Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
J Chem Theory Comput ; 20(9): 3440-3448, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38625092

ABSTRACT

A specific checkpoint between target DNA binding and cleavage primarily governs the precision of Cas9 gene editing. Although various CRISPR-Cas9 variants have been developed to improve DNA cleavage accuracy, we still lack a comprehensive understanding of how they work at the molecular level. Herein, we have focused on studying the late-stage conformational transitions of Cas9 and an evolved Cas9 mutant (evoCas9) that start from the precleavage state. Our submilliseconds of dynamic simulations reveal that the presence of base mismatches leads the HNH nuclease domain of Cas9 to alter its principal functional modes of motion, thereby impairing its conformational activation. This observation suggests the existence of a secondary conformational checkpoint that fine-tunes the final DNA cleavage activation. Remarkably, evoCas9 is prone to deviating from the normal activation pathway with base mismatches. This is characterized by a noticeable shift in the positioning of the HNH domain and a significantly perturbed allosteric communication network within the enzyme. Therefore, the mutations evolved in evoCas9 also reinforce the secondary checkpoint in addition to the previously identified primary checkpoint, collectively ensuring this variant's high gene-editing accuracy. This mechanism should also apply to other Cas9-guide RNA variants with enhanced fidelity.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Molecular Dynamics Simulation , CRISPR-Associated Protein 9/chemistry , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , Protein Conformation , Gene Editing , Mutation , DNA/chemistry , DNA/metabolism
2.
J Chem Inf Model ; 64(8): 3237-3247, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38600752

ABSTRACT

Popular RNA-guided DNA endonuclease Cas9 from Streptococcus pyogenes (SpCas9) recognizes the canonical 5'-NGG-3' protospacer adjacent motif (PAM) and triggers double-stranded DNA cleavage activity. Mutations in SpCas9 were demonstrated to expand the PAM readability and hold promise for therapeutic and genome editing applications. However, the energetics of the PAM recognition and its relation to the atomic structure remain unknown. Using the X-ray structure (precatalytic SpCas9:sgRNA:dsDNA) as a template, we calculated the change in the PAM binding affinity in response to SpCas9 mutations using computer simulations. The E1219V mutation in SpCas9 fine-tunes the water accessibility in the PAM binding pocket and promotes new interactions in the SpCas9:noncanonical T-rich PAM, thus weakening the PAM stringency. The nucleotide-specific interaction of two arginine residues (i.e., R1333 and R1335 of SpCas9) ensured stringent 5'-NGG-3' PAM recognition. R1335A substitution (SpCas9R1335A) completely disrupts the direct interaction between SpCas9 and PAM sequences (canonical or noncanonical), accounting for the loss of editing activity. Interestingly, the double mutant (SpCas9R1335A,E1219V) boosts DNA binding affinity by favoring protein:PAM electrostatic contact in a desolvated pocket. The underlying thermodynamics explain the varied DNA cleavage activity of SpCas9 variants. A direct link between the energetics, structures, and activity is highlighted, which can aid in the rational design of improved SpCas9-based genome editing tools.


Subject(s)
CRISPR-Associated Protein 9 , Mutation , Streptococcus pyogenes , Streptococcus pyogenes/enzymology , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/chemistry , CRISPR-Associated Protein 9/genetics , Molecular Dynamics Simulation , Nucleotide Motifs , DNA/metabolism , DNA/chemistry , Protein Conformation , Models, Molecular , Thermodynamics , Protein Binding
3.
J Chem Inf Model ; 63(21): 6834-6850, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37877218

ABSTRACT

The clustered regularly interspaced short palindromic repeats (CRISPR) technology is an RNA-guided targeted genome-editing tool using Cas family proteins. Two magnesium-dependent nuclease domains of the Cas9 enzyme, termed HNH and RuvC, are responsible for cleaving the target DNA (t-DNA) and nontarget DNA strands, respectively. The HNH domain is believed to determine the DNA cleavage activity of both endonuclease domains and is sensitive to complementary RNA-DNA base pairing. However, the underlying molecular mechanisms of CRISPR-Cas9, by which it rebukes or accepts mismatches, are poorly understood. Thus, investigation of the structure and dynamics of the catalytic state of Cas9 with either matched or mismatched t-DNA can provide insights into improving its specificity by reducing off-target cleavages. Here, we focus on a recently discovered catalytic-active form of the Streptococcus pyogenes Cas9 (SpCas9) and employ classical molecular dynamics and coupled quantum mechanics/molecular mechanics simulations to study two possible mechanisms of t-DNA cleavage reaction catalyzed by the HNH domain. Moreover, by designing a mismatched t-DNA structure called MM5 (C to G at the fifth position from the protospacer adjacent motif region), the impact of single-guide RNA (sgRNA) and t-DNA complementarity on the catalysis process was investigated. Based on these simulations, our calculated binding affinities, minimum energy paths, and analysis of catalytically important residues provide atomic-level details of the differences between matched and mismatched cleavage reactions. In addition, several residues exhibit significant differences in their catalytic roles for the two studied systems, including K253, K263, R820, K896, and K913.


Subject(s)
CRISPR-Cas Systems , Molecular Dynamics Simulation , RNA, Guide, CRISPR-Cas Systems , CRISPR-Associated Protein 9/chemistry , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , DNA/chemistry , RNA/chemistry , Endonucleases/chemistry , Endonucleases/genetics , Endonucleases/metabolism
5.
Metab Eng ; 75: 68-77, 2023 01.
Article in English | MEDLINE | ID: mdl-36404524

ABSTRACT

The RNA-guided Cas9s serve as powerful tools for programmable gene editing and regulation; their targeting scopes and efficacies, however, are always constrained by the PAM sequence stringency. Most Streptococci Cas9s, including the prototype SpCas9 from S. pyogenes, specifically recognize a canonical NGG PAM via a conserved RxR PAM-binding motif within the PAM-interaction (PI) domain. Here, SpCas9-based mining unveils three distinct and rarely presented PAM-binding motifs (QxxxR, QxQ and RxQ) among Streptococci Cas9 orthologs. With the catalytically-dead QxxxR-containing SedCas9 from S. equinus, we dissect its NAG PAM specificity and elucidate its underlying recognition mechanism via computational prediction and mutagenesis analysis. Replacing the SedCas9 PI domain with alternate PAM-binding motifs rewires its PAM specificity to NGG or NAA. Moreover, a semi-rational design with minimal mutation creates a SedCas9-NQ variant showing robust activity towards expanded NNG and NAA PAMs, based upon which we engineered a compact ω-SedCas9-NQ transcriptional regulator for PAM-directed bifunctional and titratable gene control. The ω-SedCas9-NQ mediated metabolic reprogramming of endogenous genes in Escherichia coli affords a 2.6-fold increase of 4-hydroxycoumarin production. This work reveals new Cas9 scaffolds with distinct PAM-binding motifs for PAM relaxation and creates a new PAM-diverse Cas9 variant for versatile gene control in bacteria.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Cas Systems , CRISPR-Associated Protein 9/chemistry , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Gene Editing , Mutagenesis , Streptococcus pyogenes/genetics , Streptococcus pyogenes/metabolism
6.
Talanta ; 252: 123780, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-35988299

ABSTRACT

CRISPR (clustered regularly interspaced short palindromic repeats)-associated proteins (Cas) are powerful gene-editing tools used in therapeutic applications. Efforts to minimize off-target cleavage by CRISPR-Cas9 have motivated the development of engineered Cas9 variants. The wild-type (WT) Streptococcus pyogenes (SpCas9) has been engineered into a high-fidelity Cas9 (SpyFi Cas9) that shows promising results in providing high on-target activity (targeting efficiency) while reducing off-target editing (unwanted mutations). This work describes for the first time the development of ultra-high-performance liquid chromatography (UHPLC) and capillary electrophoresis (CE)-based methods for a full characterization of different engineered Cas9 variants, including determination of purity, size variants, isoelectric points (pI), post-translational modifications (PTMs), and functional activities. The purity and size variant characterization were first determined by CE-sodium dodecyl sulfate (SDS). An in vitro DNA cleavage assay using an automated electrophoresis tool was employed to investigate the functional activity of ribonucleoprotein (RNP) complexes derived from Cas9 variants. The pIs of the engineered Cas9 proteins were determined by imaged capillary isoelectric focusing (icIEF), while intact mass measurements were performed by reversed-phase (RP)-UHPLC coupled with high-resolution mass spectrometry (HRMS). A peptide mapping assay based on LC-UV-MS/MS using endoproteinase Lys-C under non-reducing conditions was developed to confirm amino acid sequences, allowing differentiation of SpyFi Cas9 from WT SpCas9. The potential of using a low-resolution MS detector, especially for a GMP environment, as a low-cost and simple method to identify SpyFi Cas9 is discussed.


Subject(s)
CRISPR-Cas Systems , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/chemistry , CRISPR-Associated Protein 9/metabolism , Electrophoresis, Capillary
7.
J Chem Phys ; 157(22): 225103, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36546784

ABSTRACT

Allosteric signaling within multidomain proteins is a driver of communication between spatially distant functional sites. Understanding the mechanism of allosteric coupling in large multidomain proteins is the most promising route to achieving spatial and temporal control of the system. The recent explosion of CRISPR-Cas9 applications in molecular biology and medicine has created a need to understand how the atomic level protein dynamics of Cas9, which are the driving force of its allosteric crosstalk, influence its biophysical characteristics. In this study, we used a synergistic approach of nuclear magnetic resonance (NMR) and computation to pinpoint an allosteric hotspot in the HNH domain of the thermostable GeoCas9. We show that mutation of K597 to alanine disrupts a salt-bridge network, which in turn alters the structure, the timescale of allosteric motions, and the thermostability of the GeoHNH domain. This homologous lysine-to-alanine mutation in the extensively studied mesophilic S. pyogenes Cas9 similarly alters the dynamics of the SpHNH domain. We have previously demonstrated that the alteration of allostery via mutations is a source for the specificity enhancement of SpCas9 (eSpCas9). Hence, this may also be true in GeoCas9.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Cas Systems , CRISPR-Associated Protein 9/chemistry , CRISPR-Associated Protein 9/metabolism , DNA Cleavage , Static Electricity , Temperature
8.
Nature ; 609(7925): 191-196, 2022 09.
Article in English | MEDLINE | ID: mdl-36002571

ABSTRACT

Cas9 is a CRISPR-associated endonuclease capable of RNA-guided, site-specific DNA cleavage1-3. The programmable activity of Cas9 has been widely utilized for genome editing applications4-6, yet its precise mechanisms of target DNA binding and off-target discrimination remain incompletely understood. Here we report a series of cryo-electron microscopy structures of Streptococcus pyogenes Cas9 capturing the directional process of target DNA hybridization. In the early phase of R-loop formation, the Cas9 REC2 and REC3 domains form a positively charged cleft that accommodates the distal end of the target DNA duplex. Guide-target hybridization past the seed region induces rearrangements of the REC2 and REC3 domains and relocation of the HNH nuclease domain to assume a catalytically incompetent checkpoint conformation. Completion of the guide-target heteroduplex triggers conformational activation of the HNH nuclease domain, enabled by distortion of the guide-target heteroduplex, and complementary REC2 and REC3 domain rearrangements. Together, these results establish a structural framework for target DNA-dependent activation of Cas9 that sheds light on its conformational checkpoint mechanism and may facilitate the development of novel Cas9 variants and guide RNA designs with enhanced specificity and activity.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Cryoelectron Microscopy , Protein Domains , R-Loop Structures , Streptococcus pyogenes , CRISPR-Associated Protein 9/chemistry , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/ultrastructure , Catalysis , DNA/metabolism , DNA Cleavage , Enzyme Activation , Gene Editing , RNA, Guide, Kinetoplastida/metabolism , Streptococcus pyogenes/enzymology , Substrate Specificity
9.
J Chem Inf Model ; 62(12): 3057-3066, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35666156

ABSTRACT

The off-target effects of Streptococcus pyogenes Cas9 (SpCas9) pose a significant challenge to harness it as a therapeutical approach. Two major factors can result in SpCas9 off-targeting: tolerance to target DNA-guide RNA (gRNA) mismatch and less stringent recognition of protospacer adjacent motif (PAM) flanking the target DNA. Despite the abundance of engineered SpCas9-gRNA variants with improved sensitivity to target DNA-gRNA mismatch, studies focusing on enhancing SpCas9 PAM recognition stringency are quite few. A recent pioneering study identified a D1135E variant of SpCas9 that exhibits much-reduced editing activity at the noncanonical NAG/NGA PAM sites while preserving robust on-target activity at the canonical NGG-flanking sites (N is any nucleobase). Herein, we aim to clarify the molecular mechanism by which this single D1135E mutation confers on SpCas9 enhanced specificity for PAM recognition by molecular dynamics simulations. The results suggest that the variant maintains the base-specific recognition for the canonical NGG PAM via four hydrogen bonds, akin to that in the wild type (WT) SpCas9. While the noncanonical NAG PAM is engaged to the two PAM-interacting arginine residues (i.e., R1333 and R1335) in WT SpCas9 via two to three hydrogen bonds, the D1135E variant prefers to establish two hydrogen bonds with the PAM bases, accounting for its minimal editing activity on the off-target sites with an NAG PAM. The impaired NAG recognition by D1135E SpCas9 results from the PAM duplex displacement such that the hydrogen bond of R1333 to the second PAM base is disfavored. We further propose a mechanistic model to delineate how the mutation perturbs the noncanonical PAM recognition. We anticipate that the mechanistic knowledge could be leveraged for continuous optimization of SpCas9 PAM recognition specificity toward high-precision demanding applications.


Subject(s)
CRISPR-Associated Protein 9 , RNA, Guide, Kinetoplastida , CRISPR-Associated Protein 9/chemistry , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , DNA/chemistry , RNA, Guide, Kinetoplastida/chemistry , RNA, Guide, Kinetoplastida/genetics , Streptococcus pyogenes/genetics , Streptococcus pyogenes/metabolism
10.
Science ; 376(6600): 1476-1481, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35617371

ABSTRACT

Class 2 CRISPR effectors Cas9 and Cas12 may have evolved from nucleases in IS200/IS605 transposons. IscB is about two-fifths the size of Cas9 but shares a similar domain organization. The associated ωRNA plays the combined role of CRISPR RNA (crRNA) and trans-activating CRISPR RNA (tracrRNA) to guide double-stranded DNA (dsDNA) cleavage. Here we report a 2.78-angstrom cryo-electron microscopy structure of IscB-ωRNA bound to a dsDNA target, revealing the architectural and mechanistic similarities between IscB and Cas9 ribonucleoproteins. Target-adjacent motif recognition, R-loop formation, and DNA cleavage mechanisms are explained at high resolution. ωRNA plays the equivalent function of REC domains in Cas9 and contacts the RNA-DNA heteroduplex. The IscB-specific PLMP domain is dispensable for RNA-guided DNA cleavage. The transition from ancestral IscB to Cas9 involved dwarfing the ωRNA and introducing protein domain replacements.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Cas Systems , DNA Cleavage , RNA, Guide, Kinetoplastida , Ribonucleoproteins , Amino Acid Motifs , CRISPR-Associated Protein 9/chemistry , CRISPR-Associated Protein 9/genetics , Cryoelectron Microscopy , Nucleic Acid Conformation , Protein Domains , RNA, Bacterial/genetics , RNA, Guide, Kinetoplastida/chemistry , Ribonucleoproteins/chemistry
11.
Article in English | MEDLINE | ID: mdl-35139474

ABSTRACT

The clustered regularly interspaced short palindromic repeats-CRISPR associated protein9 (CRISPR-Cas9) system, which includes a single guide RNA (sgRNA) and a Cas9 protein, is an emerging and promising gene editing technology that produces specific changes, including insertions, deletions, or substitutions, in desired targets. This approach can be applied in novel therapeutic areas for multiple cancers and genetic diseases, including Parkinson's disease, sickle cell disease, and muscular dystrophy. However, there are many limitations to its potential application to therapeutics. CRISPR-Cas9 activity without side effects, delivery of CRISPR-Cas9 to the target cell within the desired tissue including liver, lungs, brain and muscle and the expression of Cas9 endonuclease in the target cell are key factors in achieving therapeutic efficacy. Generally, single-stranded RNA is immediately degraded in cells and biological fluids such as serum, as chemically unmodified single-stranded RNA shows extremely poor stability against nuclease degradation. To overcome this limitation, sgRNA is chemically modified to obtain a highly stable sgRNA for efficient gene editing in cells and in vivo. Here, we identified the cleavage site of sgRNA for pinpoint modification in biological tissues using mass spectrometry and improved stability of pinpoint modified sgRNA in these fluids. Although improved efficiency provided by modified sgRNA has already been reported, we identified the cleavage site by mass spectrometry and revealed that the stability increased with the pinpoint modification strategy for the first time in this study. In future studies, the efficiency of pinpoint modification strategy for the potential application of sgRNA by systematic routes, including intravenous and subcutaneous administration will be assessed.


Subject(s)
CRISPR-Cas Systems/genetics , RNA Stability/genetics , RNA, Guide, Kinetoplastida , CRISPR-Associated Protein 9/chemistry , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Mass Spectrometry , RNA Processing, Post-Transcriptional/genetics , RNA, Guide, Kinetoplastida/chemistry , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism
12.
Int J Mol Sci ; 23(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35163047

ABSTRACT

The Cas9 endonuclease is an essential component of the CRISPR-Cas-based genome editing tools. The attainment of high specificity and efficiency of Cas9 during targetted DNA cleavage is the main problem that limits the clinical application of the CRISPR-Cas9 system. A deep understanding of the Cas9 mechanism and its structural-functional relationships is required to develop strategies for precise gene editing. Here, we present the first attempt to describe the solution structure of Cas9 from S. pyogenes using hydrogen-deuterium exchange mass spectrometry (HDX-MS) coupled to molecular dynamics simulations. HDX data revealed multiple protein regions with deuterium uptake levels varying from low to high. By analysing the difference in relative deuterium uptake by apoCas9 and its complex with sgRNA, we identified peptides involved in the complex formation and possible changes in the protein conformation. The REC3 domain was shown to undergo the most prominent conformational change upon enzyme-RNA interactions. Detection of the HDX in two forms of the enzyme provided detailed information about changes in the Cas9 structure induced by sgRNA binding and quantified the extent of the changes. The study demonstrates the practical utility of HDX-MS for the elucidation of mechanistic aspects of Cas9 functioning.


Subject(s)
CRISPR-Associated Protein 9/chemistry , CRISPR-Associated Protein 9/metabolism , RNA, Guide, Kinetoplastida/metabolism , Streptococcus pyogenes/enzymology , Hydrogen Deuterium Exchange-Mass Spectrometry , Models, Molecular , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Protein Domains , Streptococcus pyogenes/chemistry
13.
Life Sci Alliance ; 5(4)2022 04.
Article in English | MEDLINE | ID: mdl-35022246

ABSTRACT

CRISPR/Cas9 is a popular genome editing technology. Although widely used, little is known about how this prokaryotic system behaves in humans. An unwanted consequence of eukaryotic Cas9 expression is off-target DNA binding leading to mutagenesis. Safer clinical implementation of CRISPR/Cas9 necessitates a finer understanding of the regulatory mechanisms governing Cas9 behavior in humans. Here, we report our discovery of Cas9 sumoylation and ubiquitylation, the first post-translational modifications to be described on this enzyme. We found that the major SUMO2/3 conjugation site on Cas9 is K848, a key positively charged residue in the HNH nuclease domain that is known to interact with target DNA and contribute to off-target DNA binding. Our results suggest that Cas9 ubiquitylation leads to decreased stability via proteasomal degradation. Preventing Cas9 sumoylation through conversion of K848 into arginine or pharmacologic inhibition of cellular sumoylation enhances the enzyme's turnover and diminishes guide RNA-directed DNA binding efficacy, suggesting that sumoylation at this site regulates Cas9 stability and DNA binding. More research is needed to fully understand the implications of these modifications for Cas9 specificity.


Subject(s)
CRISPR-Associated Protein 9 , DNA/metabolism , Lysine , Sumoylation/genetics , CRISPR-Associated Protein 9/chemistry , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , HEK293 Cells , Humans , Lysine/chemistry , Lysine/genetics , Protein Stability , Small Ubiquitin-Related Modifier Proteins/metabolism
14.
Nat Commun ; 13(1): 77, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013276

ABSTRACT

Nanophotonic tweezers represent emerging platforms with significant potential for parallel manipulation and measurements of single biological molecules on-chip. However, trapping force generation represents a substantial obstacle for their broader utility. Here, we present a resonator nanophotonic standing-wave array trap (resonator-nSWAT) that demonstrates significant force enhancement. This platform integrates a critically-coupled resonator design to the nSWAT and incorporates a novel trap reset scheme. The nSWAT can now perform standard single-molecule experiments, including stretching DNA molecules to measure their force-extension relations, unzipping DNA molecules, and disrupting and mapping protein-DNA interactions. These experiments have realized trapping forces on the order of 20 pN while demonstrating base-pair resolution with measurements performed on multiple molecules in parallel. Thus, the resonator-nSWAT platform now meets the benchmarks of a table-top precision optical trapping instrument in terms of force generation and resolution. This represents the first demonstration of a nanophotonic platform for such single-molecule experiments.


Subject(s)
CRISPR-Associated Protein 9/chemistry , DNA, Viral/chemistry , DNA/chemistry , Lab-On-A-Chip Devices , Optical Tweezers , Single Molecule Imaging/methods , Biomechanical Phenomena , CRISPR-Associated Protein 9/metabolism , DNA/metabolism , DNA, Viral/metabolism , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Protein Binding , Silicon Compounds/chemistry
15.
J Struct Biol ; 214(1): 107814, 2022 03.
Article in English | MEDLINE | ID: mdl-34871741

ABSTRACT

CRISPR-Cas9 is a widely used biochemical tool with applications in molecular biology and precision medicine. The RNA-guided Cas9 protein uses its HNH endonuclease domain to cleave the DNA strand complementary to its endogenous guide RNA. In this study, novel constructs of HNH from two divergent organisms, G. stearothermophilus (GeoHNH) and S. pyogenes (SpHNH) were engineered from their respective full-length Cas9 proteins. Despite low sequence similarity, the X-ray crystal structures of these constructs reveal that the core of HNH surrounding the active site is conserved. Structure prediction of the full-length GeoCas9 protein using Phyre2 and AlphaFold2 also showed that the crystallographic construct of GeoHNH represents the structure of the domain within the full-length GeoCas9 protein. However, significant differences are observed in the solution dynamics of structurally conserved regions of GeoHNH and SpHNH, the latter of which was shown to use such molecular motions to propagate the DNA cleavage signal. Indeed, molecular simulations show that the intradomain signaling pathways, which drive SpHNH function, are non-specific and poorly formed in GeoHNH. Taken together, these outcomes suggest mechanistic differences between mesophilic and thermophilic Cas9 species.


Subject(s)
CRISPR-Cas Systems , Molecular Dynamics Simulation , CRISPR-Associated Protein 9/chemistry , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Endonucleases/genetics , Endonucleases/metabolism , RNA, Guide, Kinetoplastida/chemistry , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Streptococcus pyogenes/metabolism
16.
J Mol Biol ; 434(5): 167420, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34954237

ABSTRACT

Phages, plasmids, and other mobile genetic elements express inhibitors of CRISPR-Cas immune systems, known as anti-CRISPR proteins, to protect themselves from targeted destruction. These anti-CRISPR proteins have been shown to function through very diverse mechanisms. In this work we investigate the activity of an anti-CRISPR isolated from a prophage in Haemophilus parainfluenzae that blocks CRISPR-Cas9 DNA cleavage activity. We determine the three-dimensional crystal structure of AcrIIC4Hpa and show that it binds to the Cas9 Recognition Domain. This binding does not prevent the Cas9-anti-CRISPR complex from interacting with target DNA but does inhibit DNA cleavage. AcrIIC4Hpa likely acts by blocking the conformational changes that allow the HNH and RuvC endonuclease domains to contact the DNA sites to be nicked.


Subject(s)
Bacteriophages , CRISPR-Associated Protein 9 , DNA Cleavage , Haemophilus parainfluenzae , Viral Proteins , Bacteriophages/enzymology , CRISPR-Associated Protein 9/antagonists & inhibitors , CRISPR-Associated Protein 9/chemistry , Haemophilus parainfluenzae/virology , Prophages/enzymology , Protein Domains , Viral Proteins/chemistry , Viral Proteins/metabolism
17.
Nucleic Acids Res ; 49(21): 12433-12444, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34850124

ABSTRACT

Streptococcus pyogenes Cas9 (SpCas9), a programmable RNA-guided DNA endonuclease, has been widely repurposed for biological and medical applications. Critical interactions between SpCas9 and DNA confer the high specificity of the enzyme in genome engineering. Here, we unveil that an essential SpCas9-DNA interaction located beyond the protospacer adjacent motif (PAM) is realized through electrostatic forces between four positively charged lysines among SpCas9 residues 1151-1156 and the negatively charged DNA backbone. Modulating this interaction by substituting lysines with amino acids that have distinct charges revealed a strong dependence of DNA target binding and cleavage activities of SpCas9 on the charge. Moreover, the SpCas9 mutants show markedly distinguishable DNA interaction sites beyond the PAM compared with wild-type SpCas9. Functionally, this interaction governs DNA sampling and participates in protospacer DNA unwinding during DNA interrogation. Overall, a mechanistic and functional understanding of this vital interaction explains how SpCas9 carries out efficient DNA interrogation.


Subject(s)
Amino Acid Motifs , CRISPR-Associated Protein 9/metabolism , DNA/metabolism , Nucleotide Motifs , Streptococcus pyogenes/enzymology , CRISPR-Associated Protein 9/chemistry , CRISPR-Associated Protein 9/genetics , DNA/chemistry , DNA/genetics , DNA Cleavage , Fluorescence Resonance Energy Transfer/methods , HEK293 Cells , Humans , Mutation , Protein Binding , Static Electricity , Streptococcus pyogenes/genetics
18.
Nat Commun ; 12(1): 6916, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34824292

ABSTRACT

The RNA-guided CRISPR-associated Cas9 proteins have been widely applied in programmable genome recombination, base editing or gene regulation in both prokaryotes and eukaryotes. SpCas9 from Streptococcus pyogenes is the most extensively engineered Cas9 with robust and manifold functionalities. However, one inherent limitation of SpCas9 is its stringent 5'-NGG-3' PAM requirement that significantly restricts its DNA target range. Here, to repurpose SpCas9 as a universal gene repressor, we generate and screen variants of the deactivated SpCas9 (SpdCas9) with relaxed 5'-CAT-3' PAM compatibility that can bind to the start codon ATG of almost any gene. Stepwise structure-guided mutations of the PAM-interacting residues and auxiliary PAM-proximal residues of the SpdNG (5'-NG-3' PAM) create a PAM-flexible variant SpdNG-LWQT that preferentially accommodates 5'-NRN-3' PAMs. SpdNG-LWQT is demonstrated to be effective in gene repression with the advantage of customizable sgRNA design in both Escherichia coli and Saccharomyces cerevisiae. This work validates the feasibility of purposeful PAM expansion of Cas9 towards signature PAMs and establishes a universal SpdCas9-based gene repressor.


Subject(s)
CRISPR-Associated Protein 9/chemistry , CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems , Gene Expression , Genetic Engineering/methods , Codon, Initiator , DNA Cleavage , Escherichia coli/genetics , Molecular Dynamics Simulation , Mutation , Prokaryotic Cells , RNA, Guide, Kinetoplastida , Saccharomyces cerevisiae/genetics , Streptococcus pyogenes/genetics
19.
Biochemistry ; 60(49): 3783-3800, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34757726

ABSTRACT

CRISPR-Cas systems are RNA-guided nucleases that provide adaptive immune protection in bacteria and archaea against intruding genomic materials. Cas9, a type-II CRISPR effector protein, is widely used for gene editing applications since a single guide RNA can direct Cas9 to cleave specific genomic targets. The conformational changes associated with RNA/DNA binding are being modulated to develop Cas9 variants with reduced off-target cleavage. Previously, we showed that proline substitutions in the arginine-rich bridge helix (BH) of Streptococcus pyogenes Cas9 (SpyCas9-L64P-K65P, SpyCas92Pro) improve target DNA cleavage selectivity. In this study, we establish that kinetic analysis of the cleavage of supercoiled plasmid substrates provides a facile means to analyze the use of two parallel routes for DNA linearization by SpyCas9: (i) nicking by HNH followed by RuvC cleavage (the TS (target strand) pathway) and (ii) nicking by RuvC followed by HNH cleavage (the NTS (nontarget strand) pathway). BH substitutions and DNA mismatches alter the individual rate constants, resulting in changes in the relative use of the two pathways and the production of nicked and linear species within a given pathway. The results reveal coordinated actions between HNH and RuvC to linearize DNA, which is modulated by the integrity of the BH and the position of the mismatch in the substrate, with each condition producing distinct conformational energy landscapes as observed by molecular dynamics simulations. Overall, our results indicate that BH interactions with RNA/DNA enable target DNA discrimination through the differential use of the parallel sequential pathways driven by HNH/RuvC coordination.


Subject(s)
CRISPR-Associated Protein 9/chemistry , CRISPR-Cas Systems , DNA/chemistry , RNA, Guide, Kinetoplastida/chemistry , RNA/chemistry , Streptococcus pyogenes/chemistry , Binding Sites , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Crystallography, X-Ray , DNA/genetics , DNA/metabolism , DNA Cleavage , Gene Expression , Kinetics , Molecular Dynamics Simulation , Mutation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Domains , Protein Interaction Domains and Motifs , RNA/genetics , RNA/metabolism , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Streptococcus pyogenes/enzymology , Streptococcus pyogenes/genetics , Substrate Specificity , Thermodynamics
20.
Protein Sci ; 30(12): 2474-2481, 2021 12.
Article in English | MEDLINE | ID: mdl-34676610

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPRs)-CRISPR-associated protein systems are bacterial and archaeal defense mechanisms against invading elements such as phages and viruses. To overcome these defense systems, phages and viruses have developed inhibitors called anti-CRISPRs (Acrs) that are capable of inhibiting the host CRISPR-Cas system via different mechanisms. Although the inhibitory mechanisms of AcrIIC1, AcrIIC2, and AcrIIC3 have been revealed, the inhibitory mechanisms of AcrIIC4 and AcrIIC5 have not been fully understood and structural data are unavailable. In this study, we elucidated the crystal structure of Type IIC anti-CRISPR protein, AcrIIC4. Our structural analysis revealed that AcrIIC4 exhibited a helical bundle fold comprising four helixes. Further biochemical and biophysical analyses showed that AcrIIC4 formed a monomer in solution, and monomeric AcrIIC4 directly interacted with Cas9 and Cas9/sgRNA complex. Discovery of the structure of AcrIIC4 and their interaction mode on Cas9 will help us elucidate the diversity in the inhibitory mechanisms of the Acr protein family.


Subject(s)
Antibiosis/genetics , Bacterial Proteins/chemistry , CRISPR-Associated Protein 9/chemistry , CRISPR-Cas Systems , Haemophilus parainfluenzae/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , CRISPR-Associated Protein 9/antagonists & inhibitors , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Cloning, Molecular , Crystallography, X-Ray , DNA/chemistry , DNA/genetics , DNA/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Editing , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Haemophilus parainfluenzae/metabolism , Models, Molecular , Neisseria meningitidis/genetics , Neisseria meningitidis/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Interaction Domains and Motifs , RNA, Guide, Kinetoplastida/chemistry , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...