Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
1.
J Immunol ; 210(3): 297-309, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36524995

ABSTRACT

CD8 virtual memory T (TVM) cells are Ag-naive CD8 T cells that have undergone partial differentiation in response to common γ-chain cytokines, particularly IL-15 and IL-4. TVM cells from young individuals are highly proliferative in response to TCR and cytokine stimulation but, with age, they lose TCR-mediated proliferative capacity and exhibit hallmarks of senescence. Helminth infection can drive an increase in TVM cells, which is associated with improved pathogen clearance during subsequent infectious challenge in young mice. Given the cytokine-dependent profile of TVM cells and their age-associated dysfunction, we traced proliferative and functional changes in TVM cells, compared with true naive CD8 T cells, after helminth infection of young and aged C57BL/6 mice. We show that IL-15 is essential for the helminth-induced increase in TVM cells, which is driven only by proliferation of existing TVM cells, with negligible contribution from true naive cell differentiation. Additionally, TVM cells showed the greatest proliferation in response to helminth infection and IL-15 compared with other CD8 T cells. Furthermore, TVM cells from aged mice did not undergo expansion after helminth infection due to both TVM cell-intrinsic and -extrinsic changes associated with aging.


Subject(s)
Helminthiasis , Interleukin-15 , Animals , Mice , Aging/immunology , CD8-Positive T-Lymphocytes/parasitology , Cytokines , Helminthiasis/immunology , Helminthiasis/metabolism , Helminths/pathogenicity , Immunologic Memory , Interleukin-15/metabolism , Mice, Inbred C57BL , Receptors, Antigen, T-Cell
2.
ACS Infect Dis ; 8(5): 998-1009, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35362944

ABSTRACT

Cerebral malaria (CM) is a serious central nervous system dysfunction caused by Plasmodium falciparum infection. In this study, we investigated the effect of Listeria monocytogenes (Lm) inoculation on experimental cerebral malaria (ECM) using Plasmodium berghei ANKA (PbA)-infected C57BL/6 mice. Live Lm inoculation inhibited the parasitemia and alleviated ECM symptoms. The protective effect against ECM symptoms was connected with improved brain pathology manifested as a less-damaged blood-brain barrier, decreased parasite sequestration, and milder local inflammation. Meanwhile, Lm inoculation decreased expression of cell adhesion molecules (ICAM-1 and VCAM-1) and accumulation of pathogenic CD8+ T cells in the brain. In keeping with the suppression of parasitemia, there was an upregulation of IFN-γ, IL-12, MCP-1, and NO expression in the spleen by Lm inoculation upon PbA infection. Early treatment with exogenous IFN-γ exhibited a similar effect to Lm inoculation on PbA infection. Taken together, Lm inoculation impedes the development of brain pathology in ECM, and early systemic IFN-γ production may play a critical role in these protective effects.


Subject(s)
Listeria monocytogenes , Malaria, Cerebral , Animals , Brain , CD8-Positive T-Lymphocytes/parasitology , CD8-Positive T-Lymphocytes/pathology , Malaria, Cerebral/parasitology , Malaria, Cerebral/pathology , Mice , Mice, Inbred C57BL , Parasitemia/pathology , Plasmodium berghei
3.
Ann Clin Lab Sci ; 51(6): 827-836, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34921036

ABSTRACT

OBJECTIVE: CD8+ T cells can participate in immune action by secreting various cytokines, which have a killing effect on certain viruses, tumor cells, and other antigenic substances. However, in studies such as chronic viral infections and some parasitic infections, CD8+ T lymphocyte showed functional depletion, and its immune dysfunction was an important reason for the persistence of infection. Tim-3 has been shown to be a negative regulator of CD8+ T cell function, causing depletion of CD8+ T cells in cancer and chronic infection. However, the relationship between Tim-3 and CD8+ T cells in Echinococcus multilocularis infection is not clear. METHODS: In this study, we analyzed peripheral blood CD8+ T cells from 62 alveolar echinococcosis (AE) patients and 30 healthy controls. RESULTS: Compared with the healthy control group, the proportion of CD8+ T cells in the peripheral blood of AE patients increased significantly, while the levels of perforin, granzyme B and IFN-γ in peripheral blood CD8+ T cell related factors of metabolically active alveolar echinococcosis (MAAE) patients decreased significantly. Later detection revealed that the expression of Tim-3 on CD8+ T cells in the peripheral blood of MAAE patients was significantly higher than that of metabolically inactive alveolar echinococcosis (MIAE) patients and healthy controls. The expression levels of function-related factors perforin, granzyme B and IFN-γ in CD8+ Tim-3+ T cell were significantly lower in the CD8+Tim-3- T cells of AE patients. In vitro, the secretion of CD8+ T cell-associated factors was significantly restored by inhibiting Tim-3 expression. CONCLUSION: Therefore, the depletion of CD8+ T lymphocyte in patients with alveolar echinococcosis disease is considered to be related to the high expression of Tim-3 on the surface.


Subject(s)
CD8-Positive T-Lymphocytes , Echinococcosis , Granzymes/metabolism , Hepatitis A Virus Cellular Receptor 2/metabolism , Interferon-gamma/metabolism , Perforin/metabolism , Animals , CD8-Positive T-Lymphocytes/parasitology , CD8-Positive T-Lymphocytes/physiology , Echinococcosis/blood , Echinococcosis/immunology , Echinococcosis/metabolism , Echinococcus multilocularis/isolation & purification , Echinococcus multilocularis/metabolism , Female , Gene Expression Profiling/methods , Humans , Immunocompetence , Male , Monitoring, Immunologic/methods , Patient Acuity , Receptors, Virus
4.
Cell Rep ; 37(5): 109956, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34731605

ABSTRACT

Circulating memory CD8 T cell trafficking and protective capacity during liver-stage malaria infection remains undefined. We find that effector memory CD8 T cells (Tem) infiltrate the liver within 6 hours after malarial or bacterial infections and mediate pathogen clearance. Tem recruitment coincides with rapid transcriptional upregulation of inflammatory genes in Plasmodium-infected livers. Recruitment requires CD8 T cell-intrinsic LFA-1 expression and the presence of liver phagocytes. Rapid Tem liver infiltration is distinct from recruitment to other non-lymphoid tissues in that it occurs both in the absence of liver tissue resident memory "sensing-and-alarm" function and ∼42 hours earlier than in lung infection by influenza virus. These data demonstrate relevance for Tem in protection against malaria and provide generalizable mechanistic insights germane to control of liver infections.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , Liver/immunology , Malaria/immunology , Plasmodium berghei/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/microbiology , CD8-Positive T-Lymphocytes/parasitology , Disease Models, Animal , Female , Host-Parasite Interactions , Listeria monocytogenes/immunology , Listeria monocytogenes/pathogenicity , Listeriosis/blood , Listeriosis/immunology , Listeriosis/microbiology , Liver/metabolism , Liver/microbiology , Liver/parasitology , Lymphocyte Function-Associated Antigen-1/metabolism , Malaria/blood , Malaria/parasitology , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Parasite Load , Phagocytes/immunology , Phagocytes/metabolism , Phagocytes/microbiology , Phagocytes/parasitology , Plasmodium berghei/pathogenicity , Time Factors
5.
Cell Death Dis ; 12(7): 692, 2021 07 10.
Article in English | MEDLINE | ID: mdl-34247195

ABSTRACT

Chagas disease is a life-threatening disorder caused by the protozoan parasite Trypanosoma cruzi. Parasite-specific antibodies, CD8+ T cells, as well as IFN-γ and nitric oxide (NO) are key elements of the adaptive and innate immunity against the extracellular and intracellular forms of the parasite. Bim is a potent pro-apoptotic member of the Bcl-2 family implicated in different aspects of the immune regulation, such as negative selection of self-reactive thymocytes and elimination of antigen-specific T cells at the end of an immune response. Interestingly, the role of Bim during infections remains largely unidentified. To explore the role of Bim in Chagas disease, we infected WT, Bim+/-, Bim-/- mice with trypomastigotes forms of the Y strain of T. cruzi. Strikingly, our data revealed that Bim-/- mice exhibit a delay in the development of parasitemia followed by a deficiency in the control of parasite load in the bloodstream and a decreased survival compared to WT and Bim+/- mice. At the peak of parasitemia, peritoneal macrophages of Bim-/- mice exhibit decreased NO production, which correlated with a decrease in the pro-inflammatory Small Peritoneal Macrophage (SPM) subset. A similar reduction in NO secretion, as well as in the pro-inflammatory cytokines IFN-γ and IL-6, was also observed in Bim-/- splenocytes. Moreover, an impaired anti-T. cruzi CD8+ T-cell response was found in Bim-/- mice at this time point. Taken together, our results suggest that these alterations may contribute to the establishment of a delayed yet enlarged parasitic load observed at day 9 after infection of Bim-/- mice and place Bim as an important protein in the control of T. cruzi infections.


Subject(s)
Bcl-2-Like Protein 11/deficiency , Chagas Disease/parasitology , Trypanosoma cruzi/pathogenicity , Animals , Bcl-2-Like Protein 11/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/parasitology , Cells, Cultured , Chagas Disease/genetics , Chagas Disease/immunology , Chagas Disease/metabolism , Disease Models, Animal , Female , Host-Parasite Interactions , Interferon-gamma/metabolism , Interleukin-6/metabolism , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/parasitology , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide/metabolism , Parasite Load , Spleen/immunology , Spleen/metabolism , Spleen/parasitology , Time Factors , Trypanosoma cruzi/immunology
6.
Mol Immunol ; 137: 20-27, 2021 09.
Article in English | MEDLINE | ID: mdl-34182228

ABSTRACT

An important strategy to reduce the risk of visceral leishmaniasis (VL) in humans is to control the infection and disease progression in dogs, the domestic reservoir of Leishmania infantum parasites. Certain therapeutic strategies that modulate the host immune response show great potential for the treatment of experimental VL, restoring the impaired effector functions or decreasing host excessive responses. It is known that the overproduction of interleukin-10 (IL-10) promotes parasite replication and disease progression in human VL as well as in canine visceral leishmaniasis (CVL). Thus, in the present study we investigated the potential of the anti-canine IL-10 receptor-blocking monoclonal antibody (Bloq IL-10R) to control and reduce in vitro infectivity of L. infantum and improve the ability of PBMC isolated from VL dogs to alter the lymphoproliferative response and intracytoplasmic cytokines. Overall, GFP+Leishmania showed lower capacity of in vitro infectivity in the presence of Bloq IL-10R. Moreover, addition of Bloq IL-10R in cultured PBMC enhanced T-CD4 and CD8 proliferative response and altered the intracytoplasmic cytokine synthesis, reducing CD4+IL-4+ cells and increasing CD8+IFN-γ+ cells after specific antigen stimulation in PBMC of dogs. Furthermore, we observed an increase of TNF-α levels in supernatant of cultured PBMC under IL-10R neutralizing conditions. Together, our findings are encouraging and reaffirm an important factor that could influence the effectiveness of immune modulation in dogs with VL and suggest that blocking IL-10R activity has the potential to be a useful approach to CVL treatment.


Subject(s)
Dog Diseases/immunology , Dog Diseases/parasitology , Leishmania infantum/immunology , Leishmaniasis, Visceral/immunology , Leukocytes, Mononuclear/immunology , Receptors, Interleukin-10/immunology , Th1 Cells/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/parasitology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/parasitology , Cells, Cultured , Dogs , Female , Interferon-gamma/immunology , Leukocytes, Mononuclear/parasitology , Male , Th1 Cells/parasitology
7.
PLoS Pathog ; 16(8): e1008327, 2020 08.
Article in English | MEDLINE | ID: mdl-32853276

ABSTRACT

Host resistance to Toxoplasma gondii relies on CD8 T cell IFNγ responses, which if modulated by the host or parasite could influence chronic infection and parasite transmission between hosts. Since host-parasite interactions that govern this response are not fully elucidated, we investigated requirements for eliciting naïve CD8 T cell IFNγ responses to a vacuolar resident antigen of T. gondii, TGD057. Naïve TGD057 antigen-specific CD8 T cells (T57) were isolated from transnuclear mice and responded to parasite-infected bone marrow-derived macrophages (BMDMs) in an antigen-dependent manner, first by producing IL-2 and then IFNγ. T57 IFNγ responses to TGD057 were independent of the parasite's protein export machinery ASP5 and MYR1. Instead, host immunity pathways downstream of the regulatory Immunity-Related GTPases (IRG), including partial dependence on Guanylate-Binding Proteins, are required. Multiple T. gondii ROP5 isoforms and allele types, including 'avirulent' ROP5A from clade A and D parasite strains, were able to suppress CD8 T cell IFNγ responses to parasite-infected BMDMs. Phenotypic variance between clades B, C, D, F, and A strains suggest T57 IFNγ differentiation occurs independently of parasite virulence or any known IRG-ROP5 interaction. Consistent with this, removal of ROP5 is not enough to elicit maximal CD8 T cell IFNγ production to parasite-infected cells. Instead, macrophage expression of the pathogen sensors, NLRP3 and to a large extent NLRP1, were absolute requirements. Other members of the conventional inflammasome cascade are only partially required, as revealed by decreased but not abrogated T57 IFNγ responses to parasite-infected ASC, caspase-1/11, and gasdermin D deficient cells. Moreover, IFNγ production was only partially reduced in the absence of IL-12, IL-18 or IL-1R signaling. In summary, T. gondii effectors and host machinery that modulate parasitophorous vacuolar membranes, as well as NLR-dependent but inflammasome-independent pathways, determine the full commitment of CD8 T cells IFNγ responses to a vacuolar antigen.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Inflammasomes/immunology , Interferon-gamma/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protozoan Proteins/metabolism , Signal Transduction , Toxoplasma/immunology , Toxoplasmosis, Animal/immunology , Animals , CD8-Positive T-Lymphocytes/parasitology , Female , Macrophages/immunology , Macrophages/parasitology , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Protozoan Proteins/genetics , Toxoplasmosis, Animal/parasitology , Vacuoles/immunology , Vacuoles/metabolism , Vacuoles/parasitology , Virulence/immunology
8.
Transbound Emerg Dis ; 67 Suppl 1: 99-107, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32174038

ABSTRACT

Theileria parva is a tick-transmitted apicomplexan protozoan parasite that infects lymphocytes of cattle and African Cape buffalo (Syncerus caffer), causing a frequently fatal disease of cattle in eastern, central and southern Africa. A live vaccination procedure, known as infection and treatment method (ITM), the most frequently used version of which comprises the Muguga, Serengeti-transformed and Kiambu 5 stocks of T. parva, delivered as a trivalent cocktail, is generally effective. However, it does not always induce 100% protection against heterologous parasite challenge. Knowledge of the genetic diversity of T. parva in target cattle populations is therefore important prior to extensive vaccine deployment. This study investigated the extent of genetic diversity within T. parva field isolates derived from Ankole (Bos taurus) cattle in south-western Uganda using 14 variable number tandem repeat (VNTR) satellite loci and the sequences of two antigen-encoding genes that are targets of CD8+T-cell responses induced by ITM, designated Tp1 and Tp2. The findings revealed a T. parva prevalence of 51% confirming endemicity of the parasite in south-western Uganda. Cattle-derived T. parva VNTR genotypes revealed a high degree of polymorphism. However, all of the T. parva Tp1 and Tp2 alleles identified in this study have been reported previously, indicating that they are widespread geographically in East Africa and highly conserved.


Subject(s)
Antigens, Protozoan/genetics , Buffaloes/parasitology , Cattle Diseases/parasitology , Minisatellite Repeats/genetics , Protozoan Vaccines/immunology , Theileria parva/genetics , Theileriasis/parasitology , Alleles , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/parasitology , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/prevention & control , Female , Genetic Variation , Genotype , Male , Polymorphism, Genetic/genetics , Theileria parva/immunology , Theileriasis/epidemiology , Theileriasis/prevention & control , Ticks/parasitology , Uganda/epidemiology , Vaccines, Attenuated/immunology
9.
Transbound Emerg Dis ; 67 Suppl 1: 56-67, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32174044

ABSTRACT

The infection and treatment (ITM) live vaccination method for control of Theileria parva infection in cattle is increasingly being adopted, particularly in Maasai pastoralist systems. Several studies indicate positive impacts on human livelihoods. Importantly, the first detailed protocol for live vaccine production at scale has recently been published. However, quality control and delivery issues constrain vaccination sustainability and deployment. There is evidence that the distribution of T. parva is spreading from endemic areas in East Africa, North into Southern Sudan and West into Cameroon, probably as a result of anthropogenic movement of cattle. It has also recently been demonstrated that in Kenya, T. parva derived from cape buffalo can 'breakthrough' the immunity induced by ITM. However, in Tanzania, breakthrough has not been reported in areas where cattle co-graze with buffalo. It has been confirmed that buffalo in northern Uganda national parks are not infected with T. parva and R. appendiculatus appears to be absent, raising issues regarding vector distribution. Recently, there have been multiple field population genetic studies using variable number tandem repeat (VNTR) sequences and sequencing of antigen genes encoding targets of CD8+ T-cell responses. The VNTR markers generally reveal high levels of diversity. The antigen gene sequences present within the trivalent Muguga cocktail are relatively conserved among cattle transmissible T. parva populations. By contrast, greater genetic diversity is present in antigen genes from T. parva of buffalo origin. There is also evidence from several studies for transmission of components of stocks present within the Muguga cocktail, into field ticks and cattle following induction of a carrier state by immunization. In the short term, this may increase live vaccine effectiveness, through a more homogeneous challenge, but the long-term consequences are unknown.


Subject(s)
Antigens, Protozoan/immunology , Buffaloes/parasitology , Cattle Diseases/prevention & control , Protozoan Vaccines/immunology , Theileria parva/immunology , Theileriasis/prevention & control , Vaccination/veterinary , Africa/epidemiology , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/parasitology , Carrier State , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Cattle Diseases/therapy , Disease Reservoirs/parasitology , Genetic Variation , Genetics, Population , Minisatellite Repeats/genetics , Molecular Epidemiology , Theileria parva/genetics , Theileriasis/epidemiology , Theileriasis/parasitology , Theileriasis/therapy , Ticks/parasitology , Vaccines, Attenuated/immunology
10.
Biochim Biophys Acta Mol Basis Dis ; 1866(3): 165629, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31816438

ABSTRACT

One of the greatest challenges in Chagas disease research is the search for tools that will enable the assessment of pharmacological treatment efficacy. A recently described set of serological biomarkers composed of four parasite antigens and established criteria of treatment efficacy allowed the evaluation of the impact of benznidazole treatment a short/medium time after the treatment. In addition, cellular immunological parameters have also been described as potential indicators of the treatment response. The cytotoxic CD8+ T cells specific to five epitopes in the PFR2, PFR3, TcCA-2 and KMP11 antigens have been analysed, and these epitopes have been shown to be recognized, processed and presented in the context of a natural T. cruzi infection. In the present manuscript, we characterized these antigen-specific CD8+ T cells in indeterminate chronic Chagas disease patients both before and after (from 11 to 28 months) benznidazole treatment. The results indicate that there is a differential memory CD8+ T cell profile depending on the antigenic epitope and that the benznidazole treatment modulates the memory, differentiation and senescence phenotypes of the epitope-specific CD8+ T cells. Moreover, in these patients, the reactivity of sera against the referred set of biomarkers was evaluated. The data obtained show that the patients who met the established therapeutic efficacy criteria presented a differential phenotypic profile of the antigen-specific CD8+ T cells even prior to treatment compared to the patients who did not meet the therapeutic efficacy criteria, and this behaviour is associated with a better functionality of these CD8+ T cells.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Chagas Disease/drug therapy , Chagas Disease/immunology , Epitopes/immunology , Nitroimidazoles/therapeutic use , Adult , Biomarkers/blood , CD8-Positive T-Lymphocytes/parasitology , Chagas Disease/parasitology , Cytokines/immunology , Female , Humans , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/parasitology , Male , Phenotype , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/immunology
11.
Parasitol Int ; 76: 102030, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31778800

ABSTRACT

Toxoplasma gondii takes two different life cycle stages within intermediate hosts including humans. Tachyzoites proliferate during the acute stage, and they transform into cysts to establish a chronic infection preferentially in the brain. IFN-γ production by infiltrated CD4+ and CD8+ T cells is required for the prevention of cerebral tachyzoite growth. IFN-γ production by brain-resident cells, most likely microglia, plays a key first line defense role to facilitate both innate and T cell-mediated protective immunity to control the tachyzoite growth. IFN-γ produced by brain-resident cells activates cerebral expression of IFN-dependent effector molecules to suppress tachyzoite growth during the early stage of infection. Their IFN-γ production also induces an expression of CXCL9 and CXCL10 chemokines to recruit immune T cells into the brain, and upregulates cerebral expression of MHC class I and II molecules for antigen presentation to the recruited T cells to activate their IFN-γ production. CD8+ T cells also have the activity to remove T. gondii cysts from the brains of infected hosts. Of interest, the anti-cyst activity of CD8+ T cells does not require their IFN-γ but does require perforin. Notably, we discovered that CD8+ cytotoxic T cells penetrate in the cysts in a perforin-mediated manner, which induces morphological deterioration and destruction of the cysts and an accumulation of microglia and macrophages for their elimination. Thus, the immune system employs two distinct effector mechanisms mediated by IFN-γ or perforin depending on two different life cycle stages of a single pathogen, T. gondii, to control its cerebral infection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Interferon-gamma/immunology , Life Cycle Stages/immunology , Perforin/immunology , Toxoplasma/growth & development , Toxoplasmosis, Cerebral/immunology , Animals , Brain/immunology , CD8-Positive T-Lymphocytes/parasitology , Chemokines/immunology , Humans , Immunity, Cellular , Mice , Toxoplasma/pathogenicity
12.
Nat Commun ; 10(1): 3950, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31477704

ABSTRACT

Immunization with attenuated whole Plasmodium sporozoites constitutes a promising vaccination strategy. Compared to replication-deficient parasites, immunization with replication-competent parasites confers better protection and also induces a type I IFN (IFN-1) response, but whether this IFN-1 response has beneficial or adverse effects on vaccine-induced adaptive immunity is not known. Here, we show that IFN-1 signaling-deficient mice immunized with replication-competent sporozoites exhibit superior protection against infection. This correlates with superior CD8 T cell memory including reduced expression of the exhaustion markers PD-1 and LAG-3 on these cells and increased numbers of memory CD8 T cells in the liver. Moreover, the adoptive transfer of memory CD8 T cells from the livers of previously immunized IFN-1 signaling-deficient mice confers greater protection against liver stage parasites. However, the detrimental role of IFN-1 signaling is not CD8 T cell intrinsic. Together, our data demonstrate that liver stage-engendered IFN-1 signaling impairs hepatic CD8 T cell memory via a CD8 T cell-extrinsic mechanism.


Subject(s)
Adaptive Immunity/immunology , Erythrocytes/immunology , Immunity, Innate/immunology , Malaria/immunology , Plasmodium yoelii/immunology , Sporozoites/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/parasitology , Erythrocytes/parasitology , Female , Immunization , Interferon Type I/immunology , Interferon Type I/metabolism , Liver/immunology , Liver/metabolism , Liver/parasitology , Malaria/parasitology , Malaria/prevention & control , Malaria Vaccines/administration & dosage , Malaria Vaccines/immunology , Mice, Inbred C57BL , Mice, Knockout , Plasmodium yoelii/physiology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology
13.
Front Immunol ; 10: 1345, 2019.
Article in English | MEDLINE | ID: mdl-31316497

ABSTRACT

T cells play significant roles during Plasmodium falciparum infections. Their regulation of the immune response in symptomatic children with malaria has been deemed necessary to prevent immune associated pathology. In this study, we phenotypically characterized the expression of T cell inhibitory(PD-1, CTLA-4) and senescent markers (CD28(-), CD57) from children with symptomatic malaria, asymptomatic malaria and healthy controls using flow cytometry. We observed increased expression of T cell exhaustion and senescence markers in the symptomatic children compared to the asymptomatic and healthy controls. T cell senescence markers were more highly expressed on CD8 T cells than on CD4 T cells. Asymptomatically infected children had comparable levels of these markers with healthy controls except for CD8+ PD-1+ T cells which were significantly elevated in the asymptomatic children. Also, using multivariate regression analysis, CTLA-4 was the only marker that could predict parasitaemia level. The results suggest that the upregulation of immune exhaustion and senescence markers during symptomatic malaria may affect the effector function of T cells leading to inefficient clearance of parasites, hence the inability to develop sterile immunity to malaria.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cellular Senescence/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Asymptomatic Infections , CD28 Antigens/genetics , CD28 Antigens/immunology , CD28 Antigens/metabolism , CD57 Antigens/genetics , CD57 Antigens/immunology , CD57 Antigens/metabolism , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/parasitology , CTLA-4 Antigen/genetics , CTLA-4 Antigen/immunology , CTLA-4 Antigen/metabolism , Cells, Cultured , Cellular Senescence/genetics , Child , Child, Preschool , Female , Gene Expression Profiling/methods , Humans , Immunophenotyping , Malaria, Falciparum/parasitology , Male , Parasitemia/genetics , Parasitemia/immunology , Parasitemia/metabolism , Plasmodium falciparum/physiology , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism
14.
Infect Immun ; 87(10)2019 10.
Article in English | MEDLINE | ID: mdl-31308085

ABSTRACT

The development of effective malaria vaccines is hampered by incomplete understanding of the immunological correlates of protective immunity. Recently, the moderate clinical efficacy of the Plasmodium falciparum circumsporozoite protein (CSP)-based RTS,S/AS01E vaccine in phase 3 studies highlighted the urgency to design and test more efficacious next-generation malaria vaccines. In this study, we report that immunization with recombinant CSP from Plasmodium yoelii (rPyCSP), when delivered in Montanide ISA 51, induced sterilizing immunity against sporozoite challenge in C57BL/6 and BALB/c strains of mice. This immunity was antibody dependent, as evidenced by the complete loss of immunity in B-cell-knockout (KO) mice and by the ability of immune sera to neutralize sporozoite infectivity in mice. Th2-type isotype IgG1 antibody levels were associated with protective immunity. The fact that immunized gamma interferon (IFN-γ)-KO mice and wild-type (WT) mice have similar levels of protective immunity and the absence of IFN-γ-producing CD4+ and CD8+ T cells in protected mice, as shown by flow cytometry, indicate that the immunity is IFN-γ independent. Protection against sporozoite challenge correlated with higher frequencies of CD4+ T cells that express interleukin-2 (IL-2), IL-4, and tumor necrosis factor alpha (TNF-α). In the RTS,S study, clinical immunity was associated with higher IgG levels and frequencies of IL-2- and TNF-α-producing CD4+ T cells. The other hallmarks of immunity in our study included an increased number of follicular B cells but a loss in follicular T helper cells. These results provide an excellent model system to evaluate the efficacy of novel adjuvants and vaccine dosage and determine the correlates of immunity in the search for superior malaria vaccine candidates.


Subject(s)
Antibodies, Protozoan/biosynthesis , Immunoglobulin G/biosynthesis , Malaria Vaccines/biosynthesis , Malaria/prevention & control , Plasmodium yoelii/immunology , Protozoan Proteins/administration & dosage , Adjuvants, Immunologic/administration & dosage , Animals , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/parasitology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/parasitology , Female , Immunization , Immunogenicity, Vaccine , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-2/genetics , Interleukin-2/immunology , Interleukin-4/genetics , Interleukin-4/immunology , Malaria/genetics , Malaria/immunology , Malaria/parasitology , Malaria Vaccines/administration & dosage , Mannitol/administration & dosage , Mannitol/analogs & derivatives , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Oleic Acids/administration & dosage , Oligodeoxyribonucleotides/administration & dosage , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Vaccines, Subunit
15.
Immunohorizons ; 3(1): 13-25, 2019 01 15.
Article in English | MEDLINE | ID: mdl-31356173

ABSTRACT

Inhibitory receptors (IR) are a diverse group of cell surface molecules that modulate T cell activation, but there are gaps in our knowledge of the cell-extrinsic factors that regulate their expression. The present study found that in vivo overexpression of IL-27 in mice led to increased T cell expression of PD-L1, LAG-3, TIGIT, and TIM-3. In vitro, TCR stimulation alone promoted expression of multiple IRs, whereas IL-27 alone induced expression of PD-L1. However, the combination of intermediate TCR stimulation and IL-27 resulted in synergistic induction of LAG-3, CTLA-4, and TIGIT. In vivo, infection with Toxoplasma gondii resulted in parasite-specific effector T cells that expressed high levels of IR, and at local sites of infection where IL-27 production was highest, IL-27 was required for maximal effector cell expression of PD-L1, LAG-3, CTLA-4, and TIGIT. Together, these results affirm the critical role of TCR signals in the induction of IR expression but find that during infection, IL-27 promotes T cell expression of IR.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Costimulatory and Inhibitory T-Cell Receptors/metabolism , Interleukins/metabolism , Receptors, Antigen, T-Cell/metabolism , Animals , B7-H1 Antigen/metabolism , CD4-Positive T-Lymphocytes/parasitology , CD8-Positive T-Lymphocytes/parasitology , CTLA-4 Antigen/metabolism , Costimulatory and Inhibitory T-Cell Receptors/genetics , Female , Interleukins/genetics , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Receptors, Antigen, T-Cell/genetics , Receptors, Immunologic/metabolism , Spleen/pathology , Toxoplasma , Toxoplasmosis/immunology , Transcriptome , Transfection
16.
Front Immunol ; 10: 724, 2019.
Article in English | MEDLINE | ID: mdl-31024556

ABSTRACT

Leishmania (V.) braziliensis is the etiological agent of Cutaneous (CL) and Mucocutaneous leishmaniasis (ML) in the New World. CL can be more benign but ML can be severe and disfiguring. Immunity to these diseases include hypersensitivity, an enhanced inflammatory response with strong IFN-γ and TNF-α secretion. Additionally, the production of IL-10 which down modulates the immune response is reduced. The Nucleoside hydrolase (NH36) of Leishmania (L.) donovani is the main antigen of the Leishmune veterinary vaccine and its F3 domain induces a CD4+ T cell-mediated protection against L. (L.) infantum chagasi infection. Prevention of L. (L.) amazonensis infection requires in contrast an additional CD8+ T cell mediated response induced by the F1 domain. Consequently, the F1F3 recombinant chimera, which contains both domains cloned in tandem, optimized the vaccine efficacy against L. (L.) amazonensis mouse infection. We compared the efficacies of NH36, F1, F3, and the FIF3 chimera against L. (V.) braziliensis mouse infection. The F1F3 chimera increased the NH36 specific IgA and response before and after infection and the IgG and IgG3 levels after challenge. It also induced a 49% stronger intradermal response to leishmanial antigen (IDR) than NH36 that was positively correlated to the levels of IFN-γ and TNF-α, IgG, IgG2a, IgG2b, and IgG3 anti-NH36 antibodies. However, stronger Th1 responses with elevated IFN-γ/IL-10 and TNF-α/IL-10 ratios were promoted by the F3 and F1 vaccines and detected in infected controls while the F1F3 chimera promoted the highest IL-10 secretion, which reduced the pathological Th1 response, and characterized the induction of a mixed and/or T-cell regulatory response. We identified the epitopes responsible for these immune responses. The F3 vaccine induced the earliest immunity and after challenge, the F1F3 chimera promoted the highest CD4+ and CD8+ cytokine-secreting T cell responses, and the predominant frequencies of multifunctional CD4+ and CD8+IL-2+TNF-α+IFN-γ+ T cells. Also as observed against L. (L.) amazonensis infection, the F1F3 chimera showed the strongest reduction of the ear lesions sizes induced by L. (V.) braziliensis. Our results confirm the potential use of the F1F3 chimera in a multi-species cross-protective vaccine against L. (V.) braziliensis.


Subject(s)
Cross Protection , Epitopes , Leishmania braziliensis , Leishmania donovani , Leishmaniasis, Cutaneous , Animals , Female , Mice , Antigens, Protozoan/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/parasitology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/parasitology , Cross Protection/immunology , Cytokines/immunology , Epitopes/immunology , Leishmania braziliensis/immunology , Leishmania donovani/immunology , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/parasitology , Mice, Inbred BALB C
17.
Methods Mol Biol ; 1955: 349-361, 2019.
Article in English | MEDLINE | ID: mdl-30868540

ABSTRACT

Flow cytometry is a valuable technique in cellular immunology that allows evaluating effective parameters of the immune response associated with CD8+ T cells. During Chagas disease, infection caused by Trypanosoma cruzi parasite, similar to other intracellular infectious agents, antigen-specific CD8+ T cells are essential for controlling the infection. However, CD8+ T cell response is only partially effective in some chronic Chagas disease patients. Thus, characterization and phenotyping of T. cruzi-specific CD8+ T cells are of great importance during chronic Chagas disease.


Subject(s)
Antigens, Protozoan/immunology , CD8-Positive T-Lymphocytes/immunology , Chagas Disease/immunology , Flow Cytometry/methods , Trypanosoma cruzi/immunology , CD8-Positive T-Lymphocytes/parasitology , Chagas Disease/parasitology , Chronic Disease , Humans , Immunity, Cellular
18.
Front Immunol ; 10: 248, 2019.
Article in English | MEDLINE | ID: mdl-30846985

ABSTRACT

Cerebral malaria (CM) is one of the most severe complications of Plasmodium falciparum infection. There is evidence that repeated parasite exposure promotes resistance against CM. However, the immunological basis of this infection-induced resistance remains poorly understood. Here, utilizing the Plasmodium berghei ANKA (PbA) model of experimental cerebral malaria (ECM), we show that three rounds of infection and drug-cure protects against the development of ECM during a subsequent fourth (4X) infection. Exposure-induced resistance was associated with specific suppression of CD8+ T cell activation and CTL-related pathways, which corresponded with the development of heterogeneous atypical B cell populations as well as the gradual infection-induced generation and maintenance of high levels of anti-parasite IgG. Mechanistically, transfer of high-titer anti-parasite IgG did not protect 1X infected mice against ECM and depletion of atypical and regulatory B cells during 4X infection failed to abrogate infection-induced resistance to ECM. However, IgMi mice that were unable to produce secreted antibody, or undergo class switching, during the repeated rounds of infection failed to develop resistance against ECM. The failure of infection-induced protection in IgMi mice was associated with impaired development of atypical B cell populations and the inability to suppress pathogenic CD8+ T cell responses. Our results, therefore, suggest the importance of anti-parasite antibody responses, gradually acquired, and maintained through repeated Plasmodium infections, for modulating the B cell compartment and eventually suppressing memory CD8+ T cell reactivation to establish infection-induced resistance to ECM.


Subject(s)
Antibody Formation/immunology , Brain/immunology , CD8-Positive T-Lymphocytes/immunology , Malaria, Cerebral/immunology , Plasmodium berghei/immunology , Animals , Brain/parasitology , CD8-Positive T-Lymphocytes/parasitology , Lymphocyte Activation/immunology , Malaria, Cerebral/parasitology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Mice , Mice, Inbred C57BL
19.
Sci Rep ; 9(1): 762, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30679687

ABSTRACT

Post Kala-azar dermal leishmaniasis (PKDL), caused by Leishmania donovani is the dermal sequel of Visceral Leishmaniasis and importantly, is the proposed disease reservoir. The survival of Leishmania parasites within monocytes/macrophages hinges on its ability to effectively nullify immune activation mechanisms. Thus, delineating the disease-promoting immune mechanisms can facilitate development of immunotherapeutic strategies. Accordingly, in the absence of an animal model, this study aimed to delineate the status of CD8+ T-cells in patients with PKDL. At disease presentation, the absence of CD4+ T-cells at lesional sites was concomitant with an overwhelming infiltration of CD8+ T-cells that demonstrated an absence of Perforin, Granzyme and Zap-70, along with an enhanced expression of Programmed Death-1 (PD-1) and the skin-homing CCL17. Additionally, the lesional CCR4+CD8+ population was associated with an enhanced expression of IL-10 and IL-5. In circulation, the enhanced CD8+CCR4+ T-cell population and raised levels of CCL17/22 was associated with an increased frequency of PD-1, while CD127 was decreased. Taken together, in PKDL, the enhanced plasma and lesional CCL17 accounted for the dermal homing of CD8+CCR4+ T-cells, that along with a concomitant upregulation of PD-1 and IL-10 mediated immune inactivation, emphasizing the need for designing immunotherapies capable of reinvigorating T-cell potency.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Interleukin-10/genetics , Leishmania donovani/immunology , Leishmaniasis, Visceral/genetics , Programmed Cell Death 1 Receptor/genetics , Adolescent , Adult , CD8-Positive T-Lymphocytes/parasitology , Chemokine CCL17/genetics , Female , Gene Expression Regulation/immunology , Humans , Interleukin-10/immunology , Interleukin-7 Receptor alpha Subunit , Leishmania donovani/pathogenicity , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/pathology , Macrophages/immunology , Male , Monocytes/immunology , Perforin/genetics , Receptors, CCR4/genetics , Young Adult , ZAP-70 Protein-Tyrosine Kinase/genetics
20.
Cell Immunol ; 334: 20-30, 2018 12.
Article in English | MEDLINE | ID: mdl-30170688

ABSTRACT

This work aims to study the immunomodulation of B lymphocytes during L. amazonensis infection. We demonstrated in this study that follicular B cells from draining lymph nodes of infected wild type BALB/c mice are the major source of IL-10 during infection. We infected BALB/Xid mice that developed smaller lesions in comparison with the control, but the parasite load obtained from the infected tissues was similar in both groups. We observed a reduction in the number of follicular B cells from BALB/Xid mice in relation to WT mice and, consequently, lower levels of IgM, IgG, IgG1, IgG2a and IgG2b in the serum of BALB/Xid when compared with wild type mice. BALB/Xid mice also presented lower levels of IL-10 in the infected footpad, draining lymph nodes and in the spleen when compared with WT infected tissues. We did not detect differences in the number of IL-10 producing CD4+ and CD8+ T cells between WT and BALB/Xid mice; however, a strong reduction of IL-10 producing follicular B cells was noted in BALB/Xid mice. When analyzed together, our data indicate that B cells are related with lesion pathogenesis through the production of antibodies and IL-10.


Subject(s)
B-Lymphocytes/immunology , Immunomodulation/immunology , Interleukin-10/immunology , Leishmania mexicana/immunology , Leishmaniasis, Cutaneous/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/parasitology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/parasitology , Immunoglobulins/immunology , Leishmaniasis, Cutaneous/parasitology , Lymph Nodes/immunology , Mice , Mice, Inbred BALB C , Skin/immunology , Skin/parasitology , Spleen/immunology , Spleen/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...