Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
1.
J Immunol ; 212(2): 245-257, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38047900

ABSTRACT

CD8 T cells are emerging as important mediators in atherosclerosis and cardiovascular disease (CVD). Immune activation may play a particular role in people with HIV (PWH) who are at an increased risk of CVD, even after controlling for known CVD risk factors. Latent CMV infection is associated with increased CVD risk for both PWH and people without HIV, and human CMV-specific CD4 and CD8 T cells are enriched for an immunosenescent phenotype. We previously showed that CMV coinfection in PWH promotes vascular homing and activation of inflammatory CD4 T cells through the CD2-LFA-3 axis. However, the role of CD2/LFA3 costimulation of CD8 T cells in PWH with CMV has yet to be described. In the present study, we demonstrate that CD2 expression on CX3CR1+CD57+CD28- inflammescent CD8 T cells is increased on cells from CMV-seropositive PWH. In vitro CD2/LFA-3 costimulation enhances TCR-mediated activation of these inflammatory CD8 memory T cells. Finally, we show that LFA-3 is highly expressed in aortas of SIV-infected rhesus macaques and in atherosclerotic plaques of people without HIV. Our findings are consistent with a model in which CMV infection enhances CD2 expression on highly proinflammatory CD8 T cells that can then be stimulated by LFA-3 expressed in the vasculature, even in the absence of CD28 costimulation. This model, in which CMV infection exacerbates toxic cytokine and granzyme production by CD8 T cells within the vasculature, highlights a potential therapeutic target in atherosclerosis development and progression, especially for PWH.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Cytomegalovirus Infections , HIV Infections , Animals , Humans , CD28 Antigens/metabolism , HIV Infections/drug therapy , Cytomegalovirus , CD58 Antigens/metabolism , Macaca mulatta , CD8-Positive T-Lymphocytes , CD4-Positive T-Lymphocytes , Atherosclerosis/metabolism
2.
Hum Genet ; 143(1): 19-33, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37994973

ABSTRACT

CD58 plays roles in cell adhesion and co-stimulation with antigen presentation from major histocompatibility complex class II on antigen-presenting cells to T-cell antigen receptors on naïve T cells. CD58 reportedly contributes to the development of various human autoimmune diseases. Recently, genome-wide association studies (GWASs) identified CD58 as a susceptibility locus for autoimmune diseases such as systemic lupus erythematosus (SLE), multiple sclerosis (MS), and primary biliary cholangitis (PBC). However, the primary functional variant and molecular mechanisms of susceptibility to autoimmune diseases in the CD58 locus were not clarified. Here, rs10924104, located in the ZNF35-binding motif within the gene expression regulatory motif, was identified as the primary functional variant for SLE, MS, and PBC among genetic variants showing stronger linkage disequilibrium (LD) with GWAS-lead variants in the CD58 locus. Expression-quantitative trait locus (e-QTL) data for each distinct blood cell type and in vitro functional analysis using the CRISPR/Cas9 system corroborated the functional role of rs10924104 in the upregulation of CD58 transcription by the disease-risk allele. Additionally, the strength of disease susceptibility observed in the CD58 locus could be accounted for by the strength of LD between rs10924104 and each GWAS-lead variant. In conclusion, the present study demonstrated for the first time the existence of a shared autoimmune disease-related primary functional variant (i.e., rs10924104) that regulates the expression of CD58. Clarifying the molecular mechanism of disease susceptibility derived from such a shared genetic background is important for understanding human autoimmune diseases and human immunology.


Subject(s)
Autoimmune Diseases , Lupus Erythematosus, Systemic , Multiple Sclerosis , Humans , Autoimmune Diseases/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Lupus Erythematosus, Systemic/genetics , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , Polymorphism, Single Nucleotide , CD58 Antigens/metabolism
3.
Molecules ; 28(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37836662

ABSTRACT

Human cell surface receptor CD58, also known as lymphocyte function-associated antigen 3 (LFA-3), plays a critical role in the early stages of immune response through interacting with CD2. Recent research identified CD58 as a surface marker of colorectal cancer (CRC), which can upregulate the Wnt pathway and promote self-renewal of colorectal tumor-initiating cells (CT-ICs) by degradation of Dickkopf 3. In addition, it was also shown that knockdown of CD58 significantly impaired tumor growth. In this study, we developed a structure-based virtual screening pipeline using Autodock Vina and binding analysis and identified a group of small molecular compounds having the potential to bind with CD58. Five of them significantly inhibited the growth of the SW620 cell line in the following in vitro studies. Their proposed binding models were further verified by molecular dynamics (MD) simulations, and some pharmaceutically relevant chemical and physical properties were predicted. The hits described in this work may be considered interesting leads or structures for the development of new and more efficient CD58 inhibitors.


Subject(s)
Colorectal Neoplasms , Early Detection of Cancer , Humans , CD2 Antigens/chemistry , CD2 Antigens/metabolism , CD58 Antigens/chemistry , CD58 Antigens/metabolism , Molecular Dynamics Simulation , Colorectal Neoplasms/drug therapy
4.
Immun Inflamm Dis ; 11(10): e1022, 2023 10.
Article in English | MEDLINE | ID: mdl-37904707

ABSTRACT

INTRODUCTION: Low-grade gliomas (LGGs) are currently considered a premalignant condition for high-grade gliomas (HGGs) and are characterized by a relatively intact immune system. Immunotherapeutic modalities may offer a safe and effective treatment option for these patients. However, the CD2-CD58 axis, an important component of the immunological synapse, remains unknown in LGG. METHODS: RNA-seq data from TCGA databases were analyzed. Immune cell infiltration was determined using a single-sample gene set enrichment analysis (ssGSEA) based on integrated immune gene sets from published studies. Kaplan-Meier survival analysis, univariate and multivariate logistic analysis, and the ESTIMATE algorithm were employed to evaluate the impact of the CD2-CD58 axis on adult LGG patients. RESULTS: The expression of the CD2-CD58 axis was found to be elevated with increasing of WHO grade (p < .05). Uni- and multi-variable logistic analysis demonstrated that age, WHO grade, and CD58 levels were associated with poor prognosis in LGG patients with (p < .01). MetaSape pathways analysis revealed the involvement of CD58 in regulating T cell activation, leukocyte-mediated immunity, and the positive regulation of cell activation in WHO grade II and III. CD58 expression correlated with infiltrations of CD4+ lymphocytes, NK cells, and macrophages cells. The ESTIMATE algorithm indicated that patients with high CD58 expression had significantly higher immune scores compared with low CD58 expression in WHO grade II/III, but no statistical difference was observed in WHO grade IV (p < .05). Furthermore, correlation analysis demonstrated the significant association between CD58 and CD274 (r = 0.581, p < .001), HAVCR2 (r = 0.58i7, p < .001), and LGALS9 (r = 0.566, p < .001). Immunohistochemical staining further confirmed the relationship of CD58, HAVCR2, WHO grade, and prognosis in grade II and III patients. CONCLUSION: Overall, our findings highlight the significant association between the CD2-CD58 axis and poor survival in LGG patients. High CD58 expression is implicated in T cell-mediated immune responses as an immunosuppressive factor and affect inhibitory immune checkpoint genes.


Subject(s)
Glioma , Adult , Humans , Glioma/genetics , Glioma/therapy , Immunity, Cellular , Kaplan-Meier Estimate , Lymphocyte Activation , Prognosis , CD2 Antigens/metabolism , CD58 Antigens/metabolism
5.
J Transl Med ; 21(1): 539, 2023 08 12.
Article in English | MEDLINE | ID: mdl-37573318

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide because of rapid progression and high incidence of metastasis or recurrence. Accumulating evidence shows that CD58-expressing tumor cell is implicated in development of various cancers. The present study aimed to reveal the functional significance of CD58 in HCC progression and the underlying mechanisms. METHODS: Immunohistochemical staining (IHC), and western blotting were used to detect the expression of CD58 in HCC tissues and cells. The levels of sCD58 (a soluble form of CD58) in the cell supernatants and serum were assessed by ELISA. CCK-8, colony formation, and xenograft assays were used to detect the function of CD58 on proliferation in vitro and in vivo. Transwell assay and sphere formation assay were performed to evaluate the effect of CD58 and sCD58 on metastasis and self-renewal ability of HCC cells. Western blotting, immunofluorescence (IF), TOP/FOP Flash reporter assay, and subcellular fractionation assay were conducted to investigate the molecular regulation between CD58/sCD58 and AKT/GSK-3ß/ß-catenin axis in HCC cells. RESULTS: CD58 was significantly upregulated in HCC tissues. Elevation of CD58 expression correlated with more satellite foci and vascular invasion, and poorer tumor-free and overall survival in HCC patients. Higher sCD58 levels were in HCC patients' serum compared to healthy individuals. Functionally, CD58 promotes the proliferation of HCC cells in vitro and in vivo. Meanwhile, CD58 and sCD58 induce metastasis, self-renewal and pluripotency in HCC cells in vitro. Mechanistically, CD58 activates the AKT/GSK-3ß/ß-catenin signaling pathway by increasing phosphorylation of AKT or GSK3ß signaling, promoting expression of Wnt/ß-catenin target proteins and TCF/LEF-mediated transcriptional activity. Furthermore, AKT activator SC-79 or inhibitor LY294002 abolished the inhibitory effect of CD58 silencing on the proliferation, metastasis, and stemness of HCC cells. CONCLUSIONS: Taken together, CD58 promotes HCC progression and metastasis via activating the AKT/GSK-3ß/ß-catenin pathway, suggesting that CD58 is a novel prognostic biomarker and therapeutic target for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , beta Catenin/metabolism , Carcinogens , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation , Glycogen Synthase Kinase 3 beta , Liver Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , CD58 Antigens/metabolism
6.
Cancer Cell ; 41(7): 1207-1221.e12, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37327789

ABSTRACT

The cell-autonomous balance of immune-inhibitory and -stimulatory signals is a critical process in cancer immune evasion. Using patient-derived co-cultures, humanized mouse models, and single-cell RNA-sequencing of patient melanomas biopsied before and on immune checkpoint blockade, we find that intact cancer cell-intrinsic expression of CD58 and ligation to CD2 is required for anti-tumor immunity and is predictive of treatment response. Defects in this axis promote immune evasion through diminished T cell activation, impaired intratumoral T cell infiltration and proliferation, and concurrently increased PD-L1 protein stabilization. Through CRISPR-Cas9 and proteomics screens, we identify and validate CMTM6 as critical for CD58 stability and upregulation of PD-L1 upon CD58 loss. Competition between CD58 and PD-L1 for CMTM6 binding determines their rate of endosomal recycling over lysosomal degradation. Overall, we describe an underappreciated yet critical axis of cancer immunity and provide a molecular basis for how cancer cells balance immune inhibitory and stimulatory cues.


Subject(s)
B7-H1 Antigen , Melanoma , Mice , Animals , B7-H1 Antigen/genetics , T-Lymphocytes , CD58 Antigens/chemistry , CD58 Antigens/metabolism , Melanoma/genetics , Melanoma/metabolism , Lymphocyte Activation
7.
Front Immunol ; 13: 1016112, 2022.
Article in English | MEDLINE | ID: mdl-36353616

ABSTRACT

In psoriasis and other inflammatory skin diseases, keratinocytes (KCs) secrete chemokines that attract T cells, which, in turn, cause epidermal hyperplasia by secreting proinflammatory cytokines. To date, it remains unclear whether skin-homing T cells, particularly memory T cells, can also be activated by direct cell contact with KCs. In this study, we demonstrated the ability of primary human KCs to activate human memory T cells directly by transmitting costimulatory signals through the CD6/CD166/CD318 axis. Interestingly, despite being negative for CD80/CD86, KCs initiate a metabolic shift within T cells. Blockade of the CD6/CD166/CD318 axis prevents mammalian target of rapamycin activation and T cell proliferation but promotes oxidative stress and aerobic glycolysis. In addition, it diminishes formation of central memory T cells. Importantly, although KC-mediated costimulation by CD2/CD58 also activates T cells, it cannot compensate for the lack of CD6 costimulation. Therefore, KCs likely differentially regulate T cell functions in the skin through two distinct costimulatory receptors: CD6 and CD2. This may at least in part explain the divergent effects observed when treating inflammatory skin diseases with antibodies to CD6 versus CD2. Moreover, our findings may provide a molecular basis for selective interference with either CD6/CD166/CD318, or CD2/CD58, or both to specifically treat different types of inflammatory skin diseases.


Subject(s)
Antigens, CD , Lymphocyte Activation , Humans , Antigens, CD/metabolism , CD58 Antigens/metabolism , Keratinocytes , Oxidative Stress , TOR Serine-Threonine Kinases/metabolism , T-Lymphocytes/metabolism
8.
Anticancer Res ; 42(11): 5223-5232, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36288878

ABSTRACT

BACKGROUND/AIM: CD58 is an immune adhesion molecule on the cellular surface. It was previously found that a high expression of CD58 predicted a poor prognosis of patients with lower-grade gliomas. Therefore, the aim of this paper was to investigate the association between CD58 and breast cancer. MATERIALS AND METHODS: CD58 gene expression data downloaded from cBioPortal was compared between the different subtypes of breast cancer. Clinical prognosis was examined using Kaplan-Meier analysis and multivariable Cox regression analysis. The association between CD58 expression and immune cell infiltration was estimated using the TIMER 2.0 web platform. Finally, the tumour sphere formation of aldehyde dehydrogenase 1 (ALDH1)high basal-like breast cancer stem cells in which CD58 was knocked down using siRNA was measured. RESULTS: CD58 mRNA was mainly enriched in claudin-low and basal-like subtypes. The high expression of CD58 predicted a good prognosis in patients with luminal A and luminal B breast cancer. This prediction may be due to the association of immune cell infiltration with CD58. Notably, patients with luminal A breast cancer with a high expression of CD58 in association with ALDH1A3 exhibited a good prognosis; however, this did not apply to patients with basal-like breast cancer. The in vitro experiments revealed that knockdown of CD58 inhibited the tumour sphere formation ability of ALDH1high basal-like cancer cells. CONCLUSION: CD58 may function as a potential prognostic biomarker and therapeutic target in ALDH-positive basal-like cancer stem cells.


Subject(s)
Breast Neoplasms , Female , Humans , Aldehyde Dehydrogenase 1 Family , Biomarkers, Tumor/metabolism , Breast Neoplasms/pathology , Claudins , Prognosis , Retinal Dehydrogenase/genetics , Retinal Dehydrogenase/metabolism , RNA, Messenger , RNA, Small Interfering , CD58 Antigens/metabolism
9.
Sci Immunol ; 7(74): eabn6373, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35930657

ABSTRACT

CD2 is largely described to promote T cell activation when engaged by its ligands, CD48 in mice and CD58 in humans, that are present on antigen-presenting cells (APCs). However, both CD48 and CD58 are also expressed on T cells. By generating new knockout mouse strains lacking CD2 or CD48 in the C57BL/6 background, we determined that whereas CD2 was necessary on T cells for T cell activation, its ligand CD48 was not required on APCs. Rather, CD48 was also needed on T cells. One exception was during cytotoxicity, which required CD48 on T cells and APCs. Fluorescence resonance energy transfer (FRET) studies in nonimmune cells provided evidence that cis interactions between CD2 and CD48 existed within individual cells. CD2-CD48 interactions on T cells enabled more robust T cell receptor (TCR) signals, including protein tyrosine phosphorylation. Using T cells from a CD2 knock-in mouse in which a tag was inserted at the carboxyl terminus of CD2, mass spectrometry analyses revealed that the role of CD2 in T cell activation correlated with its ability to interact with components of the TCR complex and the protein tyrosine kinase Lck. CD2-CD58 provided a similar function in human T cells. Thus, our data imply that T cell-intrinsic cis interactions of CD2 with its ligands are required for TCR signaling and T cell activation. Interactions with ligands on APCs contribute during cytotoxicity.


Subject(s)
Antigens, CD , Lymphocyte Activation , T-Lymphocytes , Animals , CD2 Antigens/chemistry , CD2 Antigens/metabolism , CD48 Antigen/metabolism , CD58 Antigens/metabolism , Humans , Ligands , Mice , Mice, Inbred C57BL , Receptors, Antigen, T-Cell/metabolism
10.
J Clin Invest ; 132(17)2022 09 01.
Article in English | MEDLINE | ID: mdl-35881486

ABSTRACT

The in vivo persistence of adoptively transferred T cells is predictive of antitumor response. Identifying functional properties of infused T cells that lead to in vivo persistence and tumor eradication has remained elusive. We profiled CD19-specific chimeric antigen receptor (CAR) T cells as the infusion products used to treat large B cell lymphomas using high-throughput single-cell technologies based on time-lapse imaging microscopy in nanowell grids (TIMING), which integrates killing, cytokine secretion, and transcriptional profiling. Our results show that the directional migration of CD19-specific CAR T cells is correlated with multifunctionality. We showed that CD2 on T cells is associated with directional migration and that the interaction between CD2 on T cells and CD58 on lymphoma cells accelerates killing and serial killing. Consistent with this, we observed that elevated CD58 expression on pretreatment tumor samples in patients with relapsed or refractory large B cell lymphomas treated with CD19-specific CAR T cell therapy was associated with complete clinical response and survival. These results highlight the importance of studying dynamic T cell-tumor cell interactions in identifying optimal antitumor responses.


Subject(s)
CD2 Antigens/metabolism , CD58 Antigens/metabolism , Lymphoma, Large B-Cell, Diffuse , T-Lymphocytes , Antigens, CD19 , Humans , Immunotherapy, Adoptive/methods , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/therapy , Receptors, Antigen, T-Cell , Single-Cell Analysis
11.
Virchows Arch ; 481(4): 659-663, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35622145

ABSTRACT

CD2 is a costimulatory protein expressed in all mature T/NK-cells, in particular memory T-cells. CD58 (or LFA-3) is the receptor for CD2 and is ubiquitously expressed. CD2-CD58 interaction has key functions in T-cell activation and organization of the immunological synapse between T- and antigen-presenting cells. Cancer cells have developed multiple mechanisms to evade immune surveillance. Loss of CD58 expression is one frequently reported in diffuse large B-cell lymphomas (DLBCL). On the other hand, in non-hematological neoplasms, tumor infiltrating lymphocytes (TILs) with reduced expression of CD2 have been associated with defective cytotoxicity and T-cell exhaustion. Here, we reported a case of DLBCL involving the jejunal mucosa associated with a rim of cytotoxic reactive T-cells with features of immune evasion (CD2- and TCR-) and T-cell exhaustion (PD1 + high). This case likely exemplifies a previously unrecognized immune evasion mechanism in lymphoma involving a decreased CD2 expression in the lymphoma-associated T-cells.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Lymphoma, T-Cell , CD2 Antigens/metabolism , CD58 Antigens/metabolism , Humans , Immune Evasion , Lymphocyte Activation , Receptors, Antigen, T-Cell
12.
J Pharmacol Sci ; 149(3): 124-138, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35641025

ABSTRACT

Protein-protein interactions (PPI) of co-stimulatory molecules CD2-CD58 are important in the early stage of an immune response, and increased expression of these co-stimulatory molecules is observed in the synovial region of joints in rheumatoid arthritis (RA) patients. A CD2 epitope region that binds to CD58 was grafted on to sunflower trypsin inhibitor (SFTI) template structure to inhibit CD2-CD58 PPI. The peptide was incorporated with an organic moiety dibenzofuran (DBF) in its structure. The designed peptidomimetic was studied for its ability to inhibit CD2-CD58 interactions in vitro, and its thermal and enzymatic stability was evaluated. Stability studies indicated that the grafted peptidomimetic was stable against trypsin cleavage. In vivo studies using the collagen-induced arthritis (CIA) model in mice indicated that the peptidomimetic was able to slow down the progress of arthritis, an autoimmune disease in the mice model. These studies suggest that with the grafting of organic functional groups in the stable peptide template SFTI stabilizes the peptide structure, and these peptides can be used as a template to design stable peptides for therapeutic purposes.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Helianthus , Peptidomimetics , Animals , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , CD58 Antigens/chemistry , CD58 Antigens/metabolism , Helianthus/chemistry , Helianthus/metabolism , Humans , Immunity , Immunomodulation , Mice , Peptides/pharmacology , Peptides, Cyclic/metabolism , Peptides, Cyclic/pharmacology , Peptidomimetics/pharmacology , Peptidomimetics/therapeutic use , Trypsin Inhibitors/therapeutic use
13.
Technol Cancer Res Treat ; 20: 15330338211052152, 2021.
Article in English | MEDLINE | ID: mdl-34738847

ABSTRACT

Background: Cytogenetics at diagnosis is the most important prognostic factor for adult acute myeloid leukemia (AML), but nearly 50% of AML patients who exhibit cytogenetically normal AML (CN-AML) do not undergo effective risk stratification. Therefore, the development of potential biomarkers to further define risk stratification for CN-AML patients is worth exploring. Methods: Transcriptome data from 163 cases in the GSE12417-GPL96 dataset and 104 CN-AML patient cases in the GSE71014-GPL10558 dataset were downloaded from the Gene Expression Omnibus database for overall survival (OS) analysis and validation. Results: The combination of Wilms tumor 1 (WT1) and cluster of diffraction 58 (CD58) can predict the prognosis of CN-AML patients. High expression of WT1 and low expression of CD58 were associated with poor OS in CN-AML. Notably, when WT1 and CD58 were used to concurrently predict OS, CN-AML patients were divided into three groups: low risk, WT1lowCD58high; intermediate risk, WT1highCD58high or WT1lowCD58low; and high risk, WT1highCD58low. Compared with low-risk patients, intermediate- and high-risk patients had shorter survival time and worse OS. Furthermore, a nomogram model constructed with WT1 and CD58 may personalize and reveal the 1-, 2-, 3-, 4-, and 5-year OS rate of CN-AML patients. Both time-dependent receiver operating characteristics and calibration curves suggested that the nomogram model demonstrated good performance. Conclusion: Higher expression of WT1 with lower CD58 expression may be a potential biomarker for risk stratification of CN-AML patients. Moreover, a nomogram model constructed with WT1 and CD58 may personalize and reveal the 1-, 2-, 3-, 4-, and 5-year OS rates of CN-AML patients.


Subject(s)
Biomarkers, Tumor , CD58 Antigens/genetics , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute/genetics , WT1 Proteins/genetics , CD58 Antigens/metabolism , Computational Biology , Cytogenetic Analysis , Databases, Genetic , Gene Expression Profiling , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/metabolism , Prognosis , Proportional Hazards Models , Transcriptome , WT1 Proteins/metabolism , Workflow
14.
Nat Genet ; 53(3): 332-341, 2021 03.
Article in English | MEDLINE | ID: mdl-33649592

ABSTRACT

Resistance to immune checkpoint inhibitors (ICIs) is a key challenge in cancer therapy. To elucidate underlying mechanisms, we developed Perturb-CITE-sequencing (Perturb-CITE-seq), enabling pooled clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 perturbations with single-cell transcriptome and protein readouts. In patient-derived melanoma cells and autologous tumor-infiltrating lymphocyte (TIL) co-cultures, we profiled transcriptomes and 20 proteins in ~218,000 cells under ~750 perturbations associated with cancer cell-intrinsic ICI resistance (ICR). We recover known mechanisms of resistance, including defects in the interferon-γ (IFN-γ)-JAK/STAT and antigen-presentation pathways in RNA, protein and perturbation space, and new ones, including loss/downregulation of CD58. Loss of CD58 conferred immune evasion in multiple co-culture models and was downregulated in tumors of melanoma patients with ICR. CD58 protein expression was not induced by IFN-γ signaling, and CD58 loss conferred immune evasion without compromising major histocompatibility complex (MHC) expression, suggesting that it acts orthogonally to known mechanisms of ICR. This work provides a framework for the deciphering of complex mechanisms by large-scale perturbation screens with multimodal, single-cell readouts, and discovers potentially clinically relevant mechanisms of immune evasion.


Subject(s)
CD58 Antigens/immunology , Drug Resistance, Neoplasm/immunology , Melanoma/pathology , Single-Cell Analysis/methods , Tumor Escape , CD58 Antigens/genetics , CD58 Antigens/metabolism , CRISPR-Cas Systems , Coculture Techniques , Computational Biology/methods , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Epitopes/genetics , Gene Knockout Techniques , Humans , Immune Checkpoint Inhibitors/pharmacology , Interferon-gamma/immunology , Interferon-gamma/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Melanoma/drug therapy , Melanoma/immunology , Sequence Analysis, RNA , Tumor Escape/genetics
15.
Front Immunol ; 12: 740613, 2021.
Article in English | MEDLINE | ID: mdl-35126344

ABSTRACT

The oral mucosa is constantly exposed to a plethora of stimuli including food antigens, commensal microbiota and pathogens, requiring distinct immune responses. We previously reported that human oral epithelial cells (OECs) suppress immune responses to bacteria, using H413 and TR146 OEC lines and primary OECs in co-culture with dendritic cells (DCs) and T cells (OEC-conditioned cells). OECs reduced DCs expression of CD80/CD86 and IL-12/TNFα release and impaired T cell activation. Here, we further evaluated the immunosuppression by these OECs and investigated the underlying mechanisms. OEC-conditioned DCs did not induce CD4 T cell polarization towards Treg, judging by the absence of FoxP3 expression. OECs also repressed T-bet/IFNγ expression in CD4 and CD8 T cells activated by DCs or anti-CD3/CD28 antibodies. This inhibition depended on OEC:T cell ratio and IFNγ repression occurred at the transcriptional level. Time-lapse experiments showed that OECs inhibited early steps of T cell activation, consistent with OECs inability to suppress T cells stimulated with PMA/ionomycin. Blocking CD40/CD40L, CD58/CD2 and PD-L1/PD-1 interactions with specific antibodies did not disrupt T cell suppression by OECs. However, preventing prostaglandin E2 (PGE2) synthesis or blocking PGE2 binding to the cognate EP2/EP4 receptors, restored IFNγ and TNFα production in OEC-conditioned T cells. Finally, treating OECs with poly(I:C), which simulates viral infections, limited T cell suppression. Overall, these results point to an inherent ability of OECs to suppress immune responses, which can nonetheless be eluded when OECs are under direct assault.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Dinoprostone/metabolism , Epithelial Cells/immunology , Epithelial Cells/metabolism , T-Lymphocytes, Regulatory/metabolism , CD2 Antigens/immunology , CD2 Antigens/metabolism , CD4-Positive T-Lymphocytes/immunology , CD40 Antigens/immunology , CD40 Antigens/metabolism , CD40 Ligand/immunology , CD40 Ligand/metabolism , CD58 Antigens/metabolism , CD8-Positive T-Lymphocytes/immunology , Cell Line , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dinoprostone/immunology , Humans , Immune Tolerance/immunology , Immunity/immunology , Interferon-gamma/immunology , Interferon-gamma/metabolism , Interleukin-12/immunology , Interleukin-12/metabolism , Lymphocyte Activation/immunology , T-Lymphocytes, Regulatory/immunology , Transcription, Genetic/immunology
16.
Chem Biol Drug Des ; 97(3): 607-627, 2021 03.
Article in English | MEDLINE | ID: mdl-32946175

ABSTRACT

Peptides were designed to inhibit the protein-protein interaction of CD2 and CD58 to modulate the immune response. This work involved the design and synthesis of eight different peptides by replacing each amino acid residue in peptide 6 with alanine as well as grafting the peptide to the sunflower trypsin-inhibitor framework. From the alanine scanning studies, mutation at position 2 of the peptide was shown to result in increased potency to inhibit cell adhesion interactions. The most potent peptide from the alanine scanning was further studied for its detailed three-dimensional structure and binding to CD58 protein using surface plasmon resonance and flow cytometry. This peptide was used to graft to the sunflower trypsin inhibitor to improve the stability of the peptide. The grafted peptide, SFTI-a1, was further studied for its potency as well as its thermal, chemical, and enzymatic stability. The grafted peptide exhibited improved activity compared to our previously grafted peptide and was stable against thermal and enzymatic degradation.


Subject(s)
CD2 Antigens/metabolism , CD58 Antigens/metabolism , Peptides, Cyclic/chemistry , Amino Acid Sequence , Binding Sites , Binding, Competitive , CD2 Antigens/chemistry , CD58 Antigens/chemistry , Cell Adhesion/drug effects , Cell Line , Drug Design , Humans , Molecular Docking Simulation , Peptides, Cyclic/metabolism , Peptides, Cyclic/pharmacology , Protein Binding , Protein Interaction Maps/drug effects , Protein Stability , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Trypsin Inhibitors/pharmacology
17.
Nat Immunol ; 21(10): 1232-1243, 2020 10.
Article in English | MEDLINE | ID: mdl-32929275

ABSTRACT

The CD2-CD58 recognition system promotes adhesion and signaling and counters exhaustion in human T cells. We found that CD2 localized to the outer edge of the mature immunological synapse, with cellular or artificial APC, in a pattern we refer to as a 'CD2 corolla'. The corolla captured engaged CD28, ICOS, CD226 and SLAM-F1 co-stimulators. The corolla amplified active phosphorylated Src-family kinases (pSFK), LAT and PLC-γ over T cell receptor (TCR) alone. CD2-CD58 interactions in the corolla boosted signaling by 77% as compared with central CD2-CD58 interactions. Engaged PD-1 invaded the CD2 corolla and buffered CD2-mediated amplification of TCR signaling. CD2 numbers and motifs in its cytoplasmic tail controlled corolla formation. CD8+ tumor-infiltrating lymphocytes displayed low expression of CD2 in the majority of people with colorectal, endometrial or ovarian cancer. CD2 downregulation may attenuate antitumor T cell responses, with implications for checkpoint immunotherapies.


Subject(s)
CD2 Antigens/metabolism , CD58 Antigens/metabolism , CD8-Positive T-Lymphocytes/metabolism , Immunological Synapses/metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasms/metabolism , Programmed Cell Death 1 Receptor/metabolism , Cell Adhesion , Cells, Cultured , Humans , Immune Tolerance , Lymphocyte Activation , Protein Binding , Receptor Cross-Talk , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Single-Cell Analysis
18.
J Immunol ; 204(10): 2722-2733, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32229536

ABSTRACT

Cytotoxic CD4 T cells are linked to cardiovascular morbidities and accumulate in both HIV and CMV infections, both of which are associated with increased risk of cardiovascular disease (CVD). In this study, we identify CMV coinfection as a major driver of the cytotoxic phenotype, characterized by elevated CD57 expression and reduced CD28 expression, in circulating CD4 T cells from people living with HIV infection, and investigate potential mechanisms linking this cell population to CVD. We find that human CD57+ CD4 T cells express high levels of the costimulatory receptor CD2 and that CD2/LFA-3 costimulation results in a more robust and polyfunctional effector response to TCR signals, compared with CD28-mediated costimulation. CD57+ CD4 T cells also express the vascular endothelium-homing receptor CX3CR1 and migrate toward CX3CL1-expressing endothelial cells in vitro. IL-15 promotes the cytotoxic phenotype, elevates CX3CR1 expression, and enhances the trafficking of CD57+ CD4 T cells to endothelium and may therefore be important in linking these cells to cardiovascular complications. Finally, we demonstrate the presence of activated CD57+ CD4 T cells and expression of CX3CL1 and LFA-3 in atherosclerotic plaque tissues from HIV-uninfected donors. Our findings are consistent with a model in which cytotoxic CD4 T cells contribute to CVD in HIV/CMV coinfection and in atherosclerosis via CX3CR1-mediated trafficking and CD2/LFA-3-mediated costimulation. This study identifies several targets for therapeutic interventions and may help bridge the gap in understanding how CMV infection and immunity are linked to increased cardiovascular risk in people living with HIV infection.


Subject(s)
Blood Vessels/physiology , CD4-Positive T-Lymphocytes/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus/physiology , HIV Infections/immunology , HIV-1/physiology , Plaque, Atherosclerotic/immunology , CD28 Antigens/metabolism , CD57 Antigens/metabolism , CD58 Antigens/metabolism , CX3C Chemokine Receptor 1/metabolism , Cell Movement , Chemokine CX3CL1/metabolism , Coinfection , Cytotoxicity, Immunologic , Humans , Receptors, CXCR3/metabolism , Risk
19.
Cell Mol Immunol ; 17(4): 380-394, 2020 04.
Article in English | MEDLINE | ID: mdl-31324882

ABSTRACT

The interplay between keratinocytes and immune cells, especially T cells, plays an important role in the pathogenesis of chronic inflammatory skin diseases. During psoriasis, keratinocytes attract T cells by releasing chemokines, while skin-infiltrating self-reactive T cells secrete proinflammatory cytokines, e.g., IFNγ and IL-17A, that cause epidermal hyperplasia. Similarly, in chronic graft-versus-host disease, allogenic IFNγ-producing Th1/Tc1 and IL-17-producing Th17/Tc17 cells are recruited by keratinocyte-derived chemokines and accumulate in the skin. However, whether keratinocytes act as nonprofessional antigen-presenting cells to directly activate naive human T cells in the epidermis remains unknown. Here, we demonstrate that under proinflammatory conditions, primary human keratinocytes indeed activate naive human T cells. This activation required cell contact and costimulatory signaling via CD58/CD2 and CD54/LFA-1. Naive T cells costimulated by keratinocytes selectively differentiated into Th1 and Th17 cells. In particular, keratinocyte-initiated Th1 differentiation was dependent on costimulation through CD58/CD2. The latter molecule initiated STAT1 signaling and IFNγ production in T cells. Costimulation of T cells by keratinocytes resulting in Th1 and Th17 differentiation represents a new explanation for the local enrichment of Th1 and Th17 cells in the skin of patients with a chronic inflammatory skin disease. Consequently, local interference with T cell-keratinocyte interactions may represent a novel strategy for the treatment of Th1 and Th17 cell-driven skin diseases.


Subject(s)
CD2 Antigens/metabolism , Inflammation/pathology , Keratinocytes/immunology , Skin/pathology , Th1 Cells/immunology , CD58 Antigens/metabolism , Cell Differentiation/drug effects , Cytokines/biosynthesis , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Epidermis/pathology , Humans , Intercellular Adhesion Molecule-1/metabolism , Interferon-gamma/pharmacology , Keratinocytes/drug effects , Leukocyte Common Antigens/metabolism , Lymphocyte Activation/drug effects , Lymphocyte Function-Associated Antigen-1/metabolism , Phosphorylation/drug effects , Protein Binding/drug effects , Psoriasis/pathology , Receptors, CCR7/metabolism , STAT1 Transcription Factor/metabolism , Skin/immunology , Th1 Cells/drug effects , Th17 Cells/drug effects , Th17 Cells/immunology , Up-Regulation/drug effects
20.
J Virol ; 94(5)2020 02 14.
Article in English | MEDLINE | ID: mdl-31801856

ABSTRACT

The human cytomegalovirus (HCMV) endoplasmic reticulum (ER)-resident glycoprotein UL148 is posited to play roles in immune evasion and regulation of viral cell tropism. UL148 prevents cell surface presentation of the immune cell costimulatory ligand CD58 while promoting maturation and virion incorporation of glycoprotein O, a receptor binding subunit for an envelope glycoprotein complex involved in entry. Meanwhile, UL148 activates the unfolded protein response (UPR) and causes large-scale reorganization of the ER. In order to determine whether the seemingly disparate effects of UL148 are related or discrete, we generated six charged cluster-to-alanine (CCTA) mutants within the UL148 ectodomain and compared them to wild-type UL148, both in the context of infection studies using recombinant viruses and in ectopic expression experiments, assaying for effects on ER remodeling and CD58 surface presentation. Two mutants, targeting charged clusters spanning residues 79 to 83 (CC3) and 133 to 136 (CC4), retained the potential to impede CD58 surface presentation. Of the six mutants, only CC3 retained the capacity to reorganize the ER, but it showed a partial phenotype. Wild-type UL148 accumulates in a detergent-insoluble form during infection. However, all six CCTA mutants were fully soluble, which implies a relationship between insolubility and organelle remodeling. Additionally, we found that the chimpanzee cytomegalovirus UL148 homolog suppresses surface presentation of CD58 but fails to reorganize the ER, while the homolog from rhesus cytomegalovirus shows neither activity. Collectively, our findings illustrate various degrees of functional divergence between homologous primate cytomegalovirus immunevasins and suggest that the capacity to cause ER reorganization is unique to HCMV UL148.IMPORTANCE In myriad examples, viral gene products cause striking effects on cells, such as activation of stress responses. It can be challenging to decipher how such effects contribute to the biological roles of the proteins. The HCMV glycoprotein UL148 retains CD58 within the ER, thereby preventing it from reaching the cell surface, where it functions to stimulate cell-mediated antiviral responses. Intriguingly, UL148 also triggers the formation of large, ER-derived membranous structures and activates the UPR, a set of signaling pathways involved in adaptation to ER stress. We demonstrate that the potential of UL148 to reorganize the ER and to retain CD58 are separable by mutagenesis and, possibly, by evolution, since chimpanzee cytomegalovirus UL148 retains CD58 but does not remodel the ER. Our findings imply that ER reorganization contributes to other roles of UL148, such as modulation of alternative viral glycoprotein complexes that govern the virus' ability to infect different cell types.


Subject(s)
CD58 Antigens/metabolism , Cytomegalovirus/physiology , Endoplasmic Reticulum/metabolism , Glycoproteins/metabolism , Viral Fusion Proteins/metabolism , Amino Acid Sequence , Cytomegalovirus/genetics , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/virology , Endoplasmic Reticulum/immunology , Endoplasmic Reticulum Stress , Humans , Immune Evasion , Unfolded Protein Response , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Viral Fusion Proteins/genetics , Viral Tropism
SELECTION OF CITATIONS
SEARCH DETAIL
...