Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 217
Filter
1.
Aging (Albany NY) ; 16(2): 1237-1248, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38289593

ABSTRACT

Diabetic nephropathy (DN) is one of the most serious complications in diabetic patients. And m6A modifications mediated by METTL3 are involved multiple biological processes. However, the specific function and mechanism of METTL3 in DN remains unclear. DN model mice were first established with streptozotocin, and WISP1 expression was confirmed by qRT-PCR. Then the influences of WISP1 or/and METTL3 on the proliferation, migration, and epithelial-mesenchymal transition (EMT) and fibrosis-related proteins of high glucose (HG)-induced HK2 cells or HK2 cells were tested through CCK-8, wound healing, and western blot. We first revealed that WISP1 was highly expressed in renal tissues of DN model mice and HG-induced HK2 cells. Functionally, WISP1 or METTL3 silencing could weaken the proliferation, migration, EMT, and fibrosis of HG-treated HK2 cells, and WISP1 or METTL3 overexpression could induce the proliferation, migration, EMT, and fibrosis of HK2 cells. Additionally, METTL3 silencing could decrease WISP1 m6A modification, and silencing of METTL3 also could notably suppress the biological functions of HG-induced HK2 cells by downregulating WISP1. Silencing of METTL3 prevents DN development process by decreasing WISP1 with m6A modification pattern. Therefore, we suggest that METTL3/WISP1 axis might be a novel therapeutic target for DN.


Subject(s)
CCN Intercellular Signaling Proteins , Diabetic Nephropathies , Epithelial-Mesenchymal Transition , Methyltransferases , Animals , Humans , Mice , Adenine/analogs & derivatives , Cell Proliferation/genetics , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Fibrosis , Glucose/toxicity , Methyltransferases/metabolism , CCN Intercellular Signaling Proteins/genetics , CCN Intercellular Signaling Proteins/metabolism
2.
Am J Med Genet A ; 191(9): 2329-2336, 2023 09.
Article in English | MEDLINE | ID: mdl-37377052

ABSTRACT

Progressive pseudorheumatoid dysplasia (PPRD), a rare autosomal recessive syndrome, is a type of skeletal dysplasia associated with pain, stiffness, swelling of multiple joints, and the absence of destructive changes. PPRD occurs due to loss of function pathogenic variants in WISP3 (CCN6) gene, located on chromosome 6q22. In this study, 23 unrelated Egyptian PPRD patients were clinically diagnosed based on medical history, physical and radiological examinations, and laboratory investigations. Sequencing of the whole WISP3 (CCN6) exons and introns boundaries was carried out for all patients. A total of 11 different sequence variations were identified in the WISP3 (CCN6) gene, five of them were new pathogenic variants: the NM_003880.3: c.80T>A (p.L27*), c.161delG (p.C54fs*12), c.737T>C (p.Leu246Pro), c.347-1G>A (IVS3-1G>A), and c.376C>T (p.Q126*). The results of this study expand the spectrum of WISP3 (CCN6) pathogenic variants associated with PPRD. Clinical and genetic analysis is important for proper genetic counseling to curb this rare disorder in the families.


Subject(s)
Joint Diseases , Humans , Joint Diseases/genetics , Joint Diseases/diagnostic imaging , Introns , Exons , CCN Intercellular Signaling Proteins/genetics , Radiography
3.
FASEB J ; 37(3): e22815, 2023 03.
Article in English | MEDLINE | ID: mdl-36794678

ABSTRACT

Mutations in Cellular Communication Network Factor 6 (CCN6) are linked to the debilitating musculoskeletal disease Progressive Pseudo Rheumatoid Dysplasia (PPRD), which disrupts mobility. Yet, much remains unknown about CCN6 function at the molecular level. In this study, we revealed a new function of CCN6 in transcriptional regulation. We demonstrated that CCN6 localizes to chromatin and associates with RNA Polymerase II in human chondrocyte lines. Using zebrafish as a model organism we validated the nuclear presence of CCN6 and its association with RNA Polymerase II in different developmental stages from 10 hpf embryo to adult fish muscle. In concurrence with these findings, we confirmed the requirement of CCN6 in the transcription of several genes encoding mitochondrial electron transport complex proteins in the zebrafish, both in the embryonic stages and in the adult muscle. Reduction in the expression of these genes upon morpholino-mediated knockdown of CCN6 protein expression led to reduced mitochondrial mass, which correlated with defective myotome organization during zebrafish muscle development. Overall, this study suggests that the developmental musculoskeletal abnormalities linked with PPRD could be contributed at least partly by impaired expression of genes encoding mitochondrial electron transport complexes due to defects in CCN6 associated transcriptional regulation.


Subject(s)
CCN Intercellular Signaling Proteins , RNA Polymerase II , Zebrafish Proteins , Zebrafish , Animals , Humans , Chondrocytes , Gene Expression Regulation , Gene Expression Regulation, Developmental , Muscles , Zebrafish/genetics , Zebrafish Proteins/genetics , CCN Intercellular Signaling Proteins/genetics
4.
J Biol Chem ; 299(3): 102971, 2023 03.
Article in English | MEDLINE | ID: mdl-36736423

ABSTRACT

Acute myeloid leukemia (AML) is challenging to treat due to its heterogeneity, prompting a deep understanding of its pathogenesis mechanisms, diagnosis, and treatment. Here, we found reduced expression and acetylation levels of WISP2 in bone marrow mononuclear cells from AML patients and that AML patients with lower WISP2 expression tended to have reduced survival. At the functional level, overexpression of WISP2 in leukemia cells (HL-60 and Kasumi-1) suppressed cell proliferation, induced cell apoptosis, and exerted antileukemic effects in an in vivo model of AML. Our mechanistic investigation demonstrated that WISP2 deacetylation was regulated by the deacetylase histone deacetylase (HDAC)3. In addition, we determined that crosstalk between acetylation and ubiquitination was involved in the modulation of WISP2 expression in AML. Deacetylation of WISP2 decreased the stability of the WISP2 protein by boosting its ubiquitination mediated by NEDD4 and proteasomal degradation. Moreover, pan-HDAC inhibitors (valproic acid and trichostatin A) and an HDAC3-specific inhibitor (RGFP966) induced WISP2 acetylation at lysine K6 and prevented WISP2 degradation. This regulation led to inhibition of proliferation and induction of apoptosis in AML cells. In summary, our study revealed that WISP2 contributes to tumor suppression in AML, which provided an experimental framework for WISP2 as a candidate for gene therapy of AML.


Subject(s)
CCN Intercellular Signaling Proteins , Leukemia, Myeloid, Acute , Repressor Proteins , Humans , Acetylation , Apoptosis , Cell Line, Tumor , Histone Deacetylase Inhibitors/pharmacology , Leukemia, Myeloid, Acute/genetics , Valproic Acid/pharmacology , CCN Intercellular Signaling Proteins/genetics , Repressor Proteins/genetics , HL-60 Cells
5.
J Biol Chem ; 299(1): 102803, 2023 01.
Article in English | MEDLINE | ID: mdl-36529291

ABSTRACT

Cellular Communication Network (CCN) proteins have multimodular structures important for their roles in cellular responses associated with organ development and tissue homeostasis. CCN2 has previously been reported to be secreted as a preproprotein that requires proteolytic activation to release its bioactive carboxyl-terminal fragment. Here, our goal was to resolve whether CCN5, a divergent member of the CCN family with converse functions relative to CCN2, releases the TSP1 homology domain as its bioactive signaling entity. The recombinant CCN5 or CCN3 TSP1 homology domains were produced in ExpiCHO-S or DG44 CHO cells as secretory fusion proteins appended to the carboxyl-terminal end of His-Halo-Sumo or amino-terminal end of human albumin and purified from the cell culture medium. We tested these fusion proteins in various phosphokinase signaling pathways or cell physiologic assays. Fusion proteins with the CCN5 TSP1 domain inhibited key signaling pathways previously reported to be stimulated by CCN2, irrespective of fusion partner. The fusion proteins also efficiently inhibited CCN1/2-stimulated cell migration and gap closure following scratch wound of fibroblasts. Fusion protein with the CCN3 TSP1 domain inhibited these functions with similar efficacy and potency as that of the CCN5 TSP1 domain. The CCN5 TSP1 domain also recapitulated a positive regulatory function previously assigned to full-length CCN5, that is, induction of estrogen receptor-α mRNA expression in triple negative MDA-MB-231 mammary adenocarcinoma cells and inhibited epithelial-to-mesenchymal transition and CCN2-induced mammosphere formation of MCF-7 adenocarcinoma cells. In conclusion, the CCN5 TSP1 domain is the bioactive entity that confers the biologic functions of unprocessed CCN5.


Subject(s)
Adenocarcinoma , Connective Tissue Growth Factor , Animals , Cricetinae , Humans , Connective Tissue Growth Factor/metabolism , Cricetulus , CCN Intercellular Signaling Proteins/genetics , CCN Intercellular Signaling Proteins/metabolism , Peptides , Recombinant Proteins
6.
Methods Mol Biol ; 2582: 1-10, 2023.
Article in English | MEDLINE | ID: mdl-36370338

ABSTRACT

I herein report the general structures and functions of CCN proteins and possible molecular mechanisms involved in the unique biological actions of this family of intercellular signaling regulators, which are considered matricellular proteins and were once referred to as "signal conductors" but have recently been renamed "Cellular Communication Network Factors." Their repertoire of functions beyond their role as matricellular proteins is also described to aid in future studies. Advanced research concerning their relevance to pathology is briefly introduced as well. The information provided in this chapter is expected to be useful for readers of subsequent chapters.


Subject(s)
CCN Intercellular Signaling Proteins , Cell Communication , CCN Intercellular Signaling Proteins/genetics , CCN Intercellular Signaling Proteins/metabolism , Signal Transduction , Extracellular Matrix Proteins/metabolism
7.
Methods Mol Biol ; 2582: 13-21, 2023.
Article in English | MEDLINE | ID: mdl-36370340

ABSTRACT

CCN4 (also known as WNT1-Inducible Signaling Pathway Protein 1 or WISP1) is a 367 amino acid, 40 kDa protein located on chromosome 8q24.1-8q24.3. Prior studies have provided support for a pro-inflammatory role for CCN4. We have shown recently that CCN4 expression is associated with advanced disease, epithelial-mesenchymal transition, and an inflamed tumor microenvironment in multiple solid tumors. We detail here the CCN4 tissue microarray immunofluorescence protocol related to these findings.


Subject(s)
CCN Intercellular Signaling Proteins , Neoplasms , Humans , CCN Intercellular Signaling Proteins/genetics , CCN Intercellular Signaling Proteins/metabolism , Tumor Microenvironment , Epithelial-Mesenchymal Transition , Fluorescent Antibody Technique
8.
Methods Mol Biol ; 2582: 23-29, 2023.
Article in English | MEDLINE | ID: mdl-36370341

ABSTRACT

The method of labeling proteins of interest with fluorescent dyes that can specifically stain organelles in living cells provides a tool for investigating various cellular processes under a microscope. Visualization (imaging) of the cells using fluorescence has many advantages, including the ability to stain multiple cell organelles and intracellular proteins simultaneously and discriminately, and is used in many research fields. In this chapter, we describe the observation of cell organelles using fluorescence staining to analyze the functions of CCN family proteins involved in various cellular events.


Subject(s)
CCN Intercellular Signaling Proteins , Optical Imaging , Microscopy, Fluorescence/methods , CCN Intercellular Signaling Proteins/genetics , CCN Intercellular Signaling Proteins/metabolism , Fluorescent Dyes/metabolism , Organelles/metabolism , Proteins/metabolism
9.
Methods Mol Biol ; 2582: 87-101, 2023.
Article in English | MEDLINE | ID: mdl-36370346

ABSTRACT

The function of CCN family proteins is determined by their interactions with multiple cofactors that are present in the microenvironment. Therefore, determining these cofactors is critically important in understanding the molecular function of CCN family members. For this objective, a bacteriophage random peptide display library is a suitable tool. In this library, each filamentous bacteriophage is designed to display an oligopeptide of 7-20 random amino acid residues on its surface. Bacteriophage clones that possess peptides that bind to a CCN family protein are selected through several cycles of a process called biopanning or affinity selection. By determining the nucleotide sequence of the DNA that encodes the displayed peptide, the oligopeptides that specifically bind to the CCN family member can be specified. The obtained peptide sequences can be utilized to design peptide aptamers for CCN family proteins, or as a key sequence to determine new CCN family cofactor candidates in silico. Instead of a random peptide cDNA library, an antibody cDNA library from naïve lymphocytes or from B cells immunized by a CCN family protein can be used in order to obtain a highly specific CCN family detection or functional modulation tool.


Subject(s)
Bacteriophages , CCN Intercellular Signaling Proteins , CCN Intercellular Signaling Proteins/genetics , CCN Intercellular Signaling Proteins/metabolism , Peptide Library , Peptides/chemistry , Amino Acid Sequence , Bacteriophages/genetics , Oligopeptides/metabolism , Protein Binding
10.
Methods Mol Biol ; 2582: 369-390, 2023.
Article in English | MEDLINE | ID: mdl-36370364

ABSTRACT

The matricellular protein Wnt-induced secreted protein 1 (WISP1) is the fourth member of the CCN family of proteins, which has been shown to affect tissues of the musculoskeletal system. In the context of the musculoskeletal disorder osteoarthritis, our lab studied the function of CCN4/WISP1 in joint tissues, including synovium and cartilage, using both gain- and loss-of-function approaches. In mice, this was done by genetic engineering and recombination to generate mice deficient in CCN4/WISP1 protein. Various experimental models of osteoarthritis with different characteristics were induced in these mice. Moreover, CCN4/WISP1 levels in joints were experimentally increased by adenoviral transfections. Osteoarthritis pathology was determined using histology, and the effect of different CCN4/WISP1 levels on gene expression was evaluated in individual tissues. Effects of high levels of CCN4/WISP1 on chondrocytes were studied with an in vitro chondrocyte pellet model. In this chapter, we describe the procedures to conduct these experiments.


Subject(s)
CCN Intercellular Signaling Proteins , Osteoarthritis , Mice , Animals , CCN Intercellular Signaling Proteins/genetics , CCN Intercellular Signaling Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Chondrocytes/metabolism , Synovial Membrane/metabolism , Osteoarthritis/genetics , Osteoarthritis/metabolism
11.
Liver Int ; 43(2): 357-369, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36156376

ABSTRACT

BACKGROUND AND AIMS: CCN6 is a secretory protein with functions of maintaining mitochondrial homeostasis and anti-oxidative stress; and yet, whether it is involved in the pathogenesis of non-alcoholic steatohepatitis (NASH) is still obscure. We investigated the role and mechanism of CCN6 in the development of NASH. METHODS: Human liver tissue samples were collected to detect the expression profile of CCN6. High-fat-high-cholesterol (HFHC) and methionine choline-deficient (MCD) diet were applied to mice to establish NASH animal models. Liver-specific overexpression of CCN6 was induced in mice by tail vein injection of adeno-associated virus (AAV), and then the effect of CCN6 on the course of NASH was observed. Free fatty acid (FFA) was applied to HepG2 cells to construct the cell model of steatosis, and the effect of CCN6 was investigated by knocking down the expression of CCN6 through small interfering RNA (siRNA) transfection. RESULTS: We found that CCN6 expression was significantly downregulated in the liver of NASH. We confirmed that liver-specific overexpression of CCN6 significantly attenuated hepatic steatosis, inflammation response and fibrosis in NASH mice. Based on RNA-seq analysis, we revealed that CCN6 significantly affected the MAPK pathway. Then, by interfering with apoptosis signal-regulating kinase 1 (ASK1), we identified the ASK1/MAPK pathway pairs as the targets of CCN6 action. CONCLUSIONS: CCN6 protects against hepatic steatosis, inflammation response and fibrosis by inhibiting the activation of ASK1 along with its downstream MAPK signalling. CCN6 may be a potential therapeutic target for the treatment of NASH.


Subject(s)
CCN Intercellular Signaling Proteins , Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Diet , Disease Models, Animal , Inflammation/pathology , Liver/pathology , Liver Cirrhosis/complications , Methionine/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/pathology , CCN Intercellular Signaling Proteins/genetics
12.
Int J Mol Sci ; 23(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36232736

ABSTRACT

The WNT1 inducible signaling pathway protein 1 (WISP1), a member of the connective tissue growth factor family, plays a crucial role in several important cellular functions in a highly tissue-specific manner. Results of a RT-qPCR indicated that WISP1 expressed only in cells of the human prostate fibroblasts, HPrF and WPMY-1, but not the prostate carcinoma cells in vitro. Two major isoforms (WISP1v1 and WISP1v2) were identified in the HPrF cells determined by RT-PCR and immunoblot assays. The knock-down of a WISP1 blocked cell proliferation and contraction, while treating respectively with the conditioned medium from the ectopic WISP1v1- and WISPv2-overexpressed 293T cells enhanced the migration of HPrF cells. The TNFα induced WISP1 secretion and cell contraction while the knock-down of WISP1 attenuated these effects, although TNFα did not affect the proliferation of the HPrF cells. The ectopic overexpression of WISP1v1 but not WISP1v2 downregulated the N-myc downstream regulated 1 (NDRG1) while upregulating N-cadherin, slug, snail, and vimentin gene expressions which induced not only the cell proliferation and invasion in vitro but also tumor growth of prostate carcinoma cells in vivo. The results confirmed that WISP1 is a stroma-specific secreting protein, enhancing the cell migration and contraction of prostate fibroblasts, as well as the proliferation, invasion, and tumor growth of prostate carcinoma cells.


Subject(s)
CCN Intercellular Signaling Proteins , Cell Transformation, Neoplastic , Fibroblasts , Prostatic Neoplasms , Proto-Oncogene Proteins , CCN Intercellular Signaling Proteins/genetics , CCN Intercellular Signaling Proteins/metabolism , Cadherins , Carcinoma/metabolism , Carcinoma/pathology , Cell Proliferation/genetics , Cell Proliferation/physiology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Connective Tissue Growth Factor , Culture Media, Conditioned/pharmacology , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Male , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/pharmacology , Vimentin/metabolism
13.
J Hypertens ; 40(9): 1666-1681, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35881419

ABSTRACT

BACKGROUND: The migration, proliferation and apoptosis of vascular smooth muscle cells (VSMCs) are critical for plaque stability. WNT-inducible signalling pathway protein-1 (WISP1), a member of the CCN family of extracellular matrix proteins, can expedite the migration and proliferation of VSMCs. However, its underlying mechanism and relationship with atherosclerosis remain elusive. The relationship between WISP1 and apoptosis of VSMCs has not been determined previously. METHOD: In the study, we aimed to investigate the relationship between WISP1 and plaque stability and its related mechanism.ApoE-/- mice were divided following groups: the null lentivirus (NC), lentivirus WISP1 (IvWISP1) and WISP1-shRNA (shWISP1) groups. Immunofluorescence, Oil Red O and Masson's staining of the carotid arteries were performed. Transwell wound healing assay, CCK8 assay, and TdT-mediated dUTP nick-end labeling (TUNEL) staining were performed using VSMCs. The levels of WISP1, P38, C-Jun N-terminal kinase, extracellular signal-regulated kinase (ERK), mitogen-activated extracellular signal-regulated kinase (MEK), focal adhesion kinase (FAK), phosphatidylinositol 3-kinase (PI3K), Akt (also known as PKB, protein kinase B), mammalian target of rapamycin (mTOR), cleaved caspase3, Bcl2 and Bax were detected by western blotting. RESULTS: The relative area of lipids and monocytes/macrophages in the shWISP1 group increased compared with that of the NC group. However, the relative area of smooth muscle cell and collagen in the IvWISP1 group increased compared with that in the NC group. Therefore, WISP1 could stabilize atherosclerotic plaques. Besides, WISP1 accelerate the migration and proliferation of VSMCs via integrin α5ß1 and FAK/MEK/ERK signalling pathways. In addition, WISP1 can inhibit the apoptosis of VSMCs via the PI3K/Akt/mTOR pathway. CONCLUSION: WISP1 not only inhibits the apoptosis of VSMCs via the PI3K/Akt/mTOR pathway but also enhances the migration and proliferation of VSMCs via the integrin α5ß1 and FAK/MEK/ERK pathways. Therefore, WISP1 could enhance the stability of atherosclerotic plaques.


Subject(s)
CCN Intercellular Signaling Proteins , Focal Adhesion Kinase 1 , Plaque, Atherosclerotic , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins , Animals , Apolipoproteins E/genetics , CCN Intercellular Signaling Proteins/genetics , CCN Intercellular Signaling Proteins/metabolism , Cell Proliferation , Cells, Cultured , Extracellular Signal-Regulated MAP Kinases/metabolism , Focal Adhesion Kinase 1/genetics , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Integrin alpha5beta1/metabolism , MAP Kinase Signaling System , Mammals/genetics , Mammals/metabolism , Mice , Mice, Knockout, ApoE , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogens/metabolism , Myocytes, Smooth Muscle/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Plaque, Atherosclerotic/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism
14.
Clin Sci (Lond) ; 136(1): 29-44, 2022 01 14.
Article in English | MEDLINE | ID: mdl-34897418

ABSTRACT

Inflammation is a pathological feature of kidney injury and its progression correlates with the development of kidney fibrosis which can lead to kidney function impairment. This project investigated the regulatory function of WNT1-inducible signaling pathway protein 1 (WISP1) in kidney inflammation. Administration of recombinant WISP1 protein to healthy mice induced kidney inflammation (macrophage accrual and production of tumor necrosis factor α (TNF-α), CCL2 and IL-6), which could be prevented by inhibition of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB). Furthermore, inhibition of WISP1, by gene knockdown or neutralising antibody, could inhibit cultured macrophages producing inflammatory cytokines following stimulation with lipopolysaccharides (LPSs) and kidney fibroblasts proliferating in response to TNFα, which both involved NF-κB signaling. Kidney expression of WISP1 was found to be increased in mouse models of progressive kidney inflammation-unilateral ureter obstruction (UUO) and streptozotocin (STZ)-induced diabetic nephropathy (DN). Treatment of UUO mice with WISP1 antibody reduced the kidney inflammation in these mice. Therefore, pharmacological blockade of WISP1 exhibits potential as a novel therapy for inhibiting inflammation in kidney disease.


Subject(s)
CCN Intercellular Signaling Proteins/metabolism , Diabetic Nephropathies/etiology , Inflammation , NF-kappa B/metabolism , Animals , CCN Intercellular Signaling Proteins/genetics , CCN Intercellular Signaling Proteins/immunology , Diabetes Mellitus, Experimental/pathology , Fibrosis , Gene Knockdown Techniques , Mice, Inbred C57BL , Rats , Signal Transduction , Ureteral Obstruction
15.
Int J Mol Sci ; 22(24)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34948212

ABSTRACT

CCN5/WISP2 is a matricellular protein, the expression of which is under the regulation of Wnt signaling and IGF-1. Our initial characterization supports the notion that CCN5 might promote the proliferation and survival of pancreatic ß-cells and thus improve the metabolic profile of the animals. More recently, the roles of endogenous expression of CCN5 and its ectopic, transgenic overexpression on metabolic regulation have been revealed through two reports. Here, we attempt to compare the experimental findings from those studies, side-by-side, in order to further establish its roles in metabolic regulation. Prominent among the discoveries was that a systemic deficiency of CCN5 gene expression caused adipocyte hypertrophy, increased adipogenesis, and lipid accumulation, resulting in insulin resistance and glucose intolerance, which were further exacerbated upon high-fat diet feeding. On the other hand, the adipocyte-specific and systemic overexpression of CCN5 caused an increase in lean body mass, improved insulin sensitivity, hyperplasia of cardiomyocytes, and increased heart mass, but decreased fasting glucose levels. CCN5 is clearly a regulator of adipocyte proliferation and maturation, affecting lean/fat mass ratio and insulin sensitivity. Not all results from these models are consistent; moreover, several important aspects of CCN5 physiology are yet to be explored.


Subject(s)
CCN Intercellular Signaling Proteins/genetics , CCN Intercellular Signaling Proteins/metabolism , Mice, Transgenic/genetics , Mice, Transgenic/metabolism , Animals , Gene Expression/genetics , Glucose Intolerance/genetics , Glucose Intolerance/metabolism , Humans , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Myocytes, Cardiac/metabolism
16.
PLoS Pathog ; 17(11): e1010028, 2021 11.
Article in English | MEDLINE | ID: mdl-34735554

ABSTRACT

Nematode-trapping fungi (NTF) are a diverse and intriguing group of fungi that live saprotrophically but can switch to a predatory lifestyle when starving and in the presence of nematodes. NTF like Arthrobotrys oligospora or Duddingtonia flagrans produce adhesive trapping networks to catch and immobilize nematodes. After penetration of the cuticle, hyphae grow and develop inside the worm and secrete large amounts of hydrolytic enzymes for digestion. In many microbial pathogenic interactions small-secreted proteins (SSPs) are used to manipulate the host. The genome of D. flagrans encodes more than 100 of such putative SSPs one of which is the cysteine-rich protein CyrA. We have chosen this gene for further analysis because it is only found in NTF and appeared to be upregulated during the interaction. We show that the cyrA gene was transcriptionally induced in trap cells, and the protein accumulated at the inner rim of the hyphal ring before Caenorhabditis elegans capture. After worm penetration, the protein appeared at the fungal infection bulb, where it is likely to be secreted with the help of the exocyst complex. A cyrA-deletion strain was less virulent, and the time from worm capture to paralysis was extended. Heterologous expression of CyrA in C. elegans reduced its lifespan. CyrA accumulated in C. elegans in coelomocytes where the protein possibly is inactivated. This is the first example that SSPs may be important in predatory microbial interactions.


Subject(s)
CCN Intercellular Signaling Proteins/metabolism , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/microbiology , Cysteine/chemistry , Duddingtonia/physiology , Fungal Proteins/metabolism , Host-Pathogen Interactions , Animals , CCN Intercellular Signaling Proteins/genetics , Fungal Proteins/genetics
17.
Exp Cell Res ; 409(1): 112871, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34672999

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is a major health problem worldwide, especially in the Chinese population. However, the intrinsic molecular mechanisms of ESCC progression are largely unclear, thus there is an unmet need to identify essential genes governing this disease. Here, we discovered WISP3, an important member of the CCN family, is markedly downregulated in ESCC tissues compared to the normal esophageal epithelium. Downregulation of WISP3 in cancer tissue correlates with worse overall survival of ESCC patients. Using ESCC cell lines as models, we found that forced expression of WISP3 not only suppressed proliferation and migration of cancer cells in vitro, but also inhibited ESCC tumor growth and metastasis in vivo. On the contrary, WISP3 depletion strongly promoted the tumorigenicity of ESCC cells. Mechanistically, we found that WISP3 negates the activity of AKT via inhibiting the IGF-2-IGF1R signaling cascade, which mediates the tumor-suppressive function of WISP3 in esophageal cancers. Together, we identified a novel factor driving the development of ESCC, and revealed a potential therapeutic target for ESCC treatment.


Subject(s)
CCN Intercellular Signaling Proteins/genetics , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Insulin-Like Growth Factor II/genetics , Proto-Oncogene Proteins c-akt/genetics , Receptor, IGF Type 1/genetics , Signal Transduction/genetics , Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Down-Regulation/genetics , Epithelial-Mesenchymal Transition/genetics , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/pathology , Gene Expression Regulation, Neoplastic/genetics , Humans , Mice , Mice, Nude
18.
Aging (Albany NY) ; 13(17): 21216-21231, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34497155

ABSTRACT

The dismal outcome of hepatocellular carcinoma (HCC) patients is attributable to high frequency of metastasis and. Identification of effective biomarkers is a key strategy to inform prognosis and improve survival. Previous studies reported inconsistent roles of WISP2 in carcinogenesis, while the role of WISP2 in HCC progression also remains unclear. In this study, we confirmed that WISP2 was downregulated in HCC tissues, and WISP2 was acting as a protective factor, especially in patients without alcohol intake using multiple online datasets. In addition, we reported that upregulation of WISP2 in HCC was related to inhibition of the malignant phenotype in vitro, but these alterations were not observed in vivo. WISP2 also negatively correlated with tumour purity, and increased infiltration of fibroblasts promoted malignant progression in HCC tissues. The enhanced infiltration ability of fibroblasts was related to upregulated HMGB1 after overexpression of WISP2 in HCC. The findings shed light on the anticancer role of WISP2, and HMGB1 is one of the key factors involved in the inhibition of the efficiency of WISP2 through reducing the tumour purity with fibroblast infiltration.


Subject(s)
CCN Intercellular Signaling Proteins/metabolism , Carcinoma, Hepatocellular/metabolism , Fibroblasts/physiology , HMGB1 Protein/metabolism , Liver Neoplasms/metabolism , Repressor Proteins/metabolism , Tumor Microenvironment , CCN Intercellular Signaling Proteins/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , HMGB1 Protein/genetics , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , Repressor Proteins/genetics , Transcriptome , Up-Regulation
19.
Cancer Res ; 81(22): 5666-5677, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34385183

ABSTRACT

Collagen remodeling contributes to many physiologic and pathologic processes. In primary tumors, the linearization of collagen fibers promotes cancer cell invasion and metastasis and is indicative of poor prognosis. However, it remains unknown whether there are endogenous inhibitors of collagen linearization that could be exploited therapeutically. Here, we show that collagen linearization is controlled by two secreted matricellular proteins with antagonistic functions. Specifically, WISP1 was secreted by cancer cells, bound to type I collagen (Col I), and linearized Col I via its cysteine-rich C-terminal (CT) domain. In contrast, WISP2, which lacks a CT domain, inhibited Col I linearization by preventing WISP1-Col I binding. Analysis of patient data revealed that WISP2 expression is lower in most solid tumors, in comparison with normal tissues. Consequently, genetic or pharmacologic restoration of higher WISP2 levels impaired collagen linearization and prevented tumor cell invasion and metastasis in vivo in models of human and murine breast cancer. Thus, this study uncovers WISP2 as the first inhibitor of collagen linearization ever identified and reveals that collagen architecture can be normalized and metastasis inhibited by therapeutically restoring a high WISP2:WISP1 ratio. SIGNIFICANCE: Two secreted factors, WISP1 and WISP2, antagonistically regulate collagen linearization, and therapeutically increasing the WISP2:WISP1 ratio in tumors limits collagen linearization and inhibits metastasis.See related commentary by Barcus and Longmore, p. 5611.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/prevention & control , CCN Intercellular Signaling Proteins/antagonists & inhibitors , CCN Intercellular Signaling Proteins/metabolism , Collagen Type I/antagonists & inhibitors , Gene Expression Regulation, Neoplastic , Lung Neoplasms/prevention & control , Proto-Oncogene Proteins/antagonists & inhibitors , Repressor Proteins/metabolism , Animals , Apoptosis , Biomarkers, Tumor/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , CCN Intercellular Signaling Proteins/genetics , Cell Movement , Cell Proliferation , Collagen Type I/metabolism , Female , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Neoplasm Invasiveness , Prognosis , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Repressor Proteins/genetics , Signal Transduction , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
20.
JCI Insight ; 6(18)2021 09 22.
Article in English | MEDLINE | ID: mdl-34383714

ABSTRACT

We identified a microRNA (miRNA) profile characterizing HIV lipodystrophy and explored the downstream mechanistic implications with respect to adipocyte biology and the associated clinical phenotype. miRNA profiles were extracted from small extracellular vesicles (sEVs) of HIV-infected individuals with and without lipodystrophic changes and individuals without HIV, among whom we previously showed significant reductions in adipose Dicer expression related to HIV. miR-20a-3p was increased and miR-324-5p and miR-186 were reduced in sEVs from HIV lipodystrophic individuals. Changes in these miRNAs correlated with adipose Dicer expression and clinical markers of lipodystrophy, including fat redistribution, insulin resistance, and hypertriglyceridemia. Human preadipocytes transfected with mimic miR-20a-3p, anti-miR-324-5p, or anti-miR-186 induced consistent changes in latent transforming growth factor beta binding protein 2 (Ltbp2), Wisp2, and Nebl expression. Knockdown of Ltbp2 downregulated markers of adipocyte differentiation (Fabp4, Pparγ, C/ebpa, Fasn, adiponectin, Glut4, CD36), and Lamin C, and increased expression of genes involved in inflammation (IL1ß, IL6, and Ccl20). Our studies suggest a likely unique sEV miRNA signature related to dysregulation of Dicer in adipose tissue in HIV. Enhanced miR-20a-3p or depletion of miR-186 and miR-324-5p may downregulate Ltbp2 in HIV, leading to dysregulation in adipose differentiation and inflammation, which could contribute to acquired HIV lipodystrophy and associated metabolic and inflammatory perturbations.


Subject(s)
Adipose Tissue/metabolism , DEAD-box RNA Helicases/metabolism , HIV-Associated Lipodystrophy Syndrome/blood , MicroRNAs/blood , MicroRNAs/genetics , Ribonuclease III/metabolism , Adipocytes/physiology , Adipogenesis , Adiposity , Adolescent , Adult , Animals , CCN Intercellular Signaling Proteins/genetics , Carrier Proteins/genetics , Cell Differentiation/genetics , Cytoskeletal Proteins/genetics , DEAD-box RNA Helicases/genetics , Down-Regulation , Extracellular Vesicles/metabolism , Female , Gene Silencing , Humans , Inflammation/genetics , Insulin Resistance , LIM Domain Proteins/genetics , Latent TGF-beta Binding Proteins/genetics , Male , Mesenchymal Stem Cells/physiology , Mice , Mice, Knockout , Middle Aged , Repressor Proteins/genetics , Ribonuclease III/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...