Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.483
Filter
1.
Fluids Barriers CNS ; 21(1): 53, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956598

ABSTRACT

AQP4 is expressed in the endfeet membranes of subpial and perivascular astrocytes and in the ependymal cells that line the ventricular system. The sporadic appearance of obstructive congenital hydrocephalus (OCHC) has been observed in the offspring of AQP4-/- mice (KO) due to stenosis of Silvio's aqueduct. Here, we explore whether the lack of AQP4 expression leads to abnormal development of ependymal cells in the aqueduct of mice. We compared periaqueductal samples from wild-type and KO mice. The microarray-based transcriptome analysis reflected a large number of genes with differential expression (809). Gene sets (GS) associated with ependymal development, ciliary function and the immune system were specially modified qPCR confirmed reduced expression in the KO mice genes: (i) coding for transcription factors for ependymal differentiation (Rfx4 and FoxJ1), (ii) involved in the constitution of the central apparatus of the axoneme (Spag16 and Hydin), (iii) associated with ciliary assembly (Cfap43, Cfap69 and Ccdc170), and (iv) involved in intercellular junction complexes of the ependyma (Cdhr4). By contrast, genes such as Spp1, Gpnmb, Itgax, and Cd68, associated with a Cd11c-positive microglial population, were overexpressed in the KO mice. Electron microscopy and Immunofluorescence of vimentin and γ-tubulin revealed a disorganized ependyma in the KO mice, with changes in the intercellular complex union, unevenly orientated cilia, and variations in the planar cell polarity of the apical membrane. These structural alterations translate into reduced cilia beat frequency, which might alter cerebrospinal fluid movement. The presence of CD11c + microglia cells in the periaqueductal zone of mice during the first postnatal week is a novel finding. In AQP4-/- mice, these cells remain present around the aqueduct for an extended period, showing peak expression at P11. We propose that these cells play an important role in the normal development of the ependyma and that their overexpression in KO mice is crucial to reduce ependyma abnormalities that could otherwise contribute to the development of obstructive hydrocephalus.


Subject(s)
Aquaporin 4 , Ependyma , Hydrocephalus , Mice, Knockout , Microglia , Animals , Ependyma/metabolism , Ependyma/pathology , Hydrocephalus/metabolism , Hydrocephalus/genetics , Hydrocephalus/pathology , Microglia/metabolism , Aquaporin 4/metabolism , Aquaporin 4/genetics , Mice , Cerebral Aqueduct/metabolism , Cerebral Aqueduct/pathology , CD11 Antigens/metabolism , CD11 Antigens/genetics , Mice, Inbred C57BL
2.
Biochem Biophys Res Commun ; 720: 150077, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38759303

ABSTRACT

Hericenone C is one of the most abundant secondary metabolites derived from Hericium erinaceus, under investigation for medicinal properties. Here, we report that Hericenone C inhibits the second phase of formalin-induced nociceptive behavior in mice. As the second phase is involved in inflammation, in a mechanistic analysis on cultured cells targeting NF-κB response element (NRE): luciferase (Luc)-expressing cells, lipopolysaccharide (LPS)-induced NRE::Luc luciferase activity was found to be significantly inhibited by Hericenone C. Phosphorylation of p65, which is involved in the inflammatory responses of the NF-κB signaling pathway, was also induced by LPS and significantly reduced by Hericenone C. Additionally, in mice, the number of CD11c-positive cells increased in the paw during the peak of the second phase of the formalin test, which decreased upon Hericenone C intake. Our findings confirm the possibility of Hericenone C as a novel therapeutic target for pain-associated inflammation.


Subject(s)
Epidermis , Formaldehyde , Animals , Phosphorylation/drug effects , Mice , Male , Epidermis/metabolism , Epidermis/drug effects , Transcription Factor RelA/metabolism , CD11 Antigens/metabolism , Nociception/drug effects , Humans
3.
J Infect Dis ; 230(2): 336-345, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38324907

ABSTRACT

Early innate immune responses play an important role in determining the protective outcome of Mycobacterium tuberculosis (Mtb) infection. Nuclear factor κB (NF-κB) signaling in immune cells regulates the expression of key downstream effector molecules that mount early antimycobacterial responses. Using conditional knockout mice, we studied the effect of abrogation of NF-κB signaling in different myeloid cell types and its impact on Mtb infection. Our results show that the absence of IKK2-mediated signaling in all myeloid cells resulted in increased susceptibility to Mtb infection. In contrast, the absence of IKK2-mediated signaling in CD11c+ myeloid cells induced early proinflammatory cytokine responses, enhanced the recruitment of myeloid cells, and mediated early resistance to Mtb. Abrogation of IKK2 in MRP8-expressing neutrophils did not affect disease pathology or Mtb control. Thus, we describe an early immunoregulatory role for NF-κB signaling in CD11c-expressing phagocytes and a later protective role for NF-κB in LysM-expressing cells during Mtb infection.


Subject(s)
CD11c Antigen , Mice, Knockout , Mycobacterium tuberculosis , NF-kappa B , Phagocytes , Signal Transduction , Tuberculosis , Animals , Mycobacterium tuberculosis/immunology , NF-kappa B/metabolism , Phagocytes/immunology , Phagocytes/metabolism , Tuberculosis/immunology , Tuberculosis/microbiology , Mice , CD11c Antigen/metabolism , I-kappa B Kinase/metabolism , I-kappa B Kinase/genetics , Mice, Inbred C57BL , Inflammation/metabolism , Inflammation/immunology , Cytokines/metabolism , Neutrophils/immunology , Neutrophils/metabolism , CD11 Antigens
4.
Circulation ; 149(21): 1670-1688, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38314577

ABSTRACT

BACKGROUND: Preeclampsia is a serious disease of pregnancy that lacks early diagnosis methods or effective treatment, except delivery. Dysregulated uterine immune cells and spiral arteries are implicated in preeclampsia, but the mechanistic link remains unclear. METHODS: Single-cell RNA sequencing and spatial transcriptomics were used to identify immune cell subsets associated with preeclampsia. Cell-based studies and animal models including conditional knockout mice and a new preeclampsia mouse model induced by recombinant mouse galectin-9 were applied to validate the pathogenic role of a CD11chigh subpopulation of decidual macrophages (dMφ) and to determine its underlying regulatory mechanisms in preeclampsia. A retrospective preeclampsia cohort study was performed to determine the value of circulating galectin-9 in predicting preeclampsia. RESULTS: We discovered a distinct CD11chigh dMφ subset that inhibits spiral artery remodeling in preeclampsia. The proinflammatory CD11chigh dMφ exhibits perivascular enrichment in the decidua from patients with preeclampsia. We also showed that trophoblast-derived galectin-9 activates CD11chigh dMφ by means of CD44 binding to suppress spiral artery remodeling. In 3 independent preeclampsia mouse models, placental and plasma galectin-9 levels were elevated. Galectin-9 administration in mice induces preeclampsia-like phenotypes with increased CD11chigh dMφ and defective spiral arteries, whereas galectin-9 blockade or macrophage-specific CD44 deletion prevents such phenotypes. In pregnant women, increased circulating galectin-9 levels in the first trimester and at 16 to 20 gestational weeks can predict subsequent preeclampsia onset. CONCLUSIONS: These findings highlight a key role of a distinct perivascular inflammatory CD11chigh dMφ subpopulation in the pathogenesis of preeclampsia. CD11chigh dMφ activated by increased galectin-9 from trophoblasts suppresses uterine spiral artery remodeling, contributing to preeclampsia. Increased circulating galectin-9 may be a biomarker for preeclampsia prediction and intervention.


Subject(s)
Decidua , Galectins , Macrophages , Pre-Eclampsia , Vascular Remodeling , Pre-Eclampsia/metabolism , Pre-Eclampsia/immunology , Pregnancy , Female , Animals , Galectins/metabolism , Macrophages/metabolism , Macrophages/immunology , Macrophages/pathology , Mice , Humans , Decidua/metabolism , Decidua/pathology , Mice, Knockout , Uterus/metabolism , Uterus/blood supply , Disease Models, Animal , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Retrospective Studies , Mice, Inbred C57BL , CD11 Antigens
5.
JCI Insight ; 7(19)2022 10 10.
Article in English | MEDLINE | ID: mdl-36214220

ABSTRACT

Intercellular communication is critical for homeostasis in mammalian systems, including the gastrointestinal (GI) tract. Exosomes are nanoscale lipid extracellular vesicles that mediate communication between many cell types. Notably, the roles of immune cell exosomes in regulating GI homeostasis and inflammation are largely uncharacterized. By generating mouse strains deficient in cell-specific exosome production, we demonstrate deletion of the small GTPase Rab27A in CD11c+ cells exacerbated murine colitis, which was reversible through administration of DC-derived exosomes. Profiling RNAs within colon exosomes revealed a distinct subset of miRNAs carried by colon- and DC-derived exosomes. Among antiinflammatory exosomal miRNAs, miR-146a was transferred from gut immune cells to myeloid and T cells through a Rab27-dependent mechanism, targeting Traf6, IRAK-1, and NLRP3 in macrophages. Further, we have identified a potentially novel mode of exosome-mediated DC and macrophage crosstalk that is capable of skewing gut macrophages toward an antiinflammatory phenotype. Assessing clinical samples, RAB27A, select miRNAs, and RNA-binding proteins that load exosomal miRNAs were dysregulated in ulcerative colitis patient samples, consistent with our preclinical mouse model findings. Together, our work reveals an exosome-mediated regulatory mechanism underlying gut inflammation and paves the way for potential use of miRNA-containing exosomes as a novel therapeutic for inflammatory bowel disease.


Subject(s)
CD11 Antigens , Colitis , Exosomes , Inflammation , Myeloid Cells , Animals , CD11 Antigens/genetics , CD11 Antigens/immunology , Colitis/genetics , Colitis/immunology , Exosomes/genetics , Exosomes/immunology , Inflammation/genetics , Inflammation/immunology , Inflammatory Bowel Diseases/immunology , Intestines/immunology , Lipids , Mammals/genetics , Mammals/immunology , Mice , MicroRNAs/immunology , Monomeric GTP-Binding Proteins/immunology , Myeloid Cells/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , TNF Receptor-Associated Factor 6/immunology
6.
J Invest Dermatol ; 142(9): 2446-2454.e3, 2022 09.
Article in English | MEDLINE | ID: mdl-35300973

ABSTRACT

The cytokine TGFß1 induces epidermal Langerhans cell (LC) differentiation from human precursors, an effect mediated through BMPR1a/ALK3 signaling, as revealed from ectopic expression and receptor inhibition studies. Whether TGFß1‒BMPR1a signaling is required for LC differentiation in vivo remained incompletely understood. We found that TGFß1-deficient mice show defective perinatal expansion and differentiation of LCs. LCs can be identified within the normal healthy human epidermis by anti-BMPR1a immunohistology staining. Deletion of BMPR1a in all (vav+) hematopoietic cells revealed that BMPR1a is required for the efficient TGFß1-dependent generation of CD207+ LC-like cells from CD11c+ intermediates in vitro. Similarly, BMPR1a was required for the optimal induction of CD207 by preformed major histocompatibility complex II‒positive epidermal resident LC precursors in the steady state. BMPR1a expression is strongly upregulated in epidermal cells in psoriatic lesions, and BMPR1aΔCD11c mice showed a defect in the resolution phase of allergic and psoriatic skin inflammation. Moreover, whereas LCs from these mice expressed CD207, BMPR1a counteracted LC activation and migration from skin explant cultures. Therefore, TGFß1‒BMPR1a signaling seems to be required for the efficient induction of CD207 during LC differentiation in the steady state, and bone marrow‒derived lesional CD11c+ cells may limit established skin inflammation through enhanced BMPR1a signaling.


Subject(s)
Bone Morphogenetic Protein Receptors, Type I , Dermatitis , Langerhans Cells , Animals , Antigens, CD/metabolism , Antigens, Surface , Bone Morphogenetic Protein Receptors, Type I/genetics , CD11 Antigens , CD11c Antigen/metabolism , Cell Differentiation , Dermatitis/metabolism , Epidermis/metabolism , Inflammation/metabolism , Langerhans Cells/metabolism , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Mannose-Binding Lectins/metabolism , Mice
7.
Science ; 376(6588): 86-90, 2022 04.
Article in English | MEDLINE | ID: mdl-35357926

ABSTRACT

Neuropathic pain is often caused by injury and diseases that affect the somatosensory system. Although pain development has been well studied, pain recovery mechanisms remain largely unknown. Here, we found that CD11c-expressing spinal microglia appear after the development of behavioral pain hypersensitivity following nerve injury. Nerve-injured mice with spinal CD11c+ microglial depletion failed to recover spontaneously from this hypersensitivity. CD11c+ microglia expressed insulin-like growth factor-1 (IGF1), and interference with IGF1 signaling recapitulated the impairment in pain recovery. In pain-recovered mice, the depletion of CD11c+ microglia or the interruption of IGF1 signaling resulted in a relapse in pain hypersensitivity. Our findings reveal a mechanism for the remission and recurrence of neuropathic pain, providing potential targets for therapeutic strategies.


Subject(s)
Chronic Pain/physiopathology , Hyperalgesia/physiopathology , Microglia/physiology , Neuralgia/physiopathology , Peripheral Nerve Injuries/physiopathology , Spinal Cord/physiopathology , Animals , Bacterial Proteins/genetics , CD11 Antigens/genetics , CD11 Antigens/metabolism , Female , Luminescent Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Recurrence
8.
J Int Med Res ; 50(3): 3000605211039480, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35287505

ABSTRACT

OBJECTIVE: Atherosclerosis (AS) is a life-threatening disease in aging populations worldwide. However, the molecular and gene regulation mechanisms of AS are still unclear. This study aimed to identify gene expression differences between atheroma plaques and normal tissues in humans. METHODS: The expression profiling dataset GSE43292 was obtained from the Gene Expression Omnibus (GEO) dataset. The differentially expressed genes (DEGs) were identified between the atheroma plaques and normal tissues via GEO2R, and functional annotation of the DEGs was performed by GSEA. STRING and MCODE plug-in of Cytoscape were used to construct a protein-protein interaction (PPI) network and analyze hub genes. Finally, quantitative polymerase chain reaction (qPCR) was performed to verify the hub genes. RESULTS: Overall, 134 DEGs were screened. Functional annotation demonstrated that these DEGs were mainly enriched in sphingolipid metabolism, apoptosis, lysosome, and more. Six hub genes were identified from the PPI network: ITGAX, CCR1, IL1RN, CXCL10, CD163, and MMP9. qPCR analysis suggested that the relative expression levels of the six hub genes were significantly higher in AS samples. CONCLUSIONS: We used bioinformatics to identify six hub genes: ITGAX, CCR1, IL1RN, CXCL10, CD163, and MMP9. These hub genes are potential promising diagnostic and therapeutic targets for AS.


Subject(s)
Atherosclerosis , CD11 Antigens/genetics , Gene Expression Profiling , Receptors, CCR1 , Atherosclerosis/diagnosis , Atherosclerosis/genetics , Biomarkers/metabolism , Gene Regulatory Networks , Humans , Protein Interaction Maps , Receptors, CCR1/genetics
9.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35177477

ABSTRACT

Expression of Itgax (encoding the CD11c surface protein) and Spp1 (encoding osteopontin; OPN) has been associated with activated microglia that can develop in healthy brains and some neuroinflammatory disorders. However, whether CD11c and OPN expression is a consequence of microglial activation or represents a portion of the genetic program expressed by a stable microglial subset is unknown. Here, we show that OPN production in the brain is confined to a small CD11c+ microglial subset that differentiates from CD11c- precursors in perinatal life after uptake of apoptotic neurons. Our analysis suggests that coexpression of OPN and CD11c marks a microglial subset that is expressed at birth and persists into late adult life, independent of environmental activation stimuli. Analysis of the contribution of OPN to the intrinsic functions of this CD11c+ microglial subset indicates that OPN is required for subset stability and the execution of phagocytic and proinflammatory responses, in part through OPN-dependent engagement of the αVß3-integrin receptor. Definition of OPN-producing CD11c+ microglia as a functional microglial subset provides insight into microglial differentiation in health and disease.


Subject(s)
CD11 Antigens/metabolism , Microglia/physiology , Osteopontin/metabolism , Animals , Brain/metabolism , CD11 Antigens/genetics , Female , Gene Expression/genetics , Gene Expression Regulation/genetics , Inflammation/metabolism , Macrophage Activation , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Neurogenesis , Osteopontin/genetics , Phagocytes/metabolism , Transcriptome/genetics
10.
J Leukoc Biol ; 111(5): 943-952, 2022 05.
Article in English | MEDLINE | ID: mdl-35141942

ABSTRACT

Intestinal eosinophils are implicated in the inflammatory pathology of eosinophilic gastrointestinal diseases and inflammatory bowel diseases. Eosinophils also contribute to intestinal immunologic and tissue homeostasis and host defense. Recent studies in allergic airway disease suggest functional subphenotypes of eosinophils may underly their pathogenic versus protective roles. However, subphenotypes of intestinal eosinophils have not been defined and are complicated by their constitutive expression of the putative eosinophil inflammatory marker CD11c. Here, we propose a framework for subphenotype characterization of intestinal eosinophils based on relative intensity of surface CD11c expression. Using this flow cytometry framework in parallel with histology and BrdU tracing, we characterize intestinal eosinophil subphenotypes and monitor their plasticity at baseline and within the context of acute allergic and chronic systemic inflammation. Data reveal a conserved continuum of CD11c expression amongst intestinal eosinophils in health and acute disease states that overall tracked with other markers of activation. Oral allergen challenge induced recruitment of eosinophils into small intestinal lamina propria surrounding crypts, followed by in situ induction of CD11c expression in parallel with eosinophil redistribution into intestinal villi. Allergen challenge also elicited eosinophil transepithelial migration and the appearance of CD11clo CD11bhi eosinophils in the intestinal lumen. Chronic inflammation driven by overexpression of TNFα led to a qualitative shift in the relative abundance of CD11c-defined eosinophil subphenotypes favoring CD11chi -expressing eosinophils. These findings provide new insights into heterogeneity of intestinal tissue eosinophils and offer a framework for measuring and tracking eosinophil subphenotype versatility in situ in health and disease.


Subject(s)
CD11 Antigens/metabolism , Eosinophils , Hypersensitivity , Allergens , Animals , Biomarkers/metabolism , CD11c Antigen/metabolism , Eosinophils/metabolism , Inflammation/pathology , Mice
11.
Reproduction ; 163(2): 107-118, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35038314

ABSTRACT

Recurrent implantation failure (RIF) is a challenge in the field of reproductive medicine, but mechanisms for its occurrence remain still unclear. Long non-coding RNAs (lncRNAs) have been found to play a vital role in many different diseases. In recent years, the differentially expressed lncRNAs have been reported in endometrial tissues. Here, we profiled dysregulated lncRNAs and mRNAs in the endometrial tissues of RIF patients and performed correlation analysis. We found that LINC02190 was upregulated in RIF endometrium and was bound to the integrin αD (ITGAD) mRNA promoter. Immunofluorescence assays were used to detect the location of ITGAD in the Ishikawa cell line and patients' endometrial biopsies. Overexpressed LINC02190 could decrease the expression of ITGAD and the adhesion rate of Ishikawa and JAR cells. Knockdown of the expression of LINC02190 significantly increased the ITGAD level, as well as the adhesion rate of Ishikawa and JAR cells. Furthermore, we demonstrated that the 150-250 bps of LINC02190 were the cis-elements involved in the regulation of ITGAD promoter activities. In conclusion, the results demonstrated that LINC02190 plays an important role in the occurrence of RIF, and the molecular mechanism may be associated with the embryo-endometrial attachment mediated by ITGAD. This study emphasizes the importance of lncRNAs in the occurrence of RIF and provides a potential new biomarker for diagnosis and therapies.


Subject(s)
Integrins , RNA, Long Noncoding , CD11 Antigens , Embryo Implantation/genetics , Endometrium/metabolism , Female , Humans , Integrin alpha Chains , Integrins/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics
12.
Sci Rep ; 12(1): 931, 2022 01 18.
Article in English | MEDLINE | ID: mdl-35042931

ABSTRACT

Gland macrophages are primed for gland development and functions through interactions within their niche. However, the phenotype, ontogeny, and function of steady-state salivary gland (SG) macrophages remain unclear. We herein identified CD11c+ and CD11c- subsets among CD64+ macrophages in steady-state murine SGs. CD11c- macrophages were predominant in the SGs of embryonic and newborn mice and decreased with advancing age. CD11c+ macrophages were rarely detected in the embryonic period, but rapidly expanded after birth. CD11c+, but not CD11c-, macrophage numbers decreased in mice treated with a CCR2 antagonist, suggesting that CD11c+ macrophages accumulate from bone marrow-derived progenitors in a CCR2-dependent manner, whereas CD11c- macrophages were derived from embryonic progenitors in SGs. CD11c+ and CD11c- macrophages strongly expressed colony-stimulating factor (CSF)-1 receptor, the injection of an anti-CSF-1 receptor blocking antibody markedly reduced both subsets, and SGs strongly expressed CSF-1, indicating the dependency of SG resident macrophage development on CSF-1. The phagocytic activity of SG macrophages was extremely weak; however, the gene expression profile of SG macrophages indicated that SG macrophages regulate gland development and functions in SGs. These results suggest that SG CD11c+ and CD11c- macrophages are developed and instructed to perform SG-specific functions in steady-state SGs.


Subject(s)
CD11 Antigens/genetics , Macrophages/metabolism , Salivary Glands/metabolism , Animals , CD11 Antigens/metabolism , CD11c Antigen/genetics , CD11c Antigen/metabolism , Cell Differentiation , Dendritic Cells/immunology , Female , Gene Expression/genetics , Gene Expression Regulation, Developmental/genetics , Macrophage Colony-Stimulating Factor/metabolism , Macrophages/immunology , Male , Mice/embryology , Mice, Inbred C57BL , Phagocytes/metabolism , Salivary Glands/immunology
13.
Immunity ; 55(2): 290-307.e5, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35090581

ABSTRACT

Tbet+CD11c+ B cells arise during type 1 pathogen challenge, aging, and autoimmunity in mice and humans. Here, we examined the developmental requirements of this B cell subset. In acute infection, T follicular helper (Tfh) cells, but not Th1 cells, drove Tbet+CD11c+ B cell generation through proximal delivery of help. Tbet+CD11c+ B cells developed prior to germinal center (GC) formation, exhibiting phenotypic and transcriptional profiles distinct from GC B cells. Fate tracking revealed that most Tbet+CD11c+ B cells developed independently of GC entry and cell-intrinsic Bcl6 expression. Tbet+CD11c+ and GC B cells exhibited minimal repertoire overlap, indicating distinct developmental pathways. As the infection resolved, Tbet+CD11c+ B cells localized to the marginal zone where splenic retention depended on integrins LFA-1 and VLA-4, forming a competitive memory subset that contributed to antibody production and secondary GC seeding upon rechallenge. Therefore, Tbet+CD11c+ B cells comprise a GC-independent memory subset capable of rapid and robust recall responses.


Subject(s)
B-Lymphocytes/immunology , CD11 Antigens/metabolism , Lymphocyte Subsets/immunology , T Follicular Helper Cells/immunology , T-Box Domain Proteins/metabolism , Virus Diseases/immunology , Animals , Antibodies, Viral/metabolism , B-Lymphocytes/metabolism , Cell Differentiation/immunology , Germinal Center/immunology , Alphainfluenzavirus/immunology , Integrins/metabolism , Lymphocyte Subsets/metabolism , Lymphocytic choriomeningitis virus/immunology , Memory B Cells/immunology , Memory B Cells/metabolism , Mice , Spleen/immunology
14.
Front Immunol ; 12: 775447, 2021.
Article in English | MEDLINE | ID: mdl-34858434

ABSTRACT

CD11d/CD18 is the most recently discovered and least understood ß2 integrin. Known CD11d adhesive mechanisms contribute to both extravasation and mesenchymal migration - two key aspects for localizing peripheral leukocytes to sites of inflammation. Differential expression of CD11d induces differences in monocyte/macrophage mesenchymal migration including impacts on macrophage sub-set migration. The participation of CD11d/CD18 in leukocyte localization during atherosclerosis and following neurotrauma has sparked interest in the development of CD11d-targeted therapeutic agents. Whereas the adhesive properties of CD11d have undergone investigation, the signalling pathways induced by ligand binding remain largely undefined. Underlining each adhesive and signalling function, CD11d is under unique transcriptional control and expressed on a sub-set of predominately tissue-differentiated innate leukocytes. The following review is the first to capture the nearly three decades of CD11d research and discusses the emerging role of CD11d in leukocyte migration and retention during the progression of a staged immune response.


Subject(s)
CD11 Antigens/genetics , CD18 Antigens/genetics , Chemotaxis, Leukocyte/genetics , Chemotaxis, Leukocyte/immunology , Gene Expression Regulation , Integrin alpha Chains/genetics , Leukocytes/physiology , Animals , CD11 Antigens/chemistry , CD11 Antigens/metabolism , CD18 Antigens/chemistry , CD18 Antigens/metabolism , Disease Susceptibility , Drug Development , Humans , Integrin alpha Chains/chemistry , Integrin alpha Chains/metabolism , Lymphopoiesis/genetics , Molecular Targeted Therapy , Organ Specificity/genetics , Phagocytosis/genetics , Phagocytosis/immunology , Protein Binding , Protein Interaction Domains and Motifs , Protein Processing, Post-Translational , Structure-Activity Relationship , Transcription Factors
15.
Front Immunol ; 12: 754316, 2021.
Article in English | MEDLINE | ID: mdl-34721430

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of myeloid progenitor cells that dampen overwhelming adaptive immune responses through multiple mechanisms and are recognized as an attractive novel immune intervention therapy for counteracting the destructive effects of graft- versus -host disease (GVHD) developing after allogeneic bone marrow transplantation (BMT). MDSCs can be produced in great numbers for cellular therapy, but they present a mixture of subsets whose functions in GVHD prevention are undefined. Here, we generated MDSCs in vitro from murine BM cells in the presence of GM-CSF and defined the integrin CD11c as a marker to subdivide MDSCs into two functional subgroups: CD11b+CD11c+ and CD11b+CD11c- MDSCs. Isolated CD11b+CD11c+ and CD11b+CD11c- MDSCs both inhibited alloantigen-stimulated T-cell proliferation in vitro, although CD11b+CD11c+ MDSCs were more efficient and expressed higher levels of different immunosuppressive molecules. Likewise, expression of surface markers such as MHC class II, CD80, CD86, or PD-L1 further delineated both subsets. Most importantly, only the adoptive transfer of CD11b+CD11c+ MDSCs into a single MHC class I-disparate allogeneic BMT model prevented GVHD development and strongly decreased disease-induced mortality, while CD11b+CD11c- MDSCs were totally ineffective. Surprisingly, allogeneic T-cell homing and expansion in lymphatic and GVHD target organs were not affected by cotransplanted CD11b+CD11c+ MDSCs indicating a clear contradiction between in vitro and in vivo functions of MDSCs. However, CD11b+CD11c+ MDSCs shifted immune responses towards type 2 immunity reflected by increased Th2-specific cytokine expression of allogeneic T cells. Induction of type 2 immunity was mandatory for GVHD prevention, since CD11b+CD11c+ MDSCs were ineffective if recipients were reconstituted with STAT6-deficient T cells unable to differentiate into Th2 cells. Most importantly, the beneficial graft- versus -tumor (GVT) effect was maintained in the presence of CD11b+CD11c+ MDSCs since syngeneic tumor cells were efficiently eradicated. Strong differences in the transcriptomic landscape of both subpopulations underlined their functional differences. Defining CD11b+CD11c+ MDSCs as the subset of in vitro-generated MDSCs able to inhibit GVHD development might help to increase efficiency of MDSC therapy and to further delineate relevant target molecules and signaling pathways responsible for GVHD prevention.


Subject(s)
CD11 Antigens/analysis , CD11b Antigen/analysis , Graft vs Host Disease/prevention & control , Myeloid-Derived Suppressor Cells/immunology , Allografts , Animals , Bone Marrow Transplantation/adverse effects , Cell Differentiation/drug effects , Cells, Cultured , Gene Ontology , Graft vs Tumor Effect , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Immunity, Cellular , Immunomagnetic Separation , Mice , Myeloid-Derived Suppressor Cells/chemistry , Myeloid-Derived Suppressor Cells/classification , Myeloid-Derived Suppressor Cells/metabolism , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Radiation Chimera , T-Lymphocyte Subsets/immunology , Transcriptome
16.
Front Immunol ; 12: 729742, 2021.
Article in English | MEDLINE | ID: mdl-34764952

ABSTRACT

A wealth of innate and adaptive immune cells and hormones are involved in mounting tolerance towards the fetus, a key aspect of successful reproduction. We could recently show that the specific cross talk between the pregnancy hormone progesterone and dendritic cells (DCs) is significantly engaged in the generation of CD4+ FoxP3+ regulatory T (Treg) cells while a disruption led to placental alterations and intra-uterine growth restriction. Apart from progesterone, also glucocorticoids affect immune cell functions. However, their functional relevance in the context of pregnancy still needs clarification. We developed a mouse line with a selective knockout of the glucocorticoid receptor (GR) on DCs, utilizing the cre/flox system. Reproductive outcome and maternal immune and endocrine adaptation of Balb/c-mated C57Bl/6 GRflox/floxCD11ccre/wt (mutant) females was assessed on gestation days (gd) 13.5 and 18.5. Balb/c-mated C57Bl/6 GRwt/wtCD11ccre/wt (wt) females served as controls. The number of implantation and fetal loss rate did not differ between groups. However, we identified a significant increase in fetal weight in fetuses from mutant dams. While the frequencies of CD11c+ cells remained largely similar, a decreased expression of co-stimulatory molecules was observed on DCs of mutant females on gd 13.5, along with higher frequencies of CD4+ and CD8+ Treg cells. Histomorphological and gene expression analysis revealed an increased placental volume and an improved functional placental capacity in mice lacking the GR on CD11c+ DCs. In summary, we here demonstrate that the disrupted communication between GCs and DCs favors a tolerant immune microenvironment and improves placental function and fetal development.


Subject(s)
CD11 Antigens/metabolism , Dendritic Cells/metabolism , Fetal Development , Fetus/metabolism , Glucocorticoids/metabolism , Receptors, Glucocorticoid/metabolism , T-Lymphocytes, Regulatory/metabolism , Animals , CD11 Antigens/genetics , Dendritic Cells/immunology , Female , Fetal Weight , Fetus/immunology , Gestational Age , Histocompatibility, Maternal-Fetal , Immune Tolerance , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Placentation , Pregnancy , Progesterone/metabolism , Receptors, Glucocorticoid/genetics , Signal Transduction , T-Lymphocytes, Regulatory/immunology
17.
Front Immunol ; 12: 677994, 2021.
Article in English | MEDLINE | ID: mdl-34557186

ABSTRACT

Neutrophils are key players in innate immunity and originate from the bone marrow of the adult mammalian organism. In mammals, mature neutrophils are released from the bone marrow into the peripheral blood where they circulate until their recruitment to sites of inflammation in a multistep adhesion cascade. Here, adhesion molecules of the ß2 integrin family (CD11/CD18) are critically required for the initial neutrophil adhesion to the inflamed endothelium and several post-adhesion steps allowing their extravasation into the inflamed tissue. Within the mammalian tissue, interstitial neutrophil migration can occur widely independent of ß2 integrins. This is in sharp contrast to neutrophil recruitment in zebrafish larvae (Danio rerio) where neutrophils originate from the caudal hematopoietic tissue and mainly migrate interstitially to sites of lesion upon the early onset of inflammation. However, neutrophils extravasate from the circulation to the inflamed tissue in zebrafish larvae at later-time points. Although zebrafish larvae are a widely accepted model system to analyze neutrophil trafficking in vivo, the functional impact of ß2 integrins for neutrophil trafficking during acute inflammation is completely unknown in this model. In this study, we generated zebrafish with a genetic deletion of CD18, the ß subunit of ß2 integrins, using CRISPR/Cas9 technology. Sequence alignments demonstrated a high similarity of the amino acid sequences between zebrafish and human CD18 especially in the functionally relevant I-like domain. In addition, the cytoplasmic domain of CD18 harbors two highly conserved NXXF motifs suggesting that zebrafish CD18 may share functional properties of human CD18. Accordingly, CD18 knock-out (KO) zebrafish larvae displayed the key symptoms of patients suffering from leukocyte adhesion deficiency (LAD) type I due to defects in ITGB2, the gene for CD18. Importantly, CD18 KO zebrafish larvae showed reduced neutrophil trafficking to sites of sterile inflammation despite the fact that an increased number of neutrophils was detectable in the circulation. By demonstrating the functional importance of CD18 for neutrophil trafficking in zebrafish larvae, our findings shed new light on neutrophil biology in vertebrates and introduce a new model organism for studying LAD type I.


Subject(s)
CD18 Antigens/metabolism , Cell Adhesion/genetics , Cell Movement/genetics , Neutrophil Infiltration/genetics , Neutrophils/immunology , Zebrafish/genetics , Zebrafish/immunology , Amino Acid Sequence , Animals , Animals, Genetically Modified , CD11 Antigens/chemistry , CD11 Antigens/genetics , CD11 Antigens/metabolism , CD18 Antigens/chemistry , CD18 Antigens/genetics , Cell Adhesion/immunology , Cell Movement/immunology , Disease Models, Animal , Gene Deletion , Gene Knockout Techniques , Inflammation/genetics , Inflammation/immunology , Integrins/metabolism , Larva/genetics , Larva/immunology , Leukocyte-Adhesion Deficiency Syndrome/immunology , Neutrophil Infiltration/immunology
18.
Front Immunol ; 12: 712676, 2021.
Article in English | MEDLINE | ID: mdl-34394115

ABSTRACT

Atopic dermatitis (AD) is a common pruritic inflammatory skin disease characterized by impaired epidermal barrier function and dysregulation of Thelper-2 (TH2)-biased immune responses. While the lineage of conventional dendritic cells (cDCs) are implicated to play decisive roles in T-cell immune responses, their requirement for the development of AD remains elusive. Here, we describe the impact of the constitutive loss of cDCs on the progression of AD-like inflammation by using binary transgenic (Tg) mice that constitutively lacked CD11chi cDCs. Unexpectedly, the congenital deficiency of cDCs not only exacerbates the pathogenesis of AD-like inflammation but also elicits immune abnormalities with the increased composition and function of granulocytes and group 2 innate lymphoid cells (ILC2) as well as B cells possibly mediated through the breakdown of the Fms-related tyrosine kinase 3 ligand (Flt3L)-mediated homeostatic feedback loop. Furthermore, the constitutive loss of cDCs accelerates skin colonization of Staphylococcus aureus (S. aureus), that associated with disease flare. Thus, cDCs maintains immune homeostasis to prevent the occurrence of immune abnormalities to maintain the functional skin barrier for mitigating AD flare.


Subject(s)
Dendritic Cells/pathology , Dermatitis, Atopic/congenital , Adaptive Immunity , Animals , CD11 Antigens/analysis , Calcitriol/analogs & derivatives , Calcitriol/therapeutic use , Cell Count , Cytokines/immunology , Dendritic Cells/chemistry , Dendritic Cells/immunology , Dermatitis, Atopic/immunology , Dermatitis, Atopic/pathology , Dermatologic Agents/therapeutic use , Disease Progression , Disease Susceptibility , Eczema/immunology , Eczema/pathology , Feedback, Physiological , Homeostasis/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Specific Pathogen-Free Organisms , Staphylococcal Skin Infections/etiology , Staphylococcus aureus/pathogenicity , Th2 Cells/immunology
19.
J Exp Med ; 218(10)2021 10 04.
Article in English | MEDLINE | ID: mdl-34415994

ABSTRACT

Understanding mechanisms of immune regulation is key to developing immunotherapies for autoimmunity and cancer. We examined the role of mononuclear phagocytes during peripheral T cell regulation in type 1 diabetes and melanoma. MERTK expression and activity in mononuclear phagocytes in the pancreatic islets promoted islet T cell regulation, resulting in reduced sensitivity of T cell scanning for cognate antigen in prediabetic islets. MERTK-dependent regulation led to reduced T cell activation and effector function at the disease site in islets and prevented rapid progression of type 1 diabetes. In human islets, MERTK-expressing cells were increased in remaining insulin-containing islets of type 1 diabetic patients, suggesting that MERTK protects islets from autoimmune destruction. MERTK also regulated T cell arrest in melanoma tumors. These data indicate that MERTK signaling in mononuclear phagocytes drives T cell regulation at inflammatory disease sites in peripheral tissues through a mechanism that reduces the sensitivity of scanning for antigen leading to reduced responsiveness to antigen.


Subject(s)
Autoimmunity/physiology , Islets of Langerhans/enzymology , Phagocytes/physiology , T-Lymphocytes/immunology , c-Mer Tyrosine Kinase/immunology , Adenine/analogs & derivatives , Adenine/pharmacology , Animals , Antigen-Presenting Cells/immunology , Antigens/immunology , Antigens/metabolism , CD11 Antigens/metabolism , Diabetes Mellitus, Experimental/enzymology , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Type 1/enzymology , Diabetes Mellitus, Type 1/pathology , Female , Humans , Islets of Langerhans/immunology , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Transgenic , Neoplasms, Experimental/enzymology , Neoplasms, Experimental/immunology , Phagocytes/immunology , Piperazines/pharmacology , c-Mer Tyrosine Kinase/genetics , c-Mer Tyrosine Kinase/metabolism
20.
J Exp Med ; 218(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34292313

ABSTRACT

In this study, we detail a novel approach that combines bacterial fitness fluorescent reporter strains with scRNA-seq to simultaneously acquire the host transcriptome, surface marker expression, and bacterial phenotype for each infected cell. This approach facilitates the dissection of the functional heterogeneity of M. tuberculosis-infected alveolar (AMs) and interstitial macrophages (IMs) in vivo. We identify clusters of pro-inflammatory AMs associated with stressed bacteria, in addition to three different populations of IMs with heterogeneous bacterial phenotypes. Finally, we show that the main macrophage populations in the lung are epigenetically constrained in their response to infection, while inter-species comparison reveals that most AMs subsets are conserved between mice and humans. This conceptual approach is readily transferable to other infectious disease agents with the potential for an increased understanding of the roles that different host cell populations play during the course of an infection.


Subject(s)
Macrophages, Alveolar/microbiology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Tuberculosis, Pulmonary/pathology , Animals , Antitubercular Agents/pharmacology , Bronchoalveolar Lavage Fluid/microbiology , CD11 Antigens/immunology , CD11 Antigens/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Bacterial , Heme/metabolism , Host-Pathogen Interactions , Humans , Lung/microbiology , Lung/pathology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/pathology , Mice, Inbred C57BL , Microorganisms, Genetically-Modified , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/pathogenicity , Sequence Analysis, RNA , Single-Cell Analysis , Tuberculosis, Pulmonary/genetics , Tuberculosis, Pulmonary/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL