Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
J Colloid Interface Sci ; 630(Pt B): 193-201, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36327722

ABSTRACT

The specific effects of salts (strong electrolytes) on biomolecular properties have been investigated for more than a century. By contrast, the specific role of pH buffers (weak electrolytes and their salts) has usually been ignored. Here, specific buffer effects on DNA thermal stability were evaluated by measuring the melting curve of calf thymus DNA through UV-vis spectroscopy. The study was carried out using phosphate, Tris, citrate and cacodylate buffers at fixed pH 7.4 at concentrations varying systematically in the range 1-600 mM. DNA stability increases with buffer concentration and is influenced specifically by buffer type. To interpret empirical data, a theoretical model was applied with parameters quantifying the impact of buffer on the DNA backbone charge. Comparing the buffer effects via buffer ionic strength rather than buffer concentration, we find that the buffers stabilize DNA in the order Tris > cacodylate > phosphate > citrate.


Subject(s)
Cacodylic Acid , Salts , Buffers , Cacodylic Acid/chemistry , DNA/chemistry , Electrolytes , Phosphates/chemistry , Citrates , Hydrogen-Ion Concentration
2.
Ecotoxicol Environ Saf ; 221: 112415, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34171691

ABSTRACT

In order to understand the mechanisms of arsenic (As) accumulation and detoxification in aquatic plants exposed to different As species, a hydroponic experiment was conducted and the three aquatic plants (Hydrilla verticillata, Pistia stratiotes and Eichhornia crassipes) were exposed to different concentrations of As(III), As(V) and dimethylarsinate (DMA) for 10 days. The biomass, the surface As adsorption and total As adsorption of three plants were determined. Furthermore, As speciation in the culture solution and plant body, as well as the arsenate reductase (AR) activities of roots and shoots, were also analyzed. The results showed that the surface As adsorption of plants was far less than total As absorption. Compared to As(V), the plants showed a lower DMA accumulation. P. stratiotes showed the highest accumulation of inorganic arsenic but E. crassipes showed the lowest at the same As treatment. E. crassipes showed a strong ability to accumulate DMA. Results from As speciation analysis in culture solution showed that As(III) was transformed to As(V) in all As(III) treatments, and the oxidation rates followed as the sequence of H. verticillata>P. stratiotes>E. crassipes>no plant. As(III) was the predominant species in both roots (39.4-88.3%) and shoots (39-86%) of As(III)-exposed plants. As(V) and As(III) were the predominant species in roots (37-94%) and shoots (31.1-85.6%) in As(V)-exposed plants, respectively. DMA was the predominant species in both roots (23.46-100%) and shoots (72.6-100%) in DMA-exposed plants. The As(III) contents and AR activities in the roots of P. stratiotes and in the shoots of H. verticillata were significantly increased when exposed to 1 mg·L-1 or 3 mg·L-1 As(V). Therefore, As accumulation mainly occurred via biological uptake rather than physicochemical adsorption, and AR played an important role in As detoxification in aquatic plants. In the case of As(V)-exposed plants, their As tolerance was attributed to the increase of AR activities.


Subject(s)
Araceae , Arsenate Reductases/metabolism , Arsenic , Cacodylic Acid , Eichhornia , Hydrocharitaceae , Plant Proteins/metabolism , Water Pollutants, Chemical , Adsorption , Araceae/chemistry , Araceae/metabolism , Arsenic/chemistry , Arsenic/metabolism , Cacodylic Acid/chemistry , Cacodylic Acid/metabolism , Eichhornia/chemistry , Eichhornia/metabolism , Hydrocharitaceae/chemistry , Hydrocharitaceae/metabolism , Hydroponics , Plant Roots/chemistry , Plant Roots/metabolism , Plant Shoots/chemistry , Plant Shoots/metabolism , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism
3.
Food Chem ; 338: 127842, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-32822902

ABSTRACT

Cadmium, inorganic arsenic and, potentially, dimethyl arsenic acid are carcinogens widely elevated in rice. Here it was identified that the food-safe and common cadmium chelator citric acid efficiently removed cadmium from intact grain via pre-soaking procedure, while also reducing arsenic species. A twostep pre-soaking stage was developed whereby rice was first incubated, at ambient temperature, in 1 M citric acid for 12 h, and then in 1 M calcium carbonate for another 12 h, the latter step to neutralize pH, followed by cooking. When 10 different individual types of rice were processed in such a way this resulted in removal rates of 79% for cadmium, 81% for inorganic arsenic and a 66% for DMA. The technology is particularly suitable for bulk food processing and could be deployed in the most cadmium and arsenic impacted regions where rice is a staple.


Subject(s)
Arsenicals/chemistry , Cacodylic Acid/chemistry , Cadmium/chemistry , Food Contamination/analysis , Oryza/chemistry , Arsenicals/analysis , Cacodylic Acid/analysis , Cadmium/analysis , Calcium Carbonate/chemistry , Citric Acid/chemistry , Cooking/methods , Hydrogen-Ion Concentration , Mass Spectrometry/methods , Oryza/metabolism
4.
Int J Mol Sci ; 23(1)2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35008466

ABSTRACT

Due to the fact that surfactant molecules are known to alter the structure (and consequently the function) of a protein, protein-surfactant interactions are very important in the biological, pharmaceutical, and cosmetic industries. Although there are numerous studies on the interactions of albumins with surfactants, the investigations are often performed at fixed environmental conditions and limited to separate surface-active agents and consequently do not present an appropriate comparison between their different types and structures. In the present paper, the interactions between selected cationic, anionic, and nonionic surfactants, namely hexadecylpyridinium chloride (CPC), hexadecyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), polyethylene glycol sorbitan monolaurate, monopalmitate, and monooleate (TWEEN 20, TWEEN 40, and TWEEN 80, respectively) with bovine serum albumin (BSA) were studied qualitatively and quantitatively in an aqueous solution (10 mM cacodylate buffer; pH 5.0 and 7.0) by steady-state fluorescence spectroscopy supported by UV spectrophotometry and CD spectroscopy. Since in the case of all studied systems, the fluorescence intensity of BSA decreased regularly and significantly under the action of the surfactants added, the fluorescence quenching mechanism was analyzed thoroughly with the use of the Stern-Volmer equation (and its modification) and attributed to the formation of BSA-surfactant complexes. The binding efficiency and mode of interactions were evaluated among others by the determination, comparison, and discussion of the values of binding (association) constants of the newly formed complexes and the corresponding thermodynamic parameters (ΔG, ΔH, ΔS). Furthermore, the influence of the structure of the chosen surfactants (charge of hydrophilic head and length of hydrophobic chain) as well as different environmental conditions (pH, temperature) on the binding mode and the strength of the interaction has been investigated and elucidated.


Subject(s)
Anions/chemistry , Cacodylic Acid/chemistry , Cations/chemistry , Serum Albumin, Bovine/chemistry , Surface-Active Agents/chemistry , Cetrimonium/chemistry , Circular Dichroism , Fluorescence , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Polyethylene Glycols/chemistry , Sodium Dodecyl Sulfate/chemistry , Spectrometry, Fluorescence/methods , Temperature , Thermodynamics , Ultraviolet Rays
5.
Dalton Trans ; 48(13): 4362-4369, 2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30860539

ABSTRACT

A novel Co(ii)-complex {i.e. [Co(n-BuM)(DPA)(H2O)2]·H2O} [n-BuMH2 = n-butylmalonic acid and DPA = 2,2'-dipyridylamine] was synthesized. The supramolecular feature, i.e. a metal coordinated and free guest water mediated hydrogen-bonding interaction assisted supramolecular ππ assembly, has been observed in the crystal structure of the Co(ii)-complex in the solid state. The role of different water molecules (metal coordinated and free guest water molecules) had also been scrutinized via theoretical studies. The fluorescent nature of the aqueous solution of the Co(ii)-complex has been utilized for selective µM range toxic inorganic As(iii)-sensing in aqueous medium. The Co(ii)-probe is very specific towards toxic As(OH)3 even in the presence of several ions and other arsenic sources like inorganic As(v)-oxoanions and organic arsenic species like cacodylic acid. The bio-relevant nature of the fluorescent probe of the Co(ii)-complex has also been examined. The luminous Co(ii)-probe has been employed for the intracellular tracking of As(iii) in bacterial systems including As(iii)-resistant bacteria Bacillus aryabhattai and As(iii) non-resistant bacteria Bacillus subtilis.


Subject(s)
Arsenicals/analysis , Bacillus/chemistry , Cobalt/chemistry , Coordination Complexes/chemistry , Fluorescent Dyes/chemistry , Biosensing Techniques/methods , Cacodylic Acid/chemistry , Hydrogen Bonding , Molecular Imaging/methods , Optical Imaging/methods , Water/chemistry
6.
Biomolecules ; 9(2)2019 02 14.
Article in English | MEDLINE | ID: mdl-30769878

ABSTRACT

Amyloid fibrils, highly ordered protein aggregates, play an important role in the onset of several neurological disorders. Many studies have assessed amyloid fibril formation under specific solution conditions, but they all lack an important phenomena in biological solutions-buffer specific effects. We have focused on the formation of hen egg-white lysozyme (HEWL) fibrils in aqueous solutions of different buffers in both acidic and basic pH range. By means of UV-Vis spectroscopy, fluorescence measurements and CD spectroscopy, we have managed to show that fibrillization of HEWL is affected by buffer identity (glycine, TRIS, phosphate, KCl-HCl, cacodylate, HEPES, acetate), solution pH, sample incubation (agitated vs. static) and added excipients (NaCl and PEG). HEWL only forms amyloid fibrils at pH = 2.0 under agitated conditions in glycine and KCl-HCl buffers of high enough ionic strength. Phosphate buffer on the other hand stabilizes the HEWL molecules. Similar stabilization effect was achieved by addition of PEG12000 molecules to the solution.


Subject(s)
Amyloid/chemical synthesis , Muramidase/chemical synthesis , Acetates/chemistry , Amyloid/chemistry , Amyloid/metabolism , Animals , Buffers , Cacodylic Acid/chemistry , Glycine/chemistry , Hydrochloric Acid/chemistry , Hydrogen-Ion Concentration , Muramidase/chemistry , Muramidase/metabolism , Phosphates/chemistry , Potassium Chloride/chemistry
7.
Sci Rep ; 8(1): 7114, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29739998

ABSTRACT

Early-life exposure to inorganic arsenic (i-As) may cause long-lasting health effects, but as yet, little is known about exposure among weaning infants. We assessed exposure before and during weaning and investigated the association between solid food intake and infants' urinary arsenic species concentrations. Following the recording of a comprehensive 3 day food diary, paired urine samples (pre- and post-weaning) were collected and analyzed for arsenic speciation from 15 infants participating in the New Hampshire Birth Cohort Study. Infants had higher urinary i-As (p-value = 0.04), monomethylarsonic acid (MMA) (p-value = 0.002), dimethylarsinic acid (DMA) (p-value = 0.01), and sum of arsenic species (i-As + MMA + DMA, p-value = 0.01) during weaning than while exclusively fed on a liquid diet (i.e., breast milk, formula, or a mixture of both). Among weaning infants, increased sum of urinary arsenic species was pairwise-associated with intake of rice cereal (Spearman's ρ = 0.90, p-value = 0.03), fruit (ρ = 0.70, p-value = 0.03), and vegetables (ρ = 0.86, p-value = 0.01). Our observed increases in urinary arsenic concentrations likely indicate increased exposure to i-As during the transition to solid foods, suggests the need to minimize exposure during this critical period of development.


Subject(s)
Arsenic/urine , Environmental Exposure , Food/adverse effects , Weaning , Arsenic/adverse effects , Arsenic/chemistry , Arsenic Poisoning/epidemiology , Arsenicals/chemistry , Arsenicals/urine , Cacodylic Acid/chemistry , Cacodylic Acid/urine , Female , Humans , Infant , Milk, Human/chemistry , Oryza/adverse effects , Oryza/chemistry
8.
J Vis Exp ; (133)2018 03 09.
Article in English | MEDLINE | ID: mdl-29578528

ABSTRACT

Dimethylated thioarsenicals such as dimethylmonothioarsinic acid (DMMTAV) and dimethyldithioarsinic acid (DMDTAV), which are produced by the metabolic pathway of dimethylarsinic acid (DMAV) thiolation, have been recently found in the environment as well as human organs. DMMTAV and DMDTAV can be quantified to determine the ecological effects of dimethylated thioarsenicals and their stability in environmental media. The synthesis method for these compounds is unstandardized, making replicating previous studies challenging. Furthermore, there is a lack of information about storage techniques, including storage of compounds without species transformation. Moreover, because only limited information about synthesis methods is available, there may be experimental difficulties in synthesizing standard chemicals and performing quantitative analysis. The protocol presented herein provides a practically modified synthesis method for the dimethylated thioarsenicals, DMMTAV and DMDTAV, and will help in the quantification of species separation analysis using high performance liquid chromatography in conjunction with inductively coupled plasma mass spectrometry (HPLC-ICP-MS). The experimental steps of this procedure were modified by focusing on the preparation of chemical reagents, filtration methods, and storage.


Subject(s)
Cacodylic Acid/analogs & derivatives , Cacodylic Acid/chemical synthesis , Cacodylic Acid/chemistry , Humans
9.
Talanta ; 179: 520-530, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29310270

ABSTRACT

Surface enhanced Raman scattering (SERS) has great potential as an alternative tool for arsenic speciation in biological matrices. SERS measurements have advantages over other techniques due to its ability to maintain the integrity of arsenic species and its minimal requirements for sample preparation. Up to now, very few Raman spectra of arsenic compounds have been reported. This is particularly true for thiolated arsenicals, which have recently been found to be widely present in humans. The lack of data for Raman spectra in arsenic speciation hampers the development of new tools using SERS. Herein, we report the results of a study combining the analysis of experimental Raman spectra with that obtained from density functional calculations for some important arsenic metabolites. The results were obtained with a hybrid functional B3LYP approach using different basis sets to calculate Raman spectra of the selected arsenicals. By comparing experimental and calculated spectra of dimethylarsinic acid (DMAV), the basis set 6-311++G** was found to provide computational efficiency and precision in vibrational frequency prediction. The Raman frequencies for the rest of organoarsenicals were studied using this basis set, including monomethylarsonous acid (MMAIII), dimethylarsinous acid (DMAIII), dimethylmonothioarinic acid (DMMTAV), dimethyldithioarsinic acid (DMDTAV), S-(Dimethylarsenic) cysteine (DMAIII(Cys)) and dimethylarsinous glutathione (DMAIIIGS). The results were compared with fingerprint Raman frequencies from As─O, As─C, and As─S obtained under different chemical environments. These fingerprint vibrational frequencies should prove useful in future measurements of different species of arsenic using SERS.


Subject(s)
Arsenicals/chemistry , Cacodylic Acid/analogs & derivatives , Cacodylic Acid/chemistry , Glutathione/analogs & derivatives , Organometallic Compounds/chemistry , Glutathione/chemistry , Quantum Theory , Solutions , Spectrum Analysis, Raman/instrumentation , Spectrum Analysis, Raman/methods , Vibration , Water/chemistry
10.
Chemosphere ; 153: 307-14, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27023118

ABSTRACT

The interaction between arsenic (As) and phenanthrene (PHE) in Pteris vittata L. was investigated in this study. The migration and occurrence of PHE in P. vittata were determined by two-photon laser scanning confocal microscopy. Data indicated that PHE supplementation lowers the As concentration in P. vittata, decreasing As levels by 16.8-39.9% in the pinnae, 30.0-49.0% in the rachis, and 45-51.5% in the roots, respectively. Different arsenic species inhibited P. vittata PHE absorption. The most significant effect was observed using dimethylarsenic acid (DMA), which decreased PHE accumulation by 20.73%. With the exception of elevated As(V) concentrations in As(III)-treated plants, PHE treatment significantly reduced inorganic As concentrations in P. vittata. However, PHE elevated root DMA concentrations by 9%. According to in situ visualization, PHE is primarily found in the upper and lower epidermis and stomatal cells, particularly the stomata guard cells.


Subject(s)
Arsenic/chemistry , Phenanthrenes/metabolism , Plant Roots/metabolism , Pteris/metabolism , Soil Pollutants/chemistry , Arsenic/analysis , Biological Transport , Cacodylic Acid/chemistry , Microscopy, Confocal , Phenanthrenes/analysis , Phenanthrenes/chemistry , Soil Pollutants/analysis
11.
Environ Geochem Health ; 38(1): 255-63, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26024724

ABSTRACT

Dimethyldithioarsinic acid (DMDTA(V)), present in such intense sources as municipal landfill leachate, has drawn a great deal of attention due to its abundant occurrence and different aspect of toxicity. The hydrosulfide (HS(-)) concentration in leachate was studied as a major variable affecting the formation of DMDTA(V). To this end, the HPLC-ICPMS system equipped with the reversed-phase C18 column was used to determine DMDTA(V). Simulated landfill leachates (SLLs) were prepared to cover a mature landfill condition with the addition of sodium sulfate and sulfide at varying concentrations in the presence of dimethylarsinic acid (DMA(V)). The concentration of sodium sulfide added in the SLLs generally exhibited a strong positive correlation with the concentration of DMDTA(V). As such, the formation of DMDTA(V) in the SLLs is demonstrated to be controlled by the interactive relationship between DMA(V) and the HS(-).


Subject(s)
Arsenicals/chemistry , Cacodylic Acid/analogs & derivatives , Hydrogen Sulfide/chemistry , Water Pollutants, Chemical/chemistry , Cacodylic Acid/chemistry , Environmental Monitoring , Waste Disposal Facilities
12.
Environ Sci Technol ; 49(19): 11640-8, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26335501

ABSTRACT

A novel analytical method has been developed for the determination of all five arsenic species known to exist in atmospheric particulate matter (PM), i.e., the inorganic arsenite iAs(III) and arsenate iAs(V), and the methylated methylarsonate (MA), dimethylarsinate (DMA) and trimethylarsine oxide (TMAO). Although the methylated species were first detected in PM in the late 1970s, most of the recent studies focus mainly on the two inorganic As species, ignoring TMAO in particular. In the present study, an HPLC (with an anion and cation exchange column connected in series)-arsine generation-ICP-MS system provided complete separation of all five As species and limits of detection from 10 to 25 pg As mL(-1). This method was applied to analyze water extracts of the inhalable fraction of atmospheric PM (PM10, PM2.5 and PM2.1). 81 samples were collected, most during Saharan dust events, from a semirural area, and analyzed. The total water extractable arsenic ranged from 0.03 to 0.7 ng of As m(-3), values that are representative for remote areas. iAs(V) was the most abundant species followed by TMAO, DMA, iAs(III) and MA. None of the As species showed any particular trend with the presence or intensity of dust events, or seasonality, except for TMAO, which showed higher concentrations during the colder months.


Subject(s)
Air Pollutants/analysis , Arsenic/analysis , Methylmercury Compounds/analysis , Africa, Northern , Air Pollutants/chemistry , Arsenic/chemistry , Arsenicals/analysis , Arsenicals/chemistry , Arsenites/analysis , Cacodylic Acid/analysis , Cacodylic Acid/chemistry , Chromatography, High Pressure Liquid/methods , Limit of Detection , Mass Spectrometry/methods , Methylmercury Compounds/chemistry , Particulate Matter/analysis , Seasons
13.
PLoS One ; 10(6): e0131218, 2015.
Article in English | MEDLINE | ID: mdl-26121586

ABSTRACT

Suppressor of cytokine signalling 2 (SOCS2) is the substrate-binding component of a Cullin-RING E3 ubiquitin ligase (CRL) complex that targets phosphorylated hormone receptors for degradation by the ubiquitin-proteasome system. As a key regulator of the transcriptional response to growth signals, SOCS2 and its protein complex partners are potential targets for small molecule development. We found that crystals of SOCS2 in complex with its adaptor proteins, Elongin C and Elongin B, underwent a change in crystallographic parameters when treated with dimethyl sulfoxide during soaking experiments. To solve the phase problem for the new crystal form we identified the presence of arsenic atoms in the crystals, a result of covalent modification of cysteines by cacodylate, and successfully extracted anomalous signal from these atoms for experimental phasing. The resulting structure provides a means for solving future structures where the crystals must be treated with DMSO for ligand soaking approaches. Additionally, the conformational changes induced in this structure reveal flexibility within SOCS2 that match those postulated by previous molecular dynamics simulations. This conformational flexibility illustrates how SOCS2 can orient its substrates for successful ubiquitination by other elements of the CRL complex.


Subject(s)
Arsenicals/chemistry , Cacodylic Acid/chemistry , Cullin Proteins/chemistry , Dimethyl Sulfoxide/chemistry , Suppressor of Cytokine Signaling Proteins/chemistry , Transcription Factors/chemistry , Arsenicals/metabolism , Cacodylic Acid/metabolism , Crystallography, X-Ray , Cullin Proteins/metabolism , Cysteine/metabolism , Elongin , Humans , Models, Molecular , Protein Conformation , Solutions , Substrate Specificity , Suppressor of Cytokine Signaling Proteins/metabolism , Transcription Factors/metabolism
14.
Chem Res Toxicol ; 28(7): 1409-21, 2015 Jul 20.
Article in English | MEDLINE | ID: mdl-26024302

ABSTRACT

Exposure to arsenic in food and drinking water has been correlated with adverse developmental outcomes, such as reductions in birth weight and neurological deficits. Additionally, studies have shown that arsenic suppresses sensory neuron formation and skeletal muscle myogenesis, although the reason why arsenic targets both of these cell types in unclear. Thus, P19 mouse embryonic stem cells were used to investigate the mechanisms by which arsenic could inhibit cellular differentiation. P19 cells were exposed to 0, 0.1, or 0.5 µM sodium arsenite and induced to form embryoid bodies over a period of 5 days. The expression of transcription factors necessary to form neural plate border specifier (NPBS) cells, neural crest cells and their progenitors, and myocytes and their progenitors were examined. Early during differentiation, arsenic significantly reduced the transcript and protein expression of Msx1 and Pax3, both needed for NPBS cell formation. Arsenic also significantly reduced the protein expression of Sox 10, needed for neural crest progenitor cell production, by 31-50%, and downregulated the protein and mRNA levels of NeuroD1, needed for neural crest cell differentiation, in a time- and dose-dependent manner. While the overall protein expression of transcription factors in the skeletal muscle lineage was not changed, arsenic did alter their nuclear localization. MyoD nuclear translocation was significantly reduced on days 2-5 between 15 and 70%. At a 10-fold lower concentration, monomethylarsonous acid (MMA III) appeared to be just as potent as inorganic arsenic at reducing the mRNA levels Pax3 (79% vs84%), Sox10 (49% vs 65%), and Msx1 (56% vs 56%). Dimethylarsinous acid (DMA III) also reduced protein and transcript expression, but the changes were less dramatic than those with MMA or arsenite. All three arsenic species reduced the nuclear localization of MyoD and NeuroD1 in a similar manner. The early changes in the differentiation of neural plate border specifier cells may provide a mechanism for arsenic to suppress both neurogenesis and myogenesis.


Subject(s)
Arsenites/toxicity , Cell Differentiation/drug effects , Sodium Compounds/toxicity , Animals , Arsenites/chemistry , Arsenites/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cacodylic Acid/analogs & derivatives , Cacodylic Acid/chemical synthesis , Cacodylic Acid/chemistry , Cacodylic Acid/toxicity , Cell Line , Embryoid Bodies/cytology , Embryoid Bodies/metabolism , MSX1 Transcription Factor/genetics , MSX1 Transcription Factor/metabolism , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/drug effects , Mouse Embryonic Stem Cells/metabolism , MyoD Protein/genetics , MyoD Protein/metabolism , Neural Plate/cytology , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurogenesis/drug effects , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Organometallic Compounds/toxicity , PAX3 Transcription Factor , Paired Box Transcription Factors/genetics , Paired Box Transcription Factors/metabolism , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism , Sodium Compounds/chemistry , Sodium Compounds/metabolism , Transcription Factors/metabolism
15.
Sci Total Environ ; 508: 199-205, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25478657

ABSTRACT

A surface complexation modeling approach was used to extend the knowledge about processes that affect the availability of dimethylarsinic acid (DMA) in the soil rhizosphere in presence of a strong sorbent, e.g., Fe plaques on rice roots. Published spectroscopic and molecular modeling information suggest for the organoarsenical agent to form bidentate-binuclear inner-sphere surface complexes with Fe hydroxides similar to the inorganic As oxyanions. However, since also the ubiquitous silicic acid oxyanion form the same bidentate binuclear surface complexes, our hypothesis was that it may have an effect on the adsorption of DMA by Fe hydroxides in soil. Our experimental batch equilibrium data show that DMA is strongly adsorbed in the acidic pH range, with a steep adsorption edge in the circumneutral pH region between the DMA acidity constant (pKa=6.3) and the point of zero charge value of the goethite adsorbent (pHpzc=8.6). A 1-pK CD-MUSIC surface complexation model was chosen to fit the experimental adsorption vs. pH data. The same was done for silicic acid batch equilibrium data with our goethite adsorbent. Both model parameters for individual DMA and silicic acid adsorption were then merged into one CD-MUSIC model to predict the binary DMA+Si adsorption behavior. Silicic acid (500 µM) was thus predicted by the model to strongly compete for DMA with up to 60% mobilization of the latter at a pH6. This model result could be verified subsequently by experimental batch equilibrium data with zero adjustable parameters. The thus quantified antagonistic relation between DMA and silicic acid is discussed as one of factors to explain the increase of the DMA proportion in rice grains as observed upon silica fertilization of rice fields.


Subject(s)
Cacodylic Acid/chemistry , Iron Compounds/chemistry , Minerals/chemistry , Models, Molecular , Silicic Acid/chemistry , Adsorption , Surface Properties
16.
PLoS One ; 9(10): e110924, 2014.
Article in English | MEDLINE | ID: mdl-25349987

ABSTRACT

Arsenic (III) methyltransferase (AS3MT) is a cysteine (Cys)-rich enzyme that catalyzes the biomethylation of arsenic. To investigate how these crucial Cys residues promote catalysis, we used matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) to analyze Cys residues in recombinant human arsenic (III) methyltransferase (hAS3MT). We detected two disulfide bonds, Cys250-Cys32 and Cys368-Cys369, in hAS3MT. The Cys250-Cys32 disulfide bond was reduced by glutathione (GSH) or other disulfide bond reductants before the enzymatic methylation of arsenite (iAs3+). In addition to exposing residues around the active sites, cleavage of the Cys250-Cys32 pair modulated the conformation of hAS3MT. This adjustment may stabilize the binding of S-Adenosyl-L-methionine (AdoMet) and favor iAs3+ binding to hAS3MT. Additionally, we observed the intermediate of Cys250-S-adenosylhomocysteine (AdoHcy), suggesting that Cys250 is involved in the transmethylation. In recovery experiments, we confirmed that trivalent arsenicals were substrates for hAS3MT, methylation of arsenic occurred on the enzyme, and an intramolecular disulfide bond might be formed after iAs3+ was methylated to dimethylarsinous acid (DMA3+). In this work, we clarified both the functional roles of GSH and the crucial Cys residues in iAs3+ methylation catalyzed by hAS3MT.


Subject(s)
Arsenites/chemistry , Cysteine/chemistry , Methyltransferases/chemistry , Recombinant Proteins/chemistry , Arsenic/chemistry , Cacodylic Acid/analogs & derivatives , Cacodylic Acid/chemistry , Catalysis , Catalytic Domain , Disulfides/chemistry , Glutathione/chemistry , Humans , Methionine/chemistry , Mutation , S-Adenosylhomocysteine/chemistry , Spectrometry, Fluorescence , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
17.
Yao Xue Xue Bao ; 49(5): 666-71, 2014 May.
Article in Chinese | MEDLINE | ID: mdl-25151739

ABSTRACT

In our previous work, we found that trivalent dimethylarsinous acid (DMA(III)) have high affinity binding to cysteine residue 13 of rat hemoglobin. However, it is still unknown why arsenic intermediate metabolite DMA(III) has high binding affinity for Cysl3 but not for other cysteine residues 93, 140, 111 and 125. In order to better understand the molecular mechanism of DMA(III) with rat hemoglobin, we have done current study. So, SD rats were divided into control and arsenic-treated groups randomly. Arsenic species in lysate of red blood cells were analyzed by HPLC-ICP-MS, and then determined by a hybrid quadrupole TOF MS. In addition, trivalent DMA(III) binds to different cysteine residues in rat hemoglobin alpha and beta chains were also simulated by Molecular Docking. Only Cys13 in alpha chain is able to bind to DMA(III) from the experiment results. Cys13 of alpha chain in rat hemoglobin is a specific binding site for DMA(III), and we found that amino acids compose pockets structure and surround Cys13 (but not other cysteine residues), make DMA(III) much easy to bind cysteine 13. Taken together, the DMA(III) specific binding to Cys13 is related to spatial structure of Cys13.


Subject(s)
Cacodylic Acid/analogs & derivatives , Hemoglobins/metabolism , Peptide Fragments/metabolism , Animals , Arsenic/metabolism , Binding Sites , Cacodylic Acid/chemistry , Chromatography, High Pressure Liquid , Cysteine/metabolism , Mass Spectrometry , Rats
18.
Sci Rep ; 4: 6122, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25134726

ABSTRACT

Graphene oxide (GO) is widely used in various fields and is considered to be relatively biocompatible. Herein, "indirect" nanotoxicity is first defined as toxic amplification of toxicants or pollutants by nanomaterials. This work revealed that GO greatly amplifies the phytotoxicity of arsenic (As), a widespread contaminant, in wheat, for example, causing a decrease in biomass and root numbers and increasing oxidative stress, which are thought to be regulated by its metabolisms. Compared with As or GO alone, GO combined with As inhibited the metabolism of carbohydrates, enhanced amino acid and secondary metabolism and disrupted fatty acid metabolism and the urea cycle. GO also triggered damage to cellular structures and electrolyte leakage and enhanced the uptake of GO and As. Co-transport of GO-loading As and transformation of As(V) to high-toxicity As(III) by GO were observed. The generation of dimethylarsinate, produced from the detoxification of inorganic As, was inhibited by GO in plants. GO also regulated phosphate transporter gene expression and arsenate reductase activity to influence the uptake and transformation of As, respectively. Moreover, the above effects of GO were concentration dependent. Given the widespread exposure to As in agriculture, the indirect nanotoxicity of GO should be carefully considered in food safety.


Subject(s)
Arsenic/toxicity , Graphite/toxicity , Triticum/drug effects , Arsenic/chemistry , Arsenic/metabolism , Cacodylic Acid/chemistry , Cacodylic Acid/metabolism , Graphite/chemistry , Oxidative Stress/drug effects , Oxides/chemistry , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Principal Component Analysis , Triticum/growth & development , Triticum/metabolism
19.
Chem Res Toxicol ; 27(5): 765-74, 2014 May 19.
Article in English | MEDLINE | ID: mdl-24754521

ABSTRACT

Arsenic is one of the most environmentally significant pollutants and a great global health concern. Although a growing body of evidence suggests that reactive oxygen species (ROS) mediate the mechanism of arsenic toxicity, the exact mechanism remains elusive. In this study, we examine the capacity of trivalent arsenic species arsenous acid (iAs(III)), monomethylarsonous acid (MMA(III)), and dimethylarsinous acid (DMA(III)) to generate ROS through a theoretical analysis of their structures, redox properties, and their reactivities to various ROS using a density functional theory (DFT) approach at the B3LYP/6-31+G**//B3LYP/6-31G* level of theory and by employing electron paramagnetic resonance (EPR) spin trapping studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trap. Results show that the oxidized forms (As(IV)) are structurally more stable compared to the reduced forms (As(II)) that impart elongated As-O bonds leading to the formation of As(III) and hydroxide anion. Enthalpies of one-electron reduction and oxidation indicate that increasing the degree of methylation makes it harder for As(III) to be reduced but easier to be oxidized. The order of increasing favorability for arsenical activation by ROS is O2 < O2(•-) < HO(•), and the oxidation of DMA(III) to DMA(V) is highly exoergic in multiple redox pathways with concomitant generation of radicals. This is followed by MMA(III) and by iAs(III) being the least favorable. Spin trapping studies showed a higher propensity for methylated arsenicals to generate radicals than iAs(III) upon treatment with H2O2. However, in the presence of Fe(II,III), all showed radical generation where MMA(III) gave predominantly C-centered adducts, while acidified iAs (III) and DMA(III) gave primarily HO-adducts, and their formation was affected in the presence of SOD suggesting a As(III)-OO/OOH radical intermediate. Therefore, our results suggest a basis for the increased redox activity of methylated arsenicals that can be applied to the observed trends in arsenic methylation and toxicity in biological systems.


Subject(s)
Arsenites/toxicity , Cacodylic Acid/analogs & derivatives , Electron Spin Resonance Spectroscopy/methods , Organometallic Compounds/toxicity , Reactive Oxygen Species/metabolism , Arsenites/chemistry , Cacodylic Acid/chemistry , Cacodylic Acid/toxicity , Humans , Models, Molecular , Organometallic Compounds/chemistry , Reactive Oxygen Species/chemistry , Spin Trapping/methods
20.
RNA ; 20(3): 331-47, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24442612

ABSTRACT

Folding mechanisms of functional RNAs under idealized in vitro conditions of dilute solution and high ionic strength have been well studied. Comparatively little is known, however, about mechanisms for folding of RNA in vivo where Mg(2+) ion concentrations are low, K(+) concentrations are modest, and concentrations of macromolecular crowders and low-molecular-weight cosolutes are high. Herein, we apply a combination of biophysical and structure mapping techniques to tRNA to elucidate thermodynamic and functional principles that govern RNA folding under in vivo-like conditions. We show by thermal denaturation and SHAPE studies that tRNA folding cooperativity increases in physiologically low concentrations of Mg(2+) (0.5-2 mM) and K(+) (140 mM) if the solution is supplemented with physiological amounts (∼ 20%) of a water-soluble neutral macromolecular crowding agent such as PEG or dextran. Low-molecular-weight cosolutes show varying effects on tRNA folding cooperativity, increasing or decreasing it based on the identity of the cosolute. For those additives that increase folding cooperativity, the gain is manifested in sharpened two-state-like folding transitions for full-length tRNA over its secondary structural elements. Temperature-dependent SHAPE experiments in the absence and presence of crowders and cosolutes reveal extent of cooperative folding of tRNA on a nucleotide basis and are consistent with the melting studies. Mechanistically, crowding agents appear to promote cooperativity by stabilizing tertiary structure, while those low molecular cosolutes that promote cooperativity stabilize tertiary structure and/or destabilize secondary structure. Cooperative folding of functional RNA under physiological-like conditions parallels the behavior of many proteins and has implications for cellular RNA folding kinetics and evolution.


Subject(s)
RNA Folding , RNA/chemistry , RNA/physiology , Cacodylic Acid/chemistry , Kinetics , Magnesium/chemistry , Mutation/genetics , Nucleic Acid Conformation , Polyethylene Glycols/chemistry , Potassium Chloride/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...