: 102366, 2022 12.
Article in English | MEDLINE | ID: mdl-36273719

ABSTRACT

The pro-inflammatory and highly amyloidogenic protein S100A9 is central to the amyloid-neuroinflammatory cascade in neurodegenerative diseases leading to cognitive impairment. Molecular chaperone activity of Bri2 BRICHOS has been demonstrated against a range of amyloidogenic polypeptides. Using a combination of thioflavin T fluorescence kinetic assay, atomic force microscopy and immuno electron microscopy we show here that recombinant Bri2 BRICHOS effectively inhibits S100A9 amyloid growth by capping amyloid fibrils. Using ex-vivo neuronal network electrophysiology in mouse brain slices we also show that both native S100A9 and amyloids of S100A9 disrupt cognition-relevant gamma oscillation power and rhythmicity in hippocampal area CA3 in a time- and protein conformation-dependent manner. Both effects were associated with Toll-like receptor 4 (TLR4) activation and were not observed upon TLR4 blockade. Importantly, S100A9 that had co-aggregated with Bri2 BRICHOS did not elicit degradation of gamma oscillations. Taken together, this work provides insights on the potential influence of S100A9 on cognitive dysfunction in Alzheimer's disease (AD) via gamma oscillation impairment from experimentally-induced gamma oscillations, and further highlights Bri2 BRICHOS as a chaperone against detrimental effects of amyloid self-assembly.


Subject(s)
Alzheimer Disease , Toll-Like Receptor 4 , Animals , Mice , Alzheimer Disease/metabolism , Amyloid/metabolism , Amyloid beta-Peptides/metabolism , Amyloidogenic Proteins/metabolism , Calgranulin B/metabolism , Toll-Like Receptor 4/metabolism , CA3 Region, Hippocampal/metabolism
5.
FASEB J ; 36(9): e22456, 2022 09.
Article in English | MEDLINE | ID: mdl-35969153

ABSTRACT

The dorsal hippocampus plays a pivotal role in spatial memory. However, the role of subregion-specific molecular pathways in spatial cognition remains unclear. We observed that the transcriptional coregulator C-terminal binding protein 2 (CtBP2) presented CA3-specific enrichment in expression. RNAi interference of CtBP2 in the dorsal CA3 (dCA3) neurons, but not the ventral CA3 (vCA3), specifically impaired spatial reference memory and reduced the expression of GluR2, the calcium permeability determinant subunit of AMPA receptors. Application of an antagonist for GluR2-absent calcium permeable AMPA receptors rescued spatial memory deficits in dCA3 CtBP2 knockdown animals. Transcriptomic analysis suggest that CtBP2 may regulate GluR2 protein level through post-translational mechanisms, especially by the endocytosis pathway which regulates AMPA receptor sorting. Consistently, CtBP2 deficiency altered the mRNA expression of multiple endocytosis-regulatory genes, and CtBP2 knockdown in primary hippocampal neurons enhanced GluR2-containing AMPA receptor endocytosis. Together, our results provide evidence that the dCA3 regulates spatial reference memory by the CtBP2/GluR2 pathway through the modulation of calcium permeable AMPA receptors.


Subject(s)
CA3 Region, Hippocampal , Eye Proteins , Receptors, AMPA , Spatial Memory , Animals , CA3 Region, Hippocampal/metabolism , Calcium/metabolism , Eye Proteins/genetics , Eye Proteins/metabolism , Rats , Rats, Sprague-Dawley , Receptors, AMPA/genetics , Receptors, AMPA/metabolism
6.
J Neurosci ; 42(13): 2824-2834, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35169020

ABSTRACT

Tight regulation of neuronal Zn2+ is critical for physiological function. Multiple Zn2+ transporters are expressed in the brain, yet their spatial distribution and distinct roles are largely unknown. Here, we show developmental regulation of the expression of Zn2+ transporters ZIP1 and ZIP3 in mouse hippocampal neurons, corresponding to previously described increase in neuronal vesicular Zn2+ during the first postnatal month. Rates of Zn2+ uptake in cultured mouse hippocampal neurons, monitored using FluoZin-3 fluorescence, were higher in mature neurons, which express higher levels of ZIP1 and ZIP3. Zn2+ uptake was attenuated by ∼50% following silencing of either ZIP1 or ZIP3. Expression of both ZIP1 and ZIP3 was ubiquitous on somas and most neuronal processes in the cultured neurons. In contrast, we observed distinct localization of the transporters in adult mouse hippocampal brain, with ZIP1 predominantly expressed in the CA3 stratum pyramidale, and ZIP3 primarily localized to the stratum lucidum. Consistent with their localization, silencing of ZIP1 expression in vivo reduced Zn2+ uptake in CA3 neurons while ZIP3 silencing reduced Zn2+ influx into dentate gyrus (DG) granule cells in acute hippocampal slices. Strikingly, in vivo silencing of ZIP3, but not ZIP1, protected CA3 neurons from neurodegeneration following kainate-induced seizures. Our results indicate that distinct Zn2+ transporters control Zn2+ accumulation and toxicity in different neuronal populations in the hippocampus and suggest that selective regulation of Zn2+ transporters can prevent seizure induced brain damage.SIGNIFICANCE STATEMENT Zinc plays a major role in neuronal function and its dysregulation is associated with neurodegeneration. Multiple zinc transporters are expressed in neurons, yet little is known on their distinct roles. Here, we show that the plasma membrane ZIP1 and ZIP3 zinc transporters are expressed on distinct neuronal populations in the CA3 region of the hippocampus. We show that ZIP1 mediates zinc influx into postsynaptic cells, while ZIP3 is responsible for zinc re-uptake from this synapse into dentate granule cells. We further show that silencing of ZIP3, but not ZIP1, can rescue the postsynaptic cells from kainate-induced neurodegeneration. This suggests that neuronal zinc toxicity and degeneration can be modulated by regulation of specific zinc transporters function.


Subject(s)
Kainic Acid , Mossy Fibers, Hippocampal , Animals , CA3 Region, Hippocampal/metabolism , Carrier Proteins/metabolism , Cation Transport Proteins/metabolism , Hippocampus/metabolism , Kainic Acid/toxicity , Mice , Mossy Fibers, Hippocampal/metabolism
7.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Article in English | MEDLINE | ID: mdl-35022233

ABSTRACT

Synaptic cell-adhesion molecules (CAMs) organize the architecture and properties of neural circuits. However, whether synaptic CAMs are involved in activity-dependent remodeling of specific neural circuits is incompletely understood. Leucine-rich repeat transmembrane protein 3 (LRRTM3) is required for the excitatory synapse development of hippocampal dentate gyrus (DG) granule neurons. Here, we report that Lrrtm3-deficient mice exhibit selective reductions in excitatory synapse density and synaptic strength in projections involving the medial entorhinal cortex (MEC) and DG granule neurons, accompanied by increased neurotransmitter release and decreased excitability of granule neurons. LRRTM3 deletion significantly reduced excitatory synaptic innervation of hippocampal mossy fibers (Mf) of DG granule neurons onto thorny excrescences in hippocampal CA3 neurons. Moreover, LRRTM3 loss in DG neurons significantly decreased mossy fiber long-term potentiation (Mf-LTP). Remarkably, silencing MEC-DG circuits protected against the decrease in the excitatory synaptic inputs onto DG and CA3 neurons, excitability of DG granule neurons, and Mf-LTP in Lrrtm3-deficient mice. These results suggest that LRRTM3 may be a critical factor in activity-dependent synchronization of the topography of MEC-DG-CA3 excitatory synaptic connections. Collectively, our data propose that LRRTM3 shapes the target-specific structural and functional properties of specific hippocampal circuits.


Subject(s)
Cortical Synchronization/physiology , Hippocampus/physiology , Membrane Proteins/metabolism , Nerve Net/physiology , Nerve Tissue Proteins/metabolism , Synapses/physiology , Animals , CA3 Region, Hippocampal/metabolism , Dentate Gyrus/metabolism , Entorhinal Cortex/metabolism , Long-Term Potentiation , Membrane Proteins/deficiency , Mice, Knockout , Mossy Fibers, Hippocampal/metabolism , Nerve Tissue Proteins/deficiency , Neurons/metabolism , Pseudopodia/metabolism , Synaptic Transmission/physiology
8.
Cell Rep ; 37(13): 110177, 2021 12 28.
Article in English | MEDLINE | ID: mdl-34965426

ABSTRACT

The hippocampus is a temporal lobe structure critical for cognition, such as learning, memory, and attention, as well as emotional responses. Hippocampal dysfunction can lead to persistent anxiety and/or depression. However, how millions of neurons in the hippocampus are molecularly and structurally organized to engage their divergent functions remains unknown. Here, we genetically target a subset of neurons expressing the coagulation factor c homolog (COCH) gene. COCH-expressing neurons or COCH neurons are topographically segregated in the distal region of the ventral CA3 hippocampus and express Mtf1 and Cacna1h. MTF1 activation of Cacna1h transcription in COCH neurons encodes the ability of COCH neurons to burst action potentials and cause social-stress-induced anxiety-like behaviors by synapsing directly with a subset of GABAergic inhibitory neurons in the lateral septum. Together, this study provides a molecular and circuitry-based framework for understanding how COCH neurons in the hippocampus are assembled to engage social behavior.


Subject(s)
Action Potentials , Anxiety/pathology , CA3 Region, Hippocampal/pathology , Extracellular Matrix Proteins/metabolism , GABAergic Neurons/pathology , Social Behavior , Stress, Psychological , Animals , Anxiety/etiology , Anxiety/metabolism , CA3 Region, Hippocampal/metabolism , Calcium Channels, T-Type/genetics , Calcium Channels, T-Type/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Emotions , Extracellular Matrix Proteins/genetics , Fear , GABAergic Neurons/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Humans , Male , Mice , Receptors, Glutamate/genetics , Receptors, Glutamate/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factor MTF-1
9.
PLoS Biol ; 19(12): e3001127, 2021 12.
Article in English | MEDLINE | ID: mdl-34928938

ABSTRACT

The hippocampal formation (HF) is well documented as having a feedforward, unidirectional circuit organization termed the trisynaptic pathway. This circuit organization exists along the septotemporal axis of the HF, but the circuit connectivity across septal to temporal regions is less well described. The emergence of viral genetic mapping techniques enhances our ability to determine the detailed complexity of HF circuitry. In earlier work, we mapped a subiculum (SUB) back projection to CA1 prompted by the discovery of theta wave back propagation from the SUB to CA1 and CA3. We reason that this circuitry may represent multiple extended noncanonical pathways involving the subicular complex and hippocampal subregions CA1 and CA3. In the present study, multiple retrograde viral tracing approaches produced robust mapping results, which supports this prediction. We find significant noncanonical synaptic inputs to dorsal hippocampal CA3 from ventral CA1 (vCA1), perirhinal cortex (Prh), and the subicular complex. Thus, CA1 inputs to CA3 run opposite the trisynaptic pathway and in a temporal to septal direction. Our retrograde viral tracing results are confirmed by anterograde-directed viral mapping of projections from input mapped regions to hippocampal dorsal CA3 (dCA3). We find that genetic inactivation of the projection of vCA1 to dCA3 impairs object-related spatial learning and memory but does not modulate anxiety-related behaviors. Our data provide a circuit foundation to explore novel functional roles contributed by these noncanonical hippocampal circuit connections to hippocampal circuit dynamics and learning and memory behaviors.


Subject(s)
CA3 Region, Hippocampal/physiology , Memory/physiology , Spatial Learning/physiology , Animals , Brain/physiology , Brain Mapping/methods , CA1 Region, Hippocampal/physiology , CA3 Region, Hippocampal/metabolism , Hippocampus/physiology , Male , Mice, Inbred C57BL , Mice, Transgenic , Neural Pathways/physiology , Perirhinal Cortex/physiology
10.
Cell Rep ; 37(3): 109828, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34686348

ABSTRACT

Synaptic connectivity within adult circuits exhibits a remarkable degree of cellular and subcellular specificity. We report that the axon guidance receptor Robo2 plays a role in establishing synaptic specificity in hippocampal CA1. In vivo, Robo2 is present and required postsynaptically in CA1 pyramidal neurons (PNs) for the formation of excitatory (E) but not inhibitory (I) synapses, specifically in proximal but not distal dendritic compartments. In vitro approaches show that the synaptogenic activity of Robo2 involves a trans-synaptic interaction with presynaptic Neurexins, as well as binding to its canonical extracellular ligand Slit. In vivo 2-photon Ca2+ imaging of CA1 PNs during spatial navigation in awake behaving mice shows that preventing Robo2-dependent excitatory synapse formation cell autonomously during development alters place cell properties of adult CA1 PNs. Our results identify a trans-synaptic complex linking the establishment of synaptic specificity to circuit function.


Subject(s)
CA1 Region, Hippocampal/metabolism , Pyramidal Cells/metabolism , Receptors, Immunologic/metabolism , Synapses/metabolism , Animals , CA1 Region, Hippocampal/cytology , CA3 Region, Hippocampal/cytology , CA3 Region, Hippocampal/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Excitatory Postsynaptic Potentials , HEK293 Cells , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Cell Adhesion Molecules/genetics , Neural Cell Adhesion Molecules/metabolism , Place Cells/metabolism , Receptors, Immunologic/genetics , Roundabout Proteins
11.
Mol Brain ; 14(1): 142, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34526091

ABSTRACT

Assessment of neural activity in the specific brain area is critical for understanding the circuit mechanisms underlying altered brain function and behaviors. A number of immediate early genes (IEGs) that are rapidly transcribed in neuronal cells in response to synaptic activity have been used as markers for neuronal activity. However, protein detection of IEGs requires translation, and the amount of newly synthesized gene product is usually insufficient to detect using western blotting, limiting their utility in western blot analysis of brain tissues for comparison of basal activity between control and genetically modified animals. Here, we show that the phosphorylation status of eukaryotic elongation factor-2 (eEF2) rapidly changes in response to synaptic and neural activities. Intraperitoneal injections of the GABA A receptor (GABAAR) antagonist picrotoxin and the glycine receptor antagonist brucine rapidly dephosphorylated eEF2. Conversely, potentiation of GABAARs or inhibition of AMPA receptors (AMPARs) induced rapid phosphorylation of eEF2 in both the hippocampus and forebrain of mice. Chemogenetic suppression of hippocampal principal neuron activity promoted eEF2 phosphorylation. Novel context exploration and acute restraint stress rapidly modified the phosphorylation status of hippocampal eEF2. Furthermore, the hippocampal eEF2 phosphorylation levels under basal conditions were reduced in mice exhibiting epilepsy and abnormally enhanced excitability in CA3 pyramidal neurons. Collectively, the results indicated that eEF2 phosphorylation status is sensitive to neural activity and the ratio of phosphorylated eEF2 to total eEF2 could be a molecular signature for estimating neural activity in a specific brain area.


Subject(s)
Brain/physiology , Eukaryotic Initiation Factor-2/metabolism , Nerve Tissue Proteins/metabolism , Animals , CA3 Region, Hippocampal/metabolism , Genes, Reporter , Mice , Muscimol/pharmacology , Phosphorylation/drug effects , Picrotoxin/pharmacology , Prosencephalon/metabolism , Protein Processing, Post-Translational/drug effects , Pyramidal Cells/metabolism , Quinoxalines/pharmacology , Restraint, Physical , Stress, Physiological/physiology , Strychnine/analogs & derivatives , Strychnine/pharmacology
12.
Cell Rep ; 36(7): 109513, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34407417

ABSTRACT

Ketamine produces rapid antidepressant action in patients with major depression or treatment-resistant depression. Studies have identified brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin receptor kinase B (TrkB), as necessary for the antidepressant effects and underlying ketamine-induced synaptic potentiation in the hippocampus. Here, we delete BDNF or TrkB in presynaptic CA3 or postsynaptic CA1 regions of the Schaffer collateral pathway to investigate the rapid antidepressant action of ketamine. The deletion of Bdnf in CA3 or CA1 blocks the ketamine-induced synaptic potentiation. In contrast, ablation of TrkB only in postsynaptic CA1 eliminates the ketamine-induced synaptic potentiation. We confirm BDNF-TrkB signaling in CA1 is required for ketamine's rapid behavioral action. Moreover, ketamine application elicits dynamin1-dependent TrkB activation and downstream signaling to trigger rapid synaptic effects. Taken together, these data demonstrate a requirement for BDNF-TrkB signaling in CA1 neurons in ketamine-induced synaptic potentiation and identify a specific synaptic locus in eliciting ketamine's rapid antidepressant effects.


Subject(s)
Antidepressive Agents/pharmacology , Ketamine/pharmacology , Receptor, trkB/metabolism , Signal Transduction , Synapses/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/drug effects , CA3 Region, Hippocampal/metabolism , Dynamins/metabolism , Endocytosis/drug effects , HEK293 Cells , Humans , Mice , Neurons/metabolism , Signal Transduction/drug effects , Synapses/drug effects
13.
Bull Exp Biol Med ; 171(3): 327-332, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34297297

ABSTRACT

We studied the prolonged action of kainic acid on glutamatergic neurons in the dorsal hippocampus and the endocannabinoid-dependent protection against neurodegeneration. The pyramidal neurons of the CA3 field of the hippocampus, as well as granular and mossy cells of the dentate gyrus were examined. Light and electron microscopy revealed substantial damage to the components of the protein-synthesizing (rough endoplasmic reticulum, Golgi apparatus, and polyribosomes) and catabolic (lysosomes, autophagosomes, multivesicular structures, and lipofuscin formations) systems in all cells. Pyramidal and mossy neurons die mainly by the necrotic pathway. The death of granular cells occurred through both apoptosis and necrosis. The most vulnerable cells are mossy neurons located in the hilus. Activation of the endocannabinoid system induced by intracerebral injection of URB597, an inhibitor of degradation of endocannabinoid anandamide, protected the normal structure of the hippocampus and prevented neuronal damage and death induced by KA.


Subject(s)
Arachidonic Acids/metabolism , Endocannabinoids/metabolism , Excitatory Amino Acid Agonists/pharmacology , Kainic Acid/pharmacology , Nerve Degeneration/pathology , Polyunsaturated Alkamides/metabolism , Pyramidal Cells/drug effects , Status Epilepticus/pathology , Animals , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagosomes/ultrastructure , Benzamides/pharmacology , CA3 Region, Hippocampal/drug effects , CA3 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/pathology , Carbamates/pharmacology , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Dentate Gyrus/pathology , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Golgi Apparatus/drug effects , Golgi Apparatus/metabolism , Golgi Apparatus/ultrastructure , Lysosomes/drug effects , Lysosomes/metabolism , Lysosomes/ultrastructure , Male , Microscopy, Electron , Necrosis/metabolism , Necrosis/pathology , Nerve Degeneration/chemically induced , Nerve Degeneration/metabolism , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Rats , Rats, Wistar , Status Epilepticus/chemically induced , Status Epilepticus/metabolism
14.
J Cereb Blood Flow Metab ; 41(11): 2870-2886, 2021 11.
Article in English | MEDLINE | ID: mdl-34259069

ABSTRACT

Traumatic brain injury (TBI) is commonly followed by long-term cognitive deficits that severely impact the quality of life in survivors. Recent studies suggest that microglial/macrophage (Mi/MΦ) polarization could have multidimensional impacts on post-TBI neurological outcomes. Here, we report that repetitive intranasal delivery of interleukin-4 (IL-4) nanoparticles for 4 weeks after controlled cortical impact improved hippocampus-dependent spatial and non-spatial cognitive functions in adult C57BL6 mice, as assessed by a battery of neurobehavioral tests for up to 5 weeks after TBI. IL-4-elicited enhancement of cognitive functions was associated with improvements in the integrity of the hippocampus at the functional (e.g., long-term potentiation) and structural levels (CA3 neuronal loss, diffusion tensor imaging of white matter tracts, etc.). Mechanistically, IL-4 increased the expression of PPARγ and arginase-1 within Mi/MΦ, thereby driving microglia toward a global inflammation-resolving phenotype. Notably, IL-4 failed to shift microglial phenotype after TBI in Mi/MΦ-specific PPARγ knockout (mKO) mice, indicating an obligatory role for PPARγ in IL-4-induced Mi/MΦ polarization. Accordingly, post-TBI treatment with IL-4 failed to improve hippocampal integrity or cognitive functions in PPARγ mKO mice. These results demonstrate that administration of exogenous IL-4 nanoparticles stimulates PPARγ-dependent beneficial Mi/MΦ responses, and improves hippocampal function after TBI.


Subject(s)
Brain Injuries, Traumatic/psychology , Cognitive Dysfunction/drug therapy , Interleukin-4/pharmacology , Microglia/pathology , PPAR gamma/drug effects , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/pharmacology , Administration, Intranasal , Animals , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/pathology , CA3 Region, Hippocampal/diagnostic imaging , CA3 Region, Hippocampal/metabolism , Cognition/drug effects , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/etiology , Diffusion Tensor Imaging/methods , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/physiology , Inflammation/complications , Inflammation/metabolism , Interleukin-4/administration & dosage , Long-Term Potentiation/drug effects , Long-Term Potentiation/physiology , Macrophage Activation/drug effects , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Nanoparticles/administration & dosage , PPAR gamma/metabolism , Phenotype , Quality of Life , White Matter/diagnostic imaging , White Matter/metabolism
15.
Int J Mol Sci ; 22(9)2021 May 04.
Article in English | MEDLINE | ID: mdl-34064311

ABSTRACT

Dephosphorylation of target proteins at serine/threonine residues is one of the most crucial mechanisms regulating their activity and, consequently, the cellular functions. The role of phosphatases in synaptic plasticity, especially in long-term depression or depotentiation, has been reported. We studied serine/threonine phosphatase activity during the protein synthesis blocker (PSB)-induced impairment of long-term potentiation (LTP). Established protein phosphatase 2B (PP2B, calcineurin) inhibitor cyclosporin A prevented the LTP early phase (E-LTP) decline produced by pretreatment of hippocampal slices with cycloheximide or anisomycin. For the first time, we directly measured serine/threonine phosphatase activity during E-LTP, and its significant increase in PSB-treated slices was demonstrated. Nitric oxide (NO) donor SNAP also heightened phosphatase activity in the same manner as PSB, and simultaneous application of anisomycin + SNAP had no synergistic effect. Direct measurement of the NO production in hippocampal slices by the NO-specific fluorescent probe DAF-FM revealed that PSBs strongly stimulate the NO concentration in all studied brain areas: CA1, CA3, and dentate gyrus (DG). Cyclosporin A fully abolished the PSB-induced NO production in the hippocampus, suggesting a close relationship between nNOS and PP2B activity. Surprisingly, cyclosporin A alone impaired short-term plasticity in CA1 by decreasing paired-pulse facilitation, which suggests bi-directionality of the influences of PP2B in the hippocampus. In conclusion, we proposed a minimal model of signaling events that occur during LTP induction in normal conditions and the PSB-treated slices.


Subject(s)
CA1 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/metabolism , Calcineurin/genetics , Long-Term Potentiation/genetics , Synaptic Potentials/genetics , Animals , Anisomycin/pharmacology , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/drug effects , CA3 Region, Hippocampal/cytology , CA3 Region, Hippocampal/drug effects , Calcineurin/metabolism , Calcineurin Inhibitors/pharmacology , Cycloheximide/pharmacology , Cyclosporine/pharmacology , Dentate Gyrus/cytology , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Gene Expression Regulation , Long-Term Potentiation/drug effects , Male , Microtomy , Neuronal Plasticity/drug effects , Neuronal Plasticity/genetics , Nitric Oxide/chemistry , Nitric Oxide/pharmacology , Nitric Oxide Synthase Type I/genetics , Nitric Oxide Synthase Type I/metabolism , Protein Biosynthesis/drug effects , Protein Biosynthesis/genetics , Protein Synthesis Inhibitors/pharmacology , Rats , Rats, Wistar , S-Nitroso-N-Acetylpenicillamine/chemistry , S-Nitroso-N-Acetylpenicillamine/pharmacology , Synaptic Potentials/drug effects , Tissue Culture Techniques
16.
Elife ; 102021 06 01.
Article in English | MEDLINE | ID: mdl-34061025

ABSTRACT

Neurotransmitter release is a highly controlled process by which synapses can critically regulate information transfer within neural circuits. While presynaptic receptors - typically activated by neurotransmitters and modulated by neuromodulators - provide a powerful way of fine-tuning synaptic function, their contribution to activity-dependent changes in transmitter release remains poorly understood. Here, we report that presynaptic NMDA receptors (preNMDARs) at mossy fiber boutons in the rodent hippocampus can be activated by physiologically relevant patterns of activity and selectively enhance short-term synaptic plasticity at mossy fiber inputs onto CA3 pyramidal cells and mossy cells, but not onto inhibitory interneurons. Moreover, preNMDARs facilitate brain-derived neurotrophic factor release and contribute to presynaptic calcium rise. Taken together, our results indicate that by increasing presynaptic calcium, preNMDARs fine-tune mossy fiber neurotransmission and can control information transfer during dentate granule cell burst activity that normally occur in vivo.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Mossy Fibers, Hippocampal/metabolism , Neuronal Plasticity , Receptors, N-Methyl-D-Aspartate/metabolism , Synaptic Transmission , Animals , CA3 Region, Hippocampal/metabolism , Calcium/metabolism , Calcium Signaling , Female , Male , Mice, Inbred C57BL , Mice, Knockout , Mossy Fibers, Hippocampal/ultrastructure , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Pathways/metabolism , Pyramidal Cells/metabolism , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/ultrastructure , Time Factors
17.
Neurochem Res ; 46(8): 2112-2130, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34008120

ABSTRACT

Carbamazepine (CBZ) is an anticonvulsant drug that usually is used for the treatment of seizures. The anti-epileptic and the anti-epileptogenic effect of exercise has been reported, as well. This study was aimed to evaluate the synergic effect of combined therapy of exercise and CBZ in epileptic rats, as well as the alternation of the GABA pathway as a possible involved mechanism. The seizure was induced by pentylenetetrazol (PTZ) injection. Animals were divided into sham, seizure, exercise (EX), CBZ (25, 50 and 75), EX + CBZ (25, 50 and 75). Treadmill forced running for 30 min has been considered as the exercise 5 days per week for four weeks. CBZ was injected in doses of 25, 50 and 75 mg/kg, half an hour before seizure induction and 5 h after doing exercise in the animals forced to exercise. Seizure severity reduced and latency increased in the EX + CBZ (25) and EX + CBZ (50) groups compared to the seizure group. The distribution of GAD65 in both hippocampal CA1 and CA3 areas increased in the EX + CBZ (75) group. GABAA receptor α1 was up-regulated in the CA3 area of the EX + CBZ (75) group. The distribution of GAD65 in the cortical area increased in EX, EX + CBZ (50), CBZ (75) and EX + CBZ (75) groups. GABAA receptor α1 was up-regulated in the neocortex of EX + CBZ (50), CBZ (75) and EX + CBZ (75) groups. Our findings suggested that exercise has improved the efficacy of CBZ and reduced the anti-epileptic dose. The enhancement of GABA signaling might be involved in the synergistic effect of exercise and CBZ.


Subject(s)
Anticonvulsants/therapeutic use , Carbamazepine/therapeutic use , Epilepsy/drug therapy , Epilepsy/therapy , Physical Conditioning, Animal/physiology , Animals , CA1 Region, Hippocampal/enzymology , CA1 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/enzymology , CA3 Region, Hippocampal/metabolism , Epilepsy/chemically induced , Glutamate Decarboxylase/metabolism , Male , Neocortex/enzymology , Neocortex/metabolism , Pentylenetetrazole , Rats, Wistar , Receptors, GABA-A/metabolism
18.
Nat Commun ; 12(1): 2380, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33888718

ABSTRACT

Diverse signaling complexes are precisely assembled at the presynaptic active zone for dynamic modulation of synaptic transmission and synaptic plasticity. Presynaptic GABAB-receptors nucleate critical signaling complexes regulating neurotransmitter release at most synapses. However, the molecular mechanisms underlying assembly of GABAB-receptor signaling complexes remain unclear. Here we show that neurexins are required for the localization and function of presynaptic GABAB-receptor signaling complexes. At four model synapses, excitatory calyx of Held synapses in the brainstem, excitatory and inhibitory synapses on hippocampal CA1-region pyramidal neurons, and inhibitory basket cell synapses in the cerebellum, deletion of neurexins rendered neurotransmitter release significantly less sensitive to GABAB-receptor activation. Moreover, deletion of neurexins caused a loss of GABAB-receptors from the presynaptic active zone of the calyx synapse. These findings extend the role of neurexins at the presynaptic active zone to enabling GABAB-receptor signaling, supporting the notion that neurexins function as central organizers of active zone signaling complexes.


Subject(s)
Calcium-Binding Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neural Cell Adhesion Molecules/metabolism , Receptors, GABA-B/metabolism , Synapses/metabolism , Animals , Brain Stem/cytology , Brain Stem/metabolism , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/physiology , CA3 Region, Hippocampal/cytology , CA3 Region, Hippocampal/metabolism , Calcium-Binding Proteins/genetics , Cerebellum/cytology , Cerebellum/metabolism , Mice , Mice, Knockout , Models, Animal , Nerve Tissue Proteins/genetics , Neural Cell Adhesion Molecules/genetics , Neuronal Plasticity/physiology , Patch-Clamp Techniques , Pyramidal Cells/metabolism , Stereotaxic Techniques , Synaptic Transmission/physiology , gamma-Aminobutyric Acid/metabolism
19.
Biomolecules ; 11(4)2021 04 19.
Article in English | MEDLINE | ID: mdl-33921657

ABSTRACT

Charcot-Marie-Tooth (CMT) type 1 disease is the most common human hereditary demyelinating neuropathy. Mutations in pmp22 cause about 70% of all CMT1. Trembler-J (TrJ/+) mice are an animal model of CMT1E, having the same spontaneous pmp22 mutation that is found in humans. We compared the behavior profile of TrJ/+ and +/+ (wild-type) in open-field and elevated-plus-maze anxiety tests. In these tests, TrJ/+ showed an exclusive head shake movement, a lower frequency of rearing, but a greater frequency of grooming. In elevated-plus-maze, TrJ/+ defecate more frequently, performed fewer total entries, and have fewer entries to closed arms. These hippocampus-associated behaviors in TrJ/+ are consistent with increased anxiety levels. The expression of pmp22 and soluble PMP22 were evaluated in E17-hippocampal neurons and adult hippocampus by in situ hybridization and successive immunohistochemistry. Likewise, the expression of pmp22 was confirmed by RT-qPCR in the entire isolated hippocampi of both genotypes. Moreover, the presence of aggregated PMP22 was evidenced in unmasked granular hippocampal adult neurons and shows genotypic differences. We showed for the first time a behavior profile trait associated with anxiety and a differential expression of pmp22/PMP22 in hippocampal neurons of TrJ/+ and +/+ mice, demonstrating the involvement at the central level in an animal model of peripheral neuropathy (CMT1E).


Subject(s)
CA3 Region, Hippocampal/metabolism , Charcot-Marie-Tooth Disease/genetics , Maze Learning , Myelin Proteins/genetics , Phenotype , Animals , Anxiety/metabolism , Anxiety/physiopathology , Charcot-Marie-Tooth Disease/metabolism , Charcot-Marie-Tooth Disease/physiopathology , Grooming , Head Movements , Male , Mice , Myelin Proteins/metabolism
20.
Sci Rep ; 11(1): 8535, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33879805

ABSTRACT

BDNF plays a crucial role in the regulation of synaptic plasticity. It is synthesized as a precursor (proBDNF) that can be proteolytically cleaved to mature BDNF (mBDNF). Previous studies revealed a bidirectional mode of BDNF actions, where long-term potentiation (LTP) was mediated by mBDNF through tropomyosin related kinase (Trk) B receptors whereas long-term depression (LTD) depended on proBDNF/p75 neurotrophin receptor (p75NTR) signaling. While most experimental evidence for this BDNF dependence of synaptic plasticity in the hippocampus was derived from Schaffer collateral (SC)-CA1 synapses, much less is known about the mechanisms of synaptic plasticity, in particular LTD, at hippocampal mossy fiber (MF) synapses onto CA3 neurons. Since proBDNF and mBDNF are expressed most abundantly at MF-CA3 synapses in the rodent brain and we had shown previously that MF-LTP depends on mBDNF/TrkB signaling, we now explored the role of proBDNF/p75NTR signaling in MF-LTD. Our results show that neither acute nor chronic inhibition of p75NTR signaling impairs MF-LTD, while short-term plasticity, in particular paired-pulse facilitation, at MF-CA3 synapses is affected by a lack of functional p75NTR signaling. Furthermore, MF-CA3 synapses showed normal LTD upon acute inhibition of TrkB receptor signaling. Nonetheless, acute inhibition of plasminogen activator inhibitor-1 (PAI-1), an inhibitor of both intracellular and extracellular proBDNF cleavage, impaired MF-LTD. This seems to indicate that LTD at MF-CA3 synapses involves BDNF, however, MF-LTD does not depend on p75NTRs. Altogether, our experiments demonstrate that p75NTR signaling is not warranted for all glutamatergic synapses but rather needs to be checked separately for every synaptic connection.


Subject(s)
CA3 Region, Hippocampal/metabolism , Long-Term Synaptic Depression/physiology , Mossy Fibers, Hippocampal/metabolism , Receptors, Nerve Growth Factor/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , CA3 Region, Hippocampal/pathology , Male , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , Mossy Fibers, Hippocampal/pathology , Neuronal Plasticity/physiology , Protein-Tyrosine Kinases/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...