Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 690
Filter
1.
Biosens Bioelectron ; 258: 116373, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38729048

ABSTRACT

Breast cancer is reported to be one of the most lethal cancers in women, and its multi-target detection can help improve the accuracy of diagnosis. In this work, a cluster regularly interspaced short palindromic repeats (CRISPR)-Cas13a/Cas12a-based system was established for the simultaneous fluorescence detection of breast cancer biomarkers circROBO1 and BRCA1. CRISPR-Cas13a and CRISPR-Cas12a were directly activated by their respective targets, resulting in the cleavage of short RNA and DNA reporters, respectively, thus the signals of 6-carboxyfluorescein (FAM) and 6-carboxy-xrhodamine (ROX) were restored. As the fluorescence intensities of FAM and ROX were dependent on the concentrations of circROBO1 and BRCA1, respectively, synchronous fluorescence scanning could achieve one-step detection of circROBO1 and BRCA1 with detection limits of 0.013 pM and 0.26 pM, respectively. The system was highly sensitive and specific, holding high diagnostic potential for the detection of clinical samples. Furthermore, the competing endogenous RNA mechanism between circROBO1 and BRCA1 was also explored, providing a reliable basis for the intrinsic regulatory mechanism of breast cancer.


Subject(s)
BRCA1 Protein , Biomarkers, Tumor , Biosensing Techniques , Breast Neoplasms , CRISPR-Cas Systems , Humans , Breast Neoplasms/genetics , Breast Neoplasms/diagnosis , Female , Biomarkers, Tumor/genetics , Biosensing Techniques/methods , BRCA1 Protein/genetics , RNA, Circular/genetics , Limit of Detection , Fluoresceins/chemistry , CRISPR-Associated Proteins/genetics
2.
Nat Commun ; 15(1): 3823, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714643

ABSTRACT

The CRISPR-Cas12a system is more advantageous than the widely used CRISPR-Cas9 system in terms of specificity and multiplexibility. However, its on-target editing efficiency is typically much lower than that of the CRISPR-Cas9 system. Here we improved its on-target editing efficiency by simply incorporating 2-aminoadenine (base Z, which alters canonical Watson-Crick base pairing) into the crRNA to increase the binding affinity between crRNA and its complementary DNA target. The resulting CRISPR-Cas12a (named zCRISPR-Cas12a thereafter) shows an on-target editing efficiency comparable to that of the CRISPR-Cas9 system but with much lower off-target effects than the CRISPR-Cas9 system in mammalian cells. In addition, zCRISPR-Cas12a can be used for precise gene knock-in and highly efficient multiplex genome editing. Overall, the zCRISPR-Cas12a system is superior to the CRISPR-Cas9 system, and our simple crRNA engineering strategy may be extended to other CRISPR-Cas family members as well as their derivatives.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Gene Editing/methods , Humans , HEK293 Cells , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , RNA/genetics , RNA/metabolism , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/genetics , Bacterial Proteins , Endodeoxyribonucleases
3.
Nat Commun ; 15(1): 3699, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698035

ABSTRACT

In silico identification of viral anti-CRISPR proteins (Acrs) has relied largely on the guilt-by-association method using known Acrs or anti-CRISPR associated proteins (Acas) as the bait. However, the low number and limited spread of the characterized archaeal Acrs and Aca hinders our ability to identify Acrs using guilt-by-association. Here, based on the observation that the few characterized archaeal Acrs and Aca are transcribed immediately post viral infection, we hypothesize that these genes, and many other unidentified anti-defense genes (ADG), are under the control of conserved regulatory sequences including a strong promoter, which can be used to predict anti-defense genes in archaeal viruses. Using this consensus sequence based method, we identify 354 potential ADGs in 57 archaeal viruses and 6 metagenome-assembled genomes. Experimental validation identified a CRISPR subtype I-A inhibitor and the first virally encoded inhibitor of an archaeal toxin-antitoxin based immune system. We also identify regulatory proteins potentially akin to Acas that can facilitate further identification of ADGs combined with the guilt-by-association approach. These results demonstrate the potential of regulatory sequence analysis for extensive identification of ADGs in viruses of archaea and bacteria.


Subject(s)
Archaea , Archaeal Viruses , Archaeal Viruses/genetics , Archaea/genetics , Archaea/virology , Archaea/immunology , Promoter Regions, Genetic/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Regulatory Sequences, Nucleic Acid/genetics , Viral Proteins/genetics , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Metagenome/genetics , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems/genetics
4.
Anal Methods ; 16(20): 3220-3230, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38717230

ABSTRACT

Tuberculosis caused by Mycobacterium bovis poses a global infectious threat to humans and animals. Therefore, there is an urgent need to develop a sensitive, precise, and easy-to-readout strategy. Here, a novel tandem combination of a CRISPR/Cas12a system with dual HCR (denoted as CRISPR/Cas12a-D-HCR) was constructed for detecting Mycobacterium bovis. Based on the efficient trans-cleavage activity of the active CRISPR/Cas12a system, tandem-dsDNA with PAM sites was established using two flexible hairpins, providing multiple binding sites with CRISPR/Cas12a for further amplification. Furthermore, the activation of Cas12a initiated the second hybridization chain reaction (HCR), which integrated complete G-quadruplex sequences to assemble the hemin/G-quadruplex DNAzyme. With the addition of H2O2 and ABTS, a colorimetric signal readout strategy was achieved. Consequently, CRISPR/Cas12a-D-HCR achieved a satisfactory detection linear range from 20 aM to 50 fM, and the limit of detection was as low as 2.75 aM with single mismatched recognition capability, demonstrating good discrimination of different bacterial species. Notably, the practical application performance was verified via the standard addition method, with the recovery ranging from 96.0% to 105.2% and the relative standard deviations (RSD) ranging from 0.95% to 6.45%. The proposed CRISPR/Cas12a-D-HCR sensing system served as a promising application for accurate detection in food safety and agricultural fields.


Subject(s)
CRISPR-Cas Systems , Colorimetry , G-Quadruplexes , Mycobacterium bovis , Mycobacterium bovis/genetics , CRISPR-Cas Systems/genetics , Colorimetry/methods , Nucleic Acid Hybridization/methods , Limit of Detection , Animals , DNA, Catalytic/chemistry , Biosensing Techniques/methods , CRISPR-Associated Proteins/genetics , DNA, Bacterial/genetics
5.
Anal Chim Acta ; 1308: 342649, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38740457

ABSTRACT

BACKGROUND: Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a-powered biosensor with a G-quadruplex (G4) reporter offer the benefits of simplicity and sensitivity, making them extensively utilized in detection applications. However, these biosensors used for monitoring pollutants in environmental water samples may face the problem of high background signal and easy interference due to the "signal-off" output. It is obvious that a biosensor based on the CRISPR/Cas12a system and G4 with a "signal on" output mode needs to be designed for detecting environmental pollutants. RESULTS: By using phosphorothioate-modified G4 as a reporter and catalytic hairpin assembly (CHA) integrated with Cas12a as an amplification strategy, a "signal-on" colorimetric/photothermal biosensor (psG4-CHA/Cas) for portable detection of environmental pollutants was developed. With the help of functional nucleotides, the target pollutant (kanamycin or Pb2+) triggers a CHA reaction to produce numerous double-strand DNA, which can activate Cas12a's trans-cleavage activity. The active Cas12a cleaves locked DNA to release caged psG-rich sequences. Upon binding hemin, the psG-rich sequence forms a psG4/hemin complex, facilitating the oxidation of the colorless 3,3',5,5'-tetramethylbenzidine (TMB) into the blue photothermal agent (oxTMB). The smartphone was employed for portable colorimetric detection of kanamycin and Pb2+. The detection limits were found to be 100 pM for kanamycin and 50 pM for Pb2+. Detection of kanamycin and Pb2+ was also carried out using a portable thermometer with a detection limit of 10 pM for kanamycin and 8 pM for Pb2+. SIGNIFICANCE: Sensitive, selective, simple and robust detection of kanamycin and Pb2+ in environmental water samples is achieved with the psG4-CHA/Cas system. This system not only provides a new perspective on the development of efficient CRISPR/Cas12a-based "signal-on" designs, but also has a promising application for safeguarding human health and environmental monitoring.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , G-Quadruplexes , Biosensing Techniques/methods , CRISPR-Cas Systems/genetics , Colorimetry , Lead/analysis , Environmental Pollutants/analysis , Limit of Detection , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/genetics , Water Pollutants, Chemical/analysis , Bacterial Proteins , Endodeoxyribonucleases
6.
Anal Chim Acta ; 1309: 342693, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38772660

ABSTRACT

BACKGROUND: CRISPR-Cas12a based one-step assays are widely used for nucleic acid detection, particularly for pathogen detection. However, the detection capability of the one-step assay is reduced because the Cas12a protein competes with the isothermal amplification enzymes for the target DNA and cleaves it. Therefore, the key to improving the sensitivity of the one-step assay is to address the imbalance between isothermal amplification and CRISPR detection. In previous study, we developed a Cas12a one-step assay using single-stranded DNA (ssDNA)-modified crRNA (mD-crRNA) and applied this method for the detection of pathogenic DNA. RESULTS: Here, we utilized mD-crRNA to establish a sensitive one-step assay that enables the visual detection of SARS-CoV-2 under ultraviolet light, achieving a detection limit of 5 aM without cross-reactivity. The sensitivity of mD-crRNA in the one-step assay was 100-fold higher than that of wild-type crRNA. Mechanistic studies revealed that the addition of ssDNA at the 3' end of mD-crRNA attenuates the binding affinity between the Cas12a-mD-crRNA complex and the target DNA. Consequently, this reduction in binding affinity decreases the cis-cleavage activity of Cas12a, mitigating its cleavage of the target DNA in the one-step assay. As a result, there is an augmentation in the amplification and accumulation of target DNA, thereby enhancing detection sensitivity. In the clinical testing of 40 SARS-CoV-2 RNA samples, the concordance between the results of the one-step assay and known qPCR results was 97.5 %. SIGNIFICANCE: The one-step assay using mD-crRNA proves to be highly sensitive and specificity and visually effective for the detection of SARS-CoV-2. Our study delves into the application of the mD-crRNA-mediated one-step assay in nucleic acid detection and its associated reaction mechanism. This holds great significance in addressing the inherent incompatibility issues between isothermal amplification and CRISPR detection.


Subject(s)
COVID-19 , DNA, Single-Stranded , Nucleic Acid Amplification Techniques , RNA, Viral , SARS-CoV-2 , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , Nucleic Acid Amplification Techniques/methods , Humans , RNA, Viral/analysis , RNA, Viral/genetics , COVID-19/diagnosis , COVID-19/virology , Limit of Detection , CRISPR-Cas Systems/genetics , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/genetics , Bacterial Proteins
7.
Signal Transduct Target Ther ; 9(1): 111, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735995

ABSTRACT

CRISPR‒Cas7-11 is a Type III-E CRISPR-associated nuclease that functions as a potent RNA editing tool. Tetratrico-peptide repeat fused with Cas/HEF1-associated signal transducer (TPR-CHAT) acts as a regulatory protein that interacts with CRISPR RNA (crRNA)-bound Cas7-11 to form a CRISPR-guided caspase complex (Craspase). However, the precise modulation of Cas7-11's nuclease activity by TPR-CHAT to enhance its utility requires further study. Here, we report cryo-electron microscopy (cryo-EM) structures of Desulfonema ishimotonii (Di) Cas7-11-crRNA, complexed with or without the full length or the N-terminus of TPR-CHAT. These structures unveil the molecular features of the Craspase complex. Structural analysis, combined with in vitro nuclease assay and electrophoretic mobility shift assay, reveals that DiTPR-CHAT negatively regulates the activity of DiCas7-11 by preventing target RNA from binding through the N-terminal 65 amino acids of DiTPR-CHAT (DiTPR-CHATNTD). Our work demonstrates that DiTPR-CHATNTD can function as a small unit of DiCas7-11 regulator, potentially enabling safe applications to prevent overcutting and off-target effects of the CRISPR‒Cas7-11 system.


Subject(s)
CRISPR-Associated Proteins , CRISPR-Cas Systems , Cryoelectron Microscopy , CRISPR-Cas Systems/genetics , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism
8.
Nat Commun ; 15(1): 4126, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750051

ABSTRACT

Type I CRISPR-Cas systems employ multi-subunit effector Cascade and helicase-nuclease Cas3 to target and degrade foreign nucleic acids, representing the most abundant RNA-guided adaptive immune systems in prokaryotes. Their ability to cause long fragment deletions have led to increasing interests in eukaryotic genome editing. While the Cascade structures of all other six type I systems have been determined, the structure of the most evolutionarily conserved type I-B Cascade is still missing. Here, we present two cryo-EM structures of the Synechocystis sp. PCC 6714 (Syn) type I-B Cascade, revealing the molecular mechanisms that underlie RNA-directed Cascade assembly, target DNA recognition, and local conformational changes of the effector complex upon R-loop formation. Remarkably, a loop of Cas5 directly intercalated into the major groove of the PAM and facilitated PAM recognition. We further characterized the genome editing profiles of this I-B Cascade-Cas3 in human CD3+ T cells using mRNA-mediated delivery, which led to unidirectional 4.5 kb deletion in TRAC locus and achieved an editing efficiency up to 41.2%. Our study provides the structural basis for understanding target DNA recognition by type I-B Cascade and lays foundation for harnessing this system for long range genome editing in human T cells.


Subject(s)
CRISPR-Cas Systems , Cryoelectron Microscopy , Gene Editing , Synechocystis , Gene Editing/methods , Humans , Synechocystis/genetics , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , T-Lymphocytes/metabolism , R-Loop Structures/genetics
9.
J Phys Chem B ; 128(15): 3563-3574, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38573978

ABSTRACT

Cas1 and Cas2 are highly conserved proteins among the clustered regularly interspaced short palindromic repeat Cas (CRISPR-Cas) systems and play a crucial role in protospacer selection and integration. According to the double-forked CRISPR Cas1-Cas2 complex, we conducted extensive all-atom molecular dynamics simulations to investigate the protospacer DNA binding and recognition. Our findings revealed that single-point amino acid mutations in Cas1 or in Cas2 had little impact on the binding of the protospacer, both in the binding and precatalytic states. In contrast, multiple-point amino acid mutations, particularly G74A, P80L, and V89A mutations on Cas2 and Cas2' proteins (m-multiple1 system), significantly affected the protospacer binding and selection. Notably, mutations on Cas2 and Cas2' led to an increased number of hydrogen bonds (#HBs) between Cas2&Cas2' and the dsDNA in the m-multiple1 system compared with the wild-type system. And the strong electrostatic interactions between Cas1-Cas2 and the protospacer DNA (psDNA) in the m-multiple1 system again suggested the increase in the binding affinity of protospacer acquisition. Specifically, mutations in Cas2 and Cas2' can remotely make the protospacer adjacent motif complementary (PAMc) sequences better in recognition by the two active sites, while multiple mutations K211E, P202Q, P212L, R138L, V134A, A286T, P282H, and P294H on Cas1a/Cas1b&Cas1a'/Cas1b' (m-multiple2 system) decrease the #HBs and the electrostatic interactions and make the PAMc worse in recognition compared with the wild-type system.


Subject(s)
CRISPR-Associated Proteins , Escherichia coli , Escherichia coli/genetics , Molecular Dynamics Simulation , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , DNA/chemistry , Amino Acids/metabolism
10.
Front Immunol ; 15: 1358960, 2024.
Article in English | MEDLINE | ID: mdl-38655256

ABSTRACT

Introduction: Early detection of the virus in the environment or in infected pigs is a critical step to stop African swine fever virus (ASFV) transmission. The p22 protein encoded by ASFV KP177R gene has been shown to have no effect on viral replication and virulence and can serve as a molecular marker for distinguishing field virus strains from future candidate KP177R deletion vaccine strains. Methods: This study established an ASFV detection assay specific for the highly conserved ASFV KP177R gene based on recombinase polymerase amplification (RPA) and the CRISPR/Cas12 reaction system. The KP177R gene served as the initial template for the RPA reaction to generate amplicons, which were recognized by guide RNA to activate the trans-cleavage activity of Cas12a protein, thereby leading to non-specific cleavage of single-stranded DNA as well as corresponding color reaction. The viral detection in this assay could be determined by visualizing the results of fluorescence or lateral flow dipstick (LFD) biotin blotting for color development, and was respectively referred to as fluorescein-labeled RPA-CRISPR/Cas12a and biotin-labeled LFD RPA-CRISPR/Cas12a. The clinical samples were simultaneously subjected to the aforementioned assay, while real-time quantitative PCR (RT-qPCR) was employed as a control for determining the diagnostic concordance rate between both assays. Results: The results showed that fluorescein- and biotin-labeled LFD KP177R RPA-CRISPR/Cas12a assays specifically detected ASFV, did not cross-react with other swine pathogens including PCV2, PEDV, PDCoV, and PRV. The detection assay established in this study had a limit of detection (LOD) of 6.8 copies/µL, and both assays were completed in 30 min. The KP177R RPA-CRISPR/Cas12a assay demonstrated a diagnostic coincidence rate of 100% and a kappa value of 1.000 (p < 0.001), with six out of ten clinical samples testing positive for ASFV using both KP177R RPA-CRISPR/Cas12a and RT-qPCR, while four samples tested negative in both assays. Discussion: The rapid, sensitive and visual detection assay for ASFV developed in this study is suitable for field application in swine farms, particularly for future differentiation of field virus strains from candidate KP177R gene-deleted ASFV vaccines, which may be a valuable screening tool for ASF eradication.


Subject(s)
African Swine Fever Virus , African Swine Fever , Bacterial Proteins , CRISPR-Cas Systems , African Swine Fever Virus/genetics , Animals , Swine , African Swine Fever/virology , African Swine Fever/diagnosis , CRISPR-Associated Proteins/genetics , Recombinases/genetics , Recombinases/metabolism , Viral Proteins/genetics , Nucleic Acid Amplification Techniques/methods , Endodeoxyribonucleases/genetics , Sensitivity and Specificity
11.
Nucleic Acids Res ; 52(8): 4739-4755, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38567723

ABSTRACT

Mutagenesis driving genetic diversity is vital for understanding and engineering biological systems. However, the lack of effective methods to generate in-situ mutagenesis in multiple genomic loci combinatorially limits the study of complex biological functions. Here, we design and construct MultiduBE, a dCas12a-based multiplexed dual-function base editor, in an all-in-one plasmid for performing combinatorial in-situ mutagenesis. Two synthetic effectors, duBE-1a and duBE-2b, are created by amalgamating the functionalities of cytosine deaminase (from hAPOBEC3A or hAID*Δ ), adenine deaminase (from TadA9), and crRNA array processing (from dCas12a). Furthermore, introducing the synthetic separator Sp4 minimizes interference in the crRNA array, thereby facilitating multiplexed in-situ mutagenesis in both Escherichia coli and Bacillus subtilis. Guided by the corresponding crRNA arrays, MultiduBE is successfully employed for cell physiology reprogramming and metabolic regulation. A novel mutation conferring streptomycin resistance has been identified in B. subtilis and incorporated into the mutant strains with multiple antibiotic resistance. Moreover, surfactin and riboflavin titers of the combinatorially mutant strains improved by 42% and 15-fold, respectively, compared with the control strains with single gene mutation. Overall, MultiduBE provides a convenient and efficient way to perform multiplexed in-situ mutagenesis.


Subject(s)
Bacillus subtilis , CRISPR-Cas Systems , Escherichia coli , Gene Editing , Mutagenesis , Escherichia coli/genetics , Bacillus subtilis/genetics , Gene Editing/methods , Plasmids/genetics , Cytosine Deaminase/genetics , Cytosine Deaminase/metabolism , Mutation , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/genetics , Aminohydrolases
12.
Biomolecules ; 14(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38672502

ABSTRACT

In recent years, CRISPR-Cas toolboxes for Streptomyces editing have rapidly accelerated natural product discovery and engineering. However, Cas efficiencies are oftentimes strain-dependent, and the commonly used Streptococcus pyogenes Cas9 (SpCas9) is notorious for having high levels of off-target toxicity effects. Thus, a variety of Cas proteins is required for greater flexibility of genetic manipulation within a wider range of Streptomyces strains. This study explored the first use of Acidaminococcus sp. Cas12j, a hypercompact Cas12 subfamily, for genome editing in Streptomyces and its potential in activating silent biosynthetic gene clusters (BGCs) to enhance natural product synthesis. While the editing efficiencies of Cas12j were not as high as previously reported efficiencies of Cas12a and Cas9, Cas12j exhibited higher transformation efficiencies compared to SpCas9. Furthermore, Cas12j demonstrated significantly improved editing efficiencies compared to Cas12a in activating BGCs in Streptomyces sp. A34053, a strain wherein both SpCas9 and Cas12a faced limitations in accessing the genome. Overall, this study expanded the repertoire of Cas proteins for genome editing in actinomycetes and highlighted not only the potential of recently characterized Cas12j in Streptomyces but also the importance of having an extensive genetic toolbox for improving the editing success of these beneficial microbes.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Streptomyces , Streptomyces/genetics , Streptomyces/metabolism , Gene Editing/methods , Acidaminococcus/genetics , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Multigene Family , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , Genome, Bacterial
13.
Biosens Bioelectron ; 257: 116292, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38653014

ABSTRACT

We report the development and initial validation of a paper-based nucleic acid testing platform that integrates Loop-mediated isothermal amplification (LAMP) with clustered regularly interspaced short palindromic repeats (CRISPR) technology, referred to as PLACID (Paper-based LAMP-CRISPR Integrated Diagnostics). LAMP eliminates the need for thermal cycling, resulting in simplified instrumentation, and the CRISPR-associated protein (Cas 12a) system eliminates false positive signals from LAMP products, resulting in highly selective and sensitive assays. We optimized the assay to perform both amplification and detection entirely on paper, eliminating the need for complex fluid handling steps and lateral flow assay transfers. Additionally, we engineered a smartphone-operated system that includes a low-powered, non-contact IR heating chamber to actuate paper-based LAMP and CRISPR reactions and enable the detection of fluorescent signals from the paper. The platform demonstrates high specificity and sensitivity in detecting nucleic acid targets with a limit of detection of 50 copies/µL. We integrate an equipment-free sample preparation separation technology designed to streamline the preparation of crude samples prior to nucleic acid testing. The practical utility of our platform is demonstrated by the successful detection of spiked SARS-CoV-2 RNA fragments in saliva, E. Coli in soil, and pathogenic E. Coli in clinically fecal samples of infected patients. Furthermore, we demonstrate that the paper-based LAMP CRISPR chips employed in our assays possess a shelf life of several weeks, establishing them as viable candidates for on-site diagnostics.


Subject(s)
Biosensing Techniques , COVID-19 , CRISPR-Cas Systems , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Paper , SARS-CoV-2 , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/instrumentation , Humans , Biosensing Techniques/methods , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , COVID-19/virology , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/instrumentation , CRISPR-Cas Systems/genetics , Limit of Detection , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Equipment Design , COVID-19 Nucleic Acid Testing/methods , COVID-19 Nucleic Acid Testing/instrumentation , Escherichia coli/genetics , Escherichia coli/isolation & purification , CRISPR-Associated Proteins/genetics , Smartphone
14.
Nat Commun ; 15(1): 3577, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678031

ABSTRACT

Genetic interactions mediate the emergence of phenotype from genotype, but technologies for combinatorial genetic perturbation in mammalian cells are challenging to scale. Here, we identify background-independent paralog synthetic lethals from previous CRISPR genetic interaction screens, and find that the Cas12a platform provides superior sensitivity and assay replicability. We develop the in4mer Cas12a platform that uses arrays of four independent guide RNAs targeting the same or different genes. We construct a genome-scale library, Inzolia, that is ~30% smaller than a typical CRISPR/Cas9 library while also targeting ~4000 paralog pairs. Screens in cancer cells demonstrate discrimination of core and context-dependent essential genes similar to that of CRISPR/Cas9 libraries, as well as detection of synthetic lethal and masking/buffering genetic interactions between paralogs of various family sizes. Importantly, the in4mer platform offers a fivefold reduction in library size compared to other genetic interaction methods, substantially reducing the cost and effort required for these assays.


Subject(s)
Bacterial Proteins , CRISPR-Cas Systems , Endodeoxyribonucleases , Gene Knockout Techniques , Humans , Gene Knockout Techniques/methods , RNA, Guide, CRISPR-Cas Systems/genetics , Gene Library , Cell Line, Tumor , Genes, Essential , HEK293 Cells , Epistasis, Genetic , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism
16.
J Mol Biol ; 436(10): 168550, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38575054

ABSTRACT

The class 2 CRISPR-Cas9 and CRISPR-Cas12a systems, originally described as adaptive immune systems of bacteria and archaea, have emerged as versatile tools for genome-editing, with applications in biotechnology and medicine. However, significantly less is known about their substrate specificity, but such knowledge may provide instructive insights into their off-target cleavage and previously unrecognized mechanism of action. Here, we document that the Acidaminococcus sp. Cas12a (AsCas12a) binds preferentially, and independently of crRNA, to a suite of branched DNA structures, such as the Holliday junction (HJ), replication fork and D-loops, compared with single- or double-stranded DNA, and promotes their degradation. Further, our study revealed that AsCas12a binds to the HJ, specifically at the crossover region, protects it from DNase I cleavage and renders a pair of thymine residues in the HJ homologous core hypersensitive to KMnO4 oxidation, suggesting DNA melting and/or distortion. Notably, these structural changes enabled AsCas12a to resolve HJ into nonligatable intermediates, and subsequently their complete degradation. We further demonstrate that crRNA impedes HJ cleavage by AsCas12a, and that of Lachnospiraceae bacterium Cas12a, without affecting their DNA-binding ability. We identified a separation-of-function variant, which uncouples DNA-binding and DNA cleavage activities of AsCas12a. Importantly, we found robust evidence that AsCas12a endonuclease also has 3'-to-5' and 5'-to-3' exonuclease activity, and that these two activities synergistically promote degradation of DNA, yielding di- and mononucleotides. Collectively, this study significantly advances knowledge about the substrate specificity of AsCas12a and provides important insights into the degradation of different types of DNA substrates.


Subject(s)
Acidaminococcus , CRISPR-Associated Proteins , CRISPR-Cas Systems , Substrate Specificity , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/chemistry , Acidaminococcus/enzymology , Acidaminococcus/genetics , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Exonucleases/metabolism , Exonucleases/genetics , DNA, Cruciform/metabolism , DNA, Cruciform/genetics , DNA/metabolism , DNA/genetics
17.
Nat Commun ; 15(1): 3324, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637512

ABSTRACT

CRISPR-Cas are adaptive immune systems in bacteria and archaea that utilize CRISPR RNA-guided surveillance complexes to target complementary RNA or DNA for destruction1-5. Target RNA cleavage at regular intervals is characteristic of type III effector complexes6-8. Here, we determine the structures of the Synechocystis type III-Dv complex, an apparent evolutionary intermediate from multi-protein to single-protein type III effectors9,10, in pre- and post-cleavage states. The structures show how multi-subunit fusion proteins in the effector are tethered together in an unusual arrangement to assemble into an active and programmable RNA endonuclease and how the effector utilizes a distinct mechanism for target RNA seeding from other type III effectors. Using structural, biochemical, and quantum/classical molecular dynamics simulation, we study the structure and dynamics of the three catalytic sites, where a 2'-OH of the ribose on the target RNA acts as a nucleophile for in line self-cleavage of the upstream scissile phosphate. Strikingly, the arrangement at the catalytic residues of most type III complexes resembles the active site of ribozymes, including the hammerhead, pistol, and Varkud satellite ribozymes. Our work provides detailed molecular insight into the mechanisms of RNA targeting and cleavage by an important intermediate in the evolution of type III effector complexes.


Subject(s)
CRISPR-Associated Proteins , RNA, Catalytic , RNA/metabolism , RNA, Catalytic/metabolism , CRISPR-Cas Systems/genetics , DNA/metabolism , Catalytic Domain , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , RNA Cleavage
18.
ACS Chem Biol ; 19(5): 1051-1055, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38602884

ABSTRACT

The Craspase CRISPR-Cas effector consists of the RNA-guided ribonuclease gRAMP and the protease TPR-CHAT, coupling target RNA recognition to protease activation. The natural substrate of Craspase is Csx30, a protein cleaved in two fragments that subsequently activates downstream antiviral pathways. Here, we determined the protease substrate specificity of Craspase from Candidatus "Jettenia caeni" (Jc-Craspase). We find that Jc-Craspase cleaves Jc-Csx30 in a target RNA-dependent fashion in A|S, which is different from the sites found in two other studied Craspases (L|D and M|K for Candidatus "Scalindua brodae" and Desulfonema ishimotonii, respectively). The fact that Craspase cleaves a nonconserved site across orthologs indicates the evolution of specific protein interactions between Craspase and its respective Csx30 target protein. The Craspase family thus represents a panel of proteases with different substrate specificities, which we exploited for the development of a readout for multiplexed RNA detection.


Subject(s)
CRISPR-Cas Systems , Substrate Specificity , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/genetics
19.
Nucleic Acids Res ; 52(9): 5241-5256, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38647045

ABSTRACT

CRISPR-Cas systems have widely been adopted as genome editing tools, with two frequently employed Cas nucleases being SpyCas9 and LbCas12a. Although both nucleases use RNA guides to find and cleave target DNA sites, the two enzymes differ in terms of protospacer-adjacent motif (PAM) requirements, guide architecture and cleavage mechanism. In the last years, rational engineering led to the creation of PAM-relaxed variants SpRYCas9 and impLbCas12a to broaden the targetable DNA space. By employing their catalytically inactive variants (dCas9/dCas12a), we quantified how the protein-specific characteristics impact the target search process. To allow quantification, we fused these nucleases to the photoactivatable fluorescent protein PAmCherry2.1 and performed single-particle tracking in cells of Escherichia coli. From our tracking analysis, we derived kinetic parameters for each nuclease with a non-targeting RNA guide, strongly suggesting that interrogation of DNA by LbdCas12a variants proceeds faster than that of SpydCas9. In the presence of a targeting RNA guide, both simulations and imaging of cells confirmed that LbdCas12a variants are faster and more efficient in finding a specific target site. Our work demonstrates the trade-off of relaxing PAM requirements in SpydCas9 and LbdCas12a using a powerful framework, which can be applied to other nucleases to quantify their DNA target search.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Associated Proteins , CRISPR-Cas Systems , Endodeoxyribonucleases , Escherichia coli , Gene Editing , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , Gene Editing/methods , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , DNA/metabolism , DNA/genetics , DNA/chemistry , Kinetics
20.
Sci Adv ; 10(17): eadl0164, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38657076

ABSTRACT

Type VI CRISPR-Cas systems are among the few CRISPR varieties that target exclusively RNA. The CRISPR RNA-guided, sequence-specific binding of target RNAs, such as phage transcripts, activates the type VI effector, Cas13. Once activated, Cas13 causes collateral RNA cleavage, which induces bacterial cell dormancy, thus protecting the host population from the phage spread. We show here that the principal form of collateral RNA degradation elicited by Leptotrichia shahii Cas13a expressed in Escherichia coli cells is the cleavage of anticodons in a subset of transfer RNAs (tRNAs) with uridine-rich anticodons. This tRNA cleavage is accompanied by inhibition of protein synthesis, thus providing defense from the phages. In addition, Cas13a-mediated tRNA cleavage indirectly activates the RNases of bacterial toxin-antitoxin modules cleaving messenger RNA, which could provide a backup defense. The mechanism of Cas13a-induced antiphage defense resembles that of bacterial anticodon nucleases, which is compatible with the hypothesis that type VI effectors evolved from an abortive infection module encompassing an anticodon nuclease.


Subject(s)
Anticodon , CRISPR-Cas Systems , Escherichia coli , RNA, Transfer , RNA, Transfer/genetics , RNA, Transfer/metabolism , Anticodon/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Leptotrichia/genetics , Leptotrichia/metabolism , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/genetics , Bacteriophages/genetics , RNA Cleavage
SELECTION OF CITATIONS
SEARCH DETAIL
...