Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Article in English | MEDLINE | ID: mdl-33879613

ABSTRACT

In eukaryotes, secretory proteins traffic from the endoplasmic reticulum (ER) to the Golgi apparatus via coat protein complex II (COPII) vesicles. Intriguingly, during nutrient starvation, the COPII machinery acts constructively as a membrane source for autophagosomes during autophagy to maintain cellular homeostasis by recycling intermediate metabolites. In higher plants, essential roles of autophagy have been implicated in plant development and stress responses. Nonetheless, the membrane sources of autophagosomes, especially the participation of the COPII machinery in the autophagic pathway and autophagosome biogenesis, remains elusive in plants. Here, we provided evidence in support of a novel role of a specific Sar1 homolog AtSar1d in plant autophagy in concert with a unique Rab1/Ypt1 homolog AtRabD2a. First, proteomic analysis of the plant ATG (autophagy-related gene) interactome uncovered the mechanistic connections between ATG machinery and specific COPII components including AtSar1d and Sec23s, while a dominant negative mutant of AtSar1d exhibited distinct inhibition on YFP-ATG8 vacuolar degradation upon autophagic induction. Second, a transfer DNA insertion mutant of AtSar1d displayed starvation-related phenotypes. Third, AtSar1d regulated autophagosome progression through specific recognition of ATG8e by a noncanonical motif. Fourth, we demonstrated that a plant-unique Rab1/Ypt1 homolog AtRabD2a coordinates with AtSar1d to function as the molecular switch in mediating the COPII functions in the autophagy pathway. AtRabD2a appears to be essential for bridging the specific AtSar1d-positive COPII vesicles to the autophagy initiation complex and therefore contributes to autophagosome formation in plants. Taken together, we identified a plant-specific nexus of AtSar1d-AtRabD2a in regulating autophagosome biogenesis.


Subject(s)
Arabidopsis Proteins/metabolism , COP-Coated Vesicles/metabolism , R-SNARE Proteins/metabolism , rab GTP-Binding Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/physiology , Autophagosomes/metabolism , Autophagy/physiology , COP-Coated Vesicles/physiology , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Phagosomes/metabolism , Protein Transport/physiology , Proteomics/methods , R-SNARE Proteins/physiology , Vacuoles/metabolism , Vesicular Transport Proteins/metabolism , rab GTP-Binding Proteins/physiology
2.
Mol Biol Cell ; 32(5): 446-459, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33405949

ABSTRACT

The components and subprocesses underlying the formation of COPI-coated vesicles at the Golgi are well understood. The coating cascade is initiated after the small GTPase Arf1 is activated by the Sec7 domain-containing guanine nucleotide exchange factor GBF1 (Golgi brefeldin A resistant guanine nucleotide exchange factor 1). This causes a conformational shift within Arf1 that facilitates stable association of Arf1 with the membrane, a process required for subsequent recruitment of the COPI coat. Although we have atomic-level knowledge of Arf1 activation by Sec7 domain-containing GEFs, our understanding of the biophysical processes regulating Arf1 and GBF1 dynamics is limited. We used fluorescence recovery after photobleaching data and kinetic Monte Carlo simulation to assess the behavior of Arf1 and GBF1 during COPI vesicle formation in live cells. Our analyses suggest that Arf1 and GBF1 associate with Golgi membranes independently, with an excess of GBF1 relative to Arf1. Furthermore, the GBF1-mediated Arf1 activation is much faster than GBF1 cycling on/off the membrane, suggesting that GBF1 is regulated by processes other than its interactions Arf1. Interestingly, modeling the behavior of the catalytically inactive GBF1/E794K mutant stabilized on the membrane is inconsistent with the formation of a stable complex between it and an endogenous Arf1 and suggests that GBF1/E794K is stabilized on the membrane independently of complex formation.


Subject(s)
ADP-Ribosylation Factor 1/metabolism , COP-Coated Vesicles/metabolism , Guanine Nucleotide Exchange Factors/metabolism , ADP-Ribosylation Factor 1/physiology , ADP-Ribosylation Factors/metabolism , COP-Coated Vesicles/physiology , Coat Protein Complex I/metabolism , Endocytosis , Endoplasmic Reticulum/metabolism , Fluorescence Recovery After Photobleaching/methods , Golgi Apparatus/metabolism , Guanine Nucleotide Exchange Factors/physiology , HeLa Cells , Humans , Kinetics , Monomeric GTP-Binding Proteins/metabolism , Monte Carlo Method , Protein Binding , Protein Transport
3.
Elife ; 92020 08 14.
Article in English | MEDLINE | ID: mdl-32795391

ABSTRACT

Intracellular transport undergoes remodeling upon cell differentiation, which involves cell type-specific regulators. Bone morphogenetic protein 2-inducible kinase (BMP2K) has been potentially implicated in endocytosis and cell differentiation but its molecular functions remained unknown. We discovered that its longer (L) and shorter (S) splicing variants regulate erythroid differentiation in a manner unexplainable by their involvement in AP-2 adaptor phosphorylation and endocytosis. However, both variants interact with SEC16A and could localize to the juxtanuclear secretory compartment. Variant-specific depletion approach showed that BMP2K isoforms constitute a BMP2K-L/S regulatory system that controls the distribution of SEC16A and SEC24B as well as SEC31A abundance at COPII assemblies. Finally, we found L to promote and S to restrict autophagic degradation and erythroid differentiation. Hence, we propose that BMP2K-L and BMP2K-S differentially regulate abundance and distribution of COPII assemblies as well as autophagy, possibly thereby fine-tuning erythroid differentiation.


Subject(s)
Alternative Splicing/genetics , Autophagy/physiology , COP-Coated Vesicles/physiology , Protein Serine-Threonine Kinases/genetics , Animals , Cell Differentiation/genetics , Humans , Mice , Protein Serine-Threonine Kinases/metabolism
4.
Life Sci Alliance ; 3(9)2020 09.
Article in English | MEDLINE | ID: mdl-32665377

ABSTRACT

Coat protein complex I (COPI)-coated vesicles mediate membrane trafficking between Golgi cisternae as well as retrieval of proteins from the Golgi to the endoplasmic reticulum. There are several flavors of the COPI coat defined by paralogous subunits of the protein complex coatomer. However, whether paralogous COPI proteins have specific functions is currently unknown. Here, we show that the paralogous coatomer subunits γ1-COP and γ2-COP are differentially expressed during the neuronal differentiation of mouse pluripotent cells. Moreover, through a combination of genome editing experiments, we demonstrate that whereas γ-COP paralogs are largely functionally redundant, γ1-COP specifically promotes neurite outgrowth. Our work stresses a role of the COPI pathway in neuronal polarization and provides evidence for distinct functions for coatomer paralogous subunits in this process.


Subject(s)
COP-Coated Vesicles/genetics , Coat Protein Complex I/metabolism , Neurons/metabolism , Animals , COP-Coated Vesicles/metabolism , COP-Coated Vesicles/physiology , Cell Differentiation/physiology , Cell Line , Coat Protein Complex I/genetics , Coatomer Protein/genetics , Endoplasmic Reticulum/genetics , Golgi Apparatus/genetics , Mice , Neurons/physiology , Pluripotent Stem Cells/metabolism , Protein Transport
5.
Mol Biol Cell ; 31(1): 3-6, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31887067

ABSTRACT

In 1994, a convergence of ideas and collaborative research orchestrated by Randy Schekman led to the discovery of the coat protein complex II (COPII). In this Perspective, the chain of events enabling discovery of a new vesicle coat and progress on understanding COPII budding mechanisms are considered.


Subject(s)
COP-Coated Vesicles/metabolism , COP-Coated Vesicles/physiology , Coated Vesicles/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Humans , Protein Transport , Vesicular Transport Proteins/metabolism
6.
Exp Cell Res ; 381(2): 265-279, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31128105

ABSTRACT

The RNaseA superfamily member Angiogenin (ANG) is a secreted protein involved in neovascularization, cell proliferation and stress response. Dysregulation of ANG expression is found in many cancers with poor prognosis and mutations in ANG are associated with neurodegenerative diseases. While the uptake and nuclear translocation of ANG is relatively well characterised, little is known about how it reaches the plasma membrane and its mode of secretion. We generated SH-SY5Y neuroblastoma cell lines constitutively expressing wild type (WT) Hemagglutinin (HA) epitope tagged mouse Ang1 (mAng1), and two amyotrophic lateral sclerosis associated ANG variants (C39W and K40I). Herein, we show that these cell lines secrete mAng1 into the culture media. Using small molecule inhibitors we probed the route taken between the endoplasmic reticulum and trans-Golgi network during secretion and have characterised it as COPII and microtubule dependent. In addition, we show that disruption by the PI3-kinase inhibitor wortmannin of the later stages of transit to the plasma membrane leads to mAng1 trafficking to lysosomal compartments. This suggests an autophagy dependent regulation of secretion.


Subject(s)
COP-Coated Vesicles/physiology , Microtubules/physiology , Ribonuclease, Pancreatic/metabolism , Amyotrophic Lateral Sclerosis/genetics , Animals , Autophagy/physiology , Cell Differentiation/genetics , Cell Proliferation/genetics , Humans , Mice , Motor Neurons/metabolism , Mutant Proteins/metabolism , Protein Transport , Ribonuclease, Pancreatic/genetics , Secretory Pathway/physiology , Tumor Cells, Cultured
7.
Cell ; 176(6): 1461-1476.e23, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30849374

ABSTRACT

Maintaining the optimal performance of cell processes and organelles is the task of auto-regulatory systems. Here we describe an auto-regulatory device that helps to maintain homeostasis of the endoplasmic reticulum (ER) by adjusting the secretory flux to the cargo load. The cargo-recruiting subunit of the coatomer protein II (COPII) coat, Sec24, doubles as a sensor of folded cargo and, upon cargo binding, acts as a guanine nucleotide exchange factor to activate the signaling protein Gα12 at the ER exit sites (ERESs). This step, in turn, activates a complex signaling network that activates and coordinates the ER export machinery and attenuates proteins synthesis, thus preventing large fluctuations of folded and potentially active cargo that could be harmful to the cell or the organism. We call this mechanism AREX (autoregulation of ER export) and expect that its identification will aid our understanding of human physiology and diseases that develop from secretory dysfunction.


Subject(s)
Endoplasmic Reticulum/metabolism , Vesicular Transport Proteins/metabolism , Biological Transport , COP-Coated Vesicles/metabolism , COP-Coated Vesicles/physiology , Cell Line , Coatomer Protein/metabolism , Endoplasmic Reticulum/physiology , Endoplasmic Reticulum Stress/physiology , Female , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , Golgi Apparatus/metabolism , Guanine Nucleotide Exchange Factors/physiology , HeLa Cells , Humans , Male , Protein Folding , Protein Transport , Proteostasis/physiology , Signal Transduction
8.
EMBO J ; 38(8)2019 04 15.
Article in English | MEDLINE | ID: mdl-30858281

ABSTRACT

SREBPs are master regulators of lipid homeostasis and undergo sterol-regulated export from ER to Golgi apparatus for processing and activation via COPII-coated vesicles. While COPII recognizes SREBP through its escort protein SCAP, factor(s) specifically promoting SREBP/SCAP loading to the COPII machinery remains unknown. Here, we show that the ER/lipid droplet-associated protein Cideb selectively promotes the loading of SREBP/SCAP into COPII vesicles. Sterol deprivation releases SCAP from Insig and enhances ER export of SREBP/SCAP by inducing SCAP-Cideb interaction, thereby modulating sterol sensitivity. Moreover, Cideb binds to the guanine nucleotide exchange factor Sec12 to enrich SCAP/SREBP at ER exit sites, where assembling of COPII complex initiates. Loss of Cideb inhibits the cargo loading of SREBP/SCAP, reduces SREBP activation, and alleviates diet-induced hepatic steatosis. Our data point to a linchpin role of Cideb in regulated ER export of SREBP and lipid homeostasis.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/physiology , Endoplasmic Reticulum/physiology , Golgi Apparatus/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Sterols/pharmacology , Animals , Apoptosis Regulatory Proteins/genetics , COP-Coated Vesicles/drug effects , COP-Coated Vesicles/physiology , Endoplasmic Reticulum/drug effects , Golgi Apparatus/drug effects , HEK293 Cells , Hep G2 Cells , Homeostasis , Humans , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Mice , Mice, Knockout , Protein Transport , Sterol Regulatory Element Binding Protein 1/genetics
9.
Biochim Biophys Acta Mol Cell Res ; 1866(2): 252-263, 2019 02.
Article in English | MEDLINE | ID: mdl-30445147

ABSTRACT

A plasma membrane amino acid transporter B0,+ (ATB0,+), encoded by the SLC6A14 gene, is specific for neutral and basic amino acids. It is up-regulated in several types of malignant cancers. Neurotransmitter transporters of the SLC6 family interact with specific SEC24 proteins of the COPII complex along their pathway from the endoplasmic reticulum (ER) to Golgi. This study focused on the possible role of SEC24 proteins in ATB0,+ trafficking. Rat ATB0,+ was expressed in HEK293 cells, its localization and trafficking were examined by Western blot, deglycosylation, immunofluorescence (co-localization with ER and trans-Golgi markers) and biotinylation. The expression of ATB0,+ at the plasma membrane was decreased by dominant negative mutants of SAR1, a GTPase, whose activity triggers the formation of the COPII complex. ATB0,+ co-precipitated with SEC24C (but not with the remaining isoforms A, B and D). This interaction was confirmed by immunocytochemistry and the proximity ligation assay. Co-localization of SEC24C with endogenous ATB0,+ was also observed in MCF-7 breast cancer cells. Contrary to the endogenous transporter, part of the overexpressed ATB0,+ is directed to proteolysis, a process significantly reversed by a proteasome inhibitor bortezomib. Co-transfection with a SEC24C dominant negative mutant attenuated ATB0,+ expression at the plasma membrane, due to proteolytic degradation. These results support a hypothesis that lysine at position +2 downstream of the ER export "RI" motif on the cargo protein is crucial for SEC24C binding and for further trafficking to the Golgi. Moreover, there is an equilibrium between ER export and degradation mechanisms in case of overexpressed transporter.


Subject(s)
Amino Acid Transport Systems, Neutral/metabolism , Protein Transport/physiology , Vesicular Transport Proteins/physiology , Amino Acid Transport Systems/metabolism , Amino Acid Transport Systems, Neutral/physiology , Animals , COP-Coated Vesicles/physiology , Cell Membrane/metabolism , Cell Membrane/physiology , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/physiology , Endoplasmic Reticulum Stress/physiology , Golgi Apparatus/metabolism , HEK293 Cells , HeLa Cells , Humans , MCF-7 Cells , Membrane Proteins/genetics , Protein Isoforms/genetics , Rats , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
10.
Nucleic Acids Res ; 46(19): 10225-10245, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30239896

ABSTRACT

RNase H1-dependent, phosphorothioate-modified antisense oligonucleotides (PS-ASOs) can enter cells through endocytic pathways and need to be released from the membrane-enclosed organelles, a limiting step for antisense activity. Accumulating evidence has suggested that productive PS-ASO release mainly occurs from late endosomes (LEs). However, how PS-ASOs escape from LEs is not well understood. Here, we report that upon PS-ASO incubation, COPII vesicles, normally involved in ER-Golgi transport, can re-locate to PS-ASO-containing LEs. Reduction of COPII coat proteins significantly decreased PS-ASO activity, without affecting the levels of PS-ASO uptake and early-to-late endosome transport, but caused slower PS-ASO release from LEs. COPII co-localization with PS-ASOs at LEs does not require de novo assembly of COPII at ER. Interestingly, reduction of STX5 and P115, proteins involved in tethering and fusion of COPII vesicles with Golgi membranes, impaired COPII re-localization to LEs and decreased PS-ASO activity. STX5 can re-locate to LEs upon PS-ASO incubation, can bind PS-ASOs, and the binding appears to be required for this pathway. Our study reveals a novel release pathway in which PS-ASO incubation causes LE re-localization of STX5, which mediates the recruitment of COPII vesicles to LEs to facilitate endosomal PS-ASO release, and identifies another key PS-ASO binding protein.


Subject(s)
COP-Coated Vesicles/physiology , Endocytosis/physiology , Endosomes/metabolism , Oligonucleotides, Antisense/metabolism , Phosphorothioate Oligonucleotides/metabolism , Transport Vesicles/metabolism , Cells, Cultured , HeLa Cells , Hep G2 Cells , Humans , Signal Transduction
11.
Uirusu ; 68(1): 71-78, 2018.
Article in Japanese | MEDLINE | ID: mdl-31105137

ABSTRACT

Since RNA virus genome encodes only a limited number of viral proteins, replication of RNA virus mostly relies on host cells. Elucidation of host proteins that play important roles in the virus replication cycles contributes not only to fundamental virology research but also to applied research such as development of antiviral drugs. We revealed that Ebola virus matrix protein VP40 utilized host COPII transport machinery for its intracellular transport to the plasma membrane. Second, we demonstrated that enterovirus A71 used Scavenger receptor class B member 2 (SCARB2) as a cellular receptor. Finally, we found that host protein CLUH played an important role in the subnuclear transport of influenza virus ribonucleoprotein (vRNP) complexes. Here, I would like to briefly introduce these findings.


Subject(s)
COP-Coated Vesicles/physiology , Host-Pathogen Interactions/genetics , Lysosomal Membrane Proteins/physiology , RNA Viruses/physiology , RNA-Binding Proteins/physiology , Receptors, Scavenger/physiology , Virus Replication/genetics , Active Transport, Cell Nucleus , Animals , Humans , Mice , RNA Viruses/genetics , Viral Matrix Proteins/metabolism
12.
J Cell Biol ; 216(4): 1035-1049, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28280122

ABSTRACT

Exit of secretory cargo from the endoplasmic reticulum (ER) takes place at specialized domains called ER exit sites (ERESs). In mammals, loss of TANGO1 and other MIA/cTAGE (melanoma inhibitory activity/cutaneous T cell lymphoma-associated antigen) family proteins prevents ER exit of large cargoes such as collagen. Here, we show that Drosophila melanogaster Tango1, the only MIA/cTAGE family member in fruit flies, is a critical organizer of the ERES-Golgi interface. Tango1 rings hold COPII (coat protein II) carriers and Golgi in close proximity at their center. Loss of Tango1, present at ERESs in all tissues, reduces ERES size and causes ERES-Golgi uncoupling, which impairs secretion of not only collagen, but also all other cargoes we examined. Further supporting an organizing role of Tango1, its overexpression creates more and larger ERESs. Our results suggest that spatial coordination of ERES, carrier, and Golgi elements through Tango1's multiple interactions increases secretory capacity in Drosophila and allows secretion of large cargo.


Subject(s)
Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/physiology , Animals , Biological Transport/physiology , COP-Coated Vesicles/metabolism , COP-Coated Vesicles/physiology , Drosophila melanogaster/metabolism , Drosophila melanogaster/physiology , Golgi Apparatus/metabolism , Golgi Apparatus/physiology , Protein Binding/physiology , Protein Transport/physiology , Vesicular Transport Proteins/metabolism
13.
Nat Commun ; 7: 12799, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27619642

ABSTRACT

ErbB2 signalling, which is amplified by EphA2 binding, is an important therapeutic target for breast cancer. Despite the importance of the EphA2/ErbB2 complex in promoting breast tumorigenesis, the mechanism by which these receptor tyrosine kinases (RTKs) are exported from the endoplasmic reticulum (ER) remains poorly understood. Here we report that the PTB adaptor Anks1a is specifically localized to the ER on its own serine phosphorylation. Once there, Anks1a acts as an important regulator of COPII-mediated EphA2 ER export. The Anks1a ankyrin repeat domain binds EphA2 and causes it to accumulate at sites of ER exit. Simultaneously, the Anks1a PTB domain binds Sec23. This induces internalization of EphA2 via COPII vesicles, while Anks1a remains behind on the ER membrane. EphA2 also binds ErbB2 in the ER and seems to load ErbB2 into growing COPII carriers. Together, our study reveals a novel mechanism that regulates the loading of RTKs into COPII vesicles.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , COP-Coated Vesicles/physiology , Gene Expression Regulation/physiology , Protein Transport/physiology , Receptor Protein-Tyrosine Kinases/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Carcinogenesis , Carrier Proteins , Cell Line , Cell Transformation, Neoplastic/metabolism , Humans , Mice , Mice, Knockout , Receptor Protein-Tyrosine Kinases/genetics
14.
Mol Biol Cell ; 27(12): 1938-47, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27122606

ABSTRACT

In addition to its role in forming vesicles from the endoplasmic reticulum (ER), the coat protein complex II (COPII) is also responsible for selecting specific cargo proteins to be packaged into COPII transport vesicles. Comparison of COPII vesicle formation in mammalian systems and in yeast suggested that the former uses more elaborate mechanisms for cargo recognition, presumably to cope with a significantly expanded repertoire of cargo that transits the secretory pathway. Using proTGFα, the transmembrane precursor of transforming growth factor α (TGFα), as a model cargo protein, we demonstrate in cell-free assays that at least one auxiliary cytosolic factor is specifically required for the efficient packaging of proTGFα into COPII vesicles. Using a knockout HeLa cell line generated by CRISPR/Cas9, we provide functional evidence showing that a transmembrane protein, Cornichon-1 (CNIH), acts as a cargo receptor of proTGFα. We show that both CNIH and the auxiliary cytosolic factor(s) are required for efficient recruitment of proTGFα to the COPII coat in vitro. Moreover, we provide evidence that the recruitment of cargo protein by the COPII coat precedes and may be distinct from subsequent cargo packaging into COPII vesicles.


Subject(s)
COP-Coated Vesicles/metabolism , Transport Vesicles/metabolism , Animals , Biological Transport , COP-Coated Vesicles/physiology , Carrier Proteins/metabolism , Cell Line , Cytosol/metabolism , Endoplasmic Reticulum/metabolism , Humans , Membrane Proteins/metabolism , Protein Precursors/metabolism , Protein Transport , Transforming Growth Factor alpha/metabolism , Transport Vesicles/physiology , Vesicular Transport Proteins/metabolism
15.
Protoplasma ; 253(4): 967-85, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26224213

ABSTRACT

p24 family proteins have been known for a long time, but their functions have remained elusive. However, they are emerging as essential regulators of protein trafficking along the secretory pathway, influencing the composition, structure, and function of different organelles in the pathway, especially the ER and the Golgi apparatus. In addition, they appear to modulate the transport of specific cargos, including GPI-anchored proteins, G-protein-coupled receptors, or K/HDEL ligands. As a consequence, they have been shown to play specific roles in signaling, development, insulin secretion, and the pathogenesis of Alzheimer's disease. The search of new putative ligands may open the way to discover new functions for this fascinating family of proteins.


Subject(s)
Membrane Transport Proteins/physiology , Amino Acid Sequence , Animals , COP-Coated Vesicles/physiology , Conserved Sequence , Evolution, Molecular , Humans , Membrane Transport Proteins/chemistry , Organ Specificity , Protein Multimerization , Protein Processing, Post-Translational , Protein Transport , Proteolysis
16.
Mol Cells ; 38(10): 866-75, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26434491

ABSTRACT

COPI vesicles are essential to the retrograde transport of proteins in the early secretory pathway. The COPI coatomer complex consists of seven subunits, termed α-, ß-, ß'-, γ-, δ-, ε-, and ζ-COP, in yeast and mammals. Plant genomes have homologs of these subunits, but the essentiality of their cellular functions has hampered the functional characterization of the subunit genes in plants. Here we have employed virus-induced gene silencing (VIGS) and dexamethasone (DEX)-inducible RNAi of the COPI subunit genes to study the in vivo functions of the COPI coatomer complex in plants. The ß'-, γ-, and δ-COP subunits localized to the Golgi as GFP-fusion proteins and interacted with each other in the Golgi. Silencing of ß'-, γ-, and δ-COP by VIGS resulted in growth arrest and acute plant death in Nicotiana benthamiana, with the affected leaf cells exhibiting morphological markers of programmed cell death. Depletion of the COPI subunits resulted in disruption of the Golgi structure and accumulation of autolysosome-like structures in earlier stages of gene silencing. In tobacco BY-2 cells, DEX-inducible RNAi of ß'-COP caused aberrant cell plate formation during cytokinesis. Collectively, these results suggest that COPI vesicles are essential to plant growth and survival by maintaining the Golgi apparatus and modulating cell plate formation.


Subject(s)
COP-Coated Vesicles/physiology , Coat Protein Complex I/physiology , Golgi Apparatus/metabolism , Nicotiana/growth & development , Plant Proteins/physiology , Apoptosis , COP-Coated Vesicles/metabolism , Coat Protein Complex I/genetics , Coat Protein Complex I/metabolism , Coatomer Protein/genetics , Coatomer Protein/metabolism , Coatomer Protein/physiology , Cytokinesis , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Transport/physiology , RNA Interference , Nicotiana/genetics , Nicotiana/metabolism
17.
PLoS One ; 10(7): e0133757, 2015.
Article in English | MEDLINE | ID: mdl-26218078

ABSTRACT

As a major actor of cellular trafficking, COPI coat proteins assemble on membranes and locally bend them to bud 60 nm-size coated particles. Budding requires the energy of the coat assembly to overcome the one necessary to deform the membrane which primarily depends on the bending modulus and surface tension, γ. Using a COPI-induced oil nanodroplet formation approach, we modulated the budding of nanodroplets using various amounts and types of surfactant. We found a Heaviside-like dependence between the budding efficiency and γ: budding was only dependent on γ and occurred beneath 1.3 mN/m. With the sole contribution of γ to the membrane deformation energy, we assessed that COPI supplies ~1500 kBT for budding particles from membranes, which is consistent with common membrane deformation energies. Our results highlight how a simple remodeling of the composition of membranes could mechanically modulate budding in cells.


Subject(s)
COP-Coated Vesicles/physiology , Cell Membrane/physiology , Coat Protein Complex I/metabolism , Energy Metabolism , Biological Transport , Humans , Surface Tension
18.
J Mol Biol ; 427(16): 2679-96, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26049015

ABSTRACT

Central to the process of transmembrane cargo trafficking is the successful folding and exit from the ER (endoplasmic reticulum) through packaging in COPII vesicles. Here, we use the UapA purine transporter of Aspergillus nidulans to investigate the role of cargo oligomerization in membrane trafficking. We show that UapA oligomerizes (at least dimerizes) and that oligomerization persists upon UapA endocytosis and vacuolar sorting. Using a validated bimolecular fluorescence complementation assay, we provide evidence that a UapA oligomerization is associated with ER-exit and turnover, as ER-retained mutants due to either modification of a Tyr-based N-terminal motif or partial misfolding physically associate but do not associate properly. Co-expression of ER-retained mutants with wild-type UapA leads to in trans plasma membrane localization of the former, confirming that oligomerization initiates in the ER. Genetic suppression of an N-terminal mutation in the Tyr motif and mutational analysis suggest that transmembrane α-helix 7 affects the oligomerization interface. Our results reveal that transporter oligomerization is essential for membrane trafficking and turnover and is a common theme in fungi and mammalian cells.


Subject(s)
Aspergillus nidulans/metabolism , Fungal Proteins/metabolism , Membrane Transport Proteins/metabolism , Protein Multimerization/physiology , Protein Transport/physiology , Aspergillus nidulans/genetics , Bacterial Proteins/genetics , COP-Coated Vesicles/physiology , Cell Membrane/metabolism , Endocytosis/physiology , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Fungal Proteins/genetics , Green Fluorescent Proteins/genetics , Luminescent Proteins/genetics , Membrane Transport Proteins/genetics , Protein Structure, Tertiary , Protein Transport/genetics
19.
Biochem Soc Trans ; 43(1): 92-6, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25619251

ABSTRACT

The GTPase Ypt1, Rab1 in mammals functions on multiple intracellular trafficking pathways. Ypt1 has an established role on the early secretory pathway in targeting coat protein complex II (COPII) coated vesicles to the cis-Golgi. Additionally, Ypt1 functions during the initial stages of macroautophagy, a process of cellular degradation induced during periods of cell stress. In the present study, we discuss the role of Ypt1 and other secretory machinery during macroautophagy, highlighting commonalities between these two pathways.


Subject(s)
COP-Coated Vesicles/physiology , Saccharomyces cerevisiae Proteins/physiology , rab GTP-Binding Proteins/physiology , Animals , Autophagy , Golgi Apparatus/metabolism , Humans , Phagosomes , Protein Transport , Secretory Pathway , Vesicular Transport Proteins/physiology
20.
Methods Cell Biol ; 118: 3-14, 2013.
Article in English | MEDLINE | ID: mdl-24295297

ABSTRACT

In vitro reconstitution is prerequisite to investigate complex cellular functions at the molecular level. Reconstitution systems range from combining complete cellular cytosol with organelle-enriched membrane fractions to liposomal systems where all components are chemically defined and can be chosen at will. Here, we describe the in vitro reconstitution of COPI-coated vesicles from semi-intact cells. Efficient vesicle formation is achieved by simple incubation of permeabilized cells with the minimal set of coat proteins Arf1 and coatomer, and guanosine trinucleotides. GTP hydrolysis or any mechanical manipulations are not required for efficient COPI vesicle release.


Subject(s)
COP-Coated Vesicles/physiology , Golgi Apparatus/physiology , ADP-Ribosylation Factor 1/physiology , Animals , Biological Transport , COP-Coated Vesicles/ultrastructure , Coatomer Protein/physiology , Golgi Apparatus/ultrastructure , Guanosine Triphosphate/metabolism , HeLa Cells , Humans , Intracellular Membranes/metabolism , Mice , Rabbits , Sf9 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...