Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 467
Filter
1.
Medicine (Baltimore) ; 103(37): e39360, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39287240

ABSTRACT

RATIONALE: Deafness is associated with both environmental and genetic factors, with hereditary deafness often caused by mutations in deafness-related genes. Identifying and analyzing deafness-related genes will aid in early diagnosis and pave the way for treating inherited deafness through gene therapy in the future. PATIENT CONCERNS: A 15-month-old girl underwent audiological examination at the outpatient clinic of the hospital due to hearing loss and her brother was diagnosed with profound bilateral sensorineural hearing loss at the age of 3. DIAGNOSES: The diagnosis was determined as extremely severe sensorineural hearing loss caused by genetic factors. INTERVENTIONS: Clinical data of the patient were collected, and peripheral blood samples were obtained from both the patient and her family members for DNA extraction and sequencing. OUTCOMES: By utilizing targeted capture next-generation sequencing to further screen for deafness-related genes, 2 novel variants in CDH23 were identified as the causative factors for the patient's deafness. LESSONS: This study identified 2 novel heterozygous mutations in a Chinese family. Both the proband and her sibling have non-syndromic hearing loss (NSHL) and carry distinct heterozygous mutations of cadherin-like 23 (CDH23). One mutation, CDH23:c.2651 A>G, originated from their mother and paternal family, affecting the exon23 domain of CDH23. The other mutation, CDH23:c.2113 G>T, was inherited from their paternal grandmother, impacting the exon19 domain of CDH23. These 2 novel mutations likely cause NSHL by affecting protein function. This finding suggests that identifying 2 novel mutations in CDH23 contributes to the genetic basis of NSHL.


Subject(s)
Cadherins , Hearing Loss, Sensorineural , Humans , Female , Cadherins/genetics , Infant , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/diagnosis , Pedigree , Mutation , Asian People/genetics , China , Male , Cadherin Related Proteins , High-Throughput Nucleotide Sequencing , East Asian People
2.
Proc Natl Acad Sci U S A ; 121(40): e2404829121, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39298473

ABSTRACT

Mechanical force controls the opening and closing of mechanosensitive ion channels atop the hair bundles of the inner ear. The filamentous tip link connecting transduction channels to the tallest neighboring stereocilium modulates the force transmitted to the channels and thus changes their probability of opening. Each tip link comprises four molecules: a dimer of protocadherin 15 (PCDH15) and a dimer of cadherin 23, all of which are stabilized by Ca2+ binding. Using a high-speed optical trap to examine dimeric PCDH15, we find that the protein's mechanical properties are sensitive to Ca2+ and that the molecule exhibits limited unfolding at a physiological Ca2+ concentration. PCDH15 can therefore modulate its stiffness without undergoing large unfolding events under physiological conditions. The experimentally determined stiffness of PCDH15 accords with published values for the stiffness of the gating spring, the mechanical element that controls the opening of mechanotransduction channels. When PCDH15 exhibits a point mutation, V507D, associated with nonsyndromic hearing loss, unfolding events occur more frequently under tension and refolding events occur less often than for the wild-type protein. Our results suggest that the maintenance of appropriate tension in the gating spring is critical to the appropriate transmission of force to transduction channels, and hence to hearing.


Subject(s)
Cadherin Related Proteins , Cadherins , Humans , Cadherin Related Proteins/chemistry , Cadherin Related Proteins/metabolism , Cadherins/metabolism , Cadherins/genetics , Cadherins/chemistry , Calcium/metabolism , Ear, Inner/metabolism , Mechanotransduction, Cellular , Mutation , Optical Tweezers , Point Mutation , Protein Multimerization , Protein Precursors , Protein Unfolding
3.
Nat Cardiovasc Res ; 3(9): 1035-1048, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39232138

ABSTRACT

Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of mortality worldwide. Laminar shear stress from blood flow, sensed by vascular endothelial cells, protects from ASCVD by upregulating the transcription factors KLF2 and KLF4, which induces an anti-inflammatory program that promotes vascular resilience. Here we identify clustered γ-protocadherins as therapeutically targetable, potent KLF2 and KLF4 suppressors whose upregulation contributes to ASCVD. Mechanistic studies show that γ-protocadherin cleavage results in translocation of the conserved intracellular domain to the nucleus where it physically associates with and suppresses signaling by the Notch intracellular domain. γ-Protocadherins are elevated in human ASCVD endothelium; their genetic deletion or antibody blockade protects from ASCVD in mice without detectably compromising host defense against bacterial or viral infection. These results elucidate a fundamental mechanism of vascular inflammation and reveal a method to target the endothelium rather than the immune system as a protective strategy in ASCVD.


Subject(s)
Atherosclerosis , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors , Atherosclerosis/metabolism , Atherosclerosis/genetics , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Animals , Humans , Disease Models, Animal , Signal Transduction , Cadherins/metabolism , Cadherins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Male , Receptors, Notch/metabolism , Receptors, Notch/genetics , Cadherin Related Proteins , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/pathology
4.
Nat Commun ; 15(1): 7865, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256406

ABSTRACT

Hair cell bundles consist of stereocilia arranged in rows of increasing heights, connected by tip links that transmit sound-induced forces to shorter stereocilia tips. Auditory mechanotransduction channel complexes, composed of proteins TMC1/2, TMIE, CIB2, and LHFPL5, are located at the tips of shorter stereocilia. While most components can interact with the tip link in vitro, their ability to maintain the channel complexes at the tip link in vivo is uncertain. Return, using mouse models, we show that an additional component, LOXHD1, is essential for keeping TMC1-pore forming subunits at the tip link but is dispensable for TMC2. Using SUB-immunogold-SEM, we showed that TMC1 localizes near the tip link but mislocalizes without LOXHD1. LOXHD1 selectively interacts with TMC1, CIB2, LHFPL5, and tip-link protein PCDH15. Our results demonstrate that TMC1-driven mature auditory channels require LOXHD1 to stay connected to the tip link and remain functional, while TMC2-driven developmental channels do not.


Subject(s)
Mechanotransduction, Cellular , Membrane Proteins , Animals , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Hair Cells, Auditory/metabolism , Hair Cells, Auditory/physiology , Stereocilia/metabolism , Cadherins/metabolism , Cadherins/genetics , Cadherin Related Proteins , Mice, Knockout , Female , Male , Mice, Inbred C57BL , Protein Precursors
5.
Sci Rep ; 14(1): 21412, 2024 09 13.
Article in English | MEDLINE | ID: mdl-39271758

ABSTRACT

Hearing loss affects around 5% of the global population. Two preliminary studies have described genetic variants in sporadic individuals with hearing loss from Pakistan. Here we extend these studies to determine the spectrum of variants in a cohort of individuals with no previous history of hearing loss. Individuals with hearing loss born to consanguineous couples were identified from special schools. Audiograms were assessed. DNA from participants negative for GJB2 pathogenic variants was subjected to exome sequencing. Data were filtered to include variants with frequencies < 0.01 in the public databases. The effects of the missense variants on respective amino acids were analyzed by using PyMol software. Among the 44 participants, hearing loss was moderate for two individuals; 14 exhibited moderately-severe hearing loss while 25 had a severe degree of hearing loss. Hearing loss was reported to have been progressive in four participants and was currently profound in three participants. Variants were unambiguously identified in 17 genes, of which the majority affected SLC26A4. CDH23, MYO15A and OTOF were other significant contributors. Deleterious variants detected in two genes suggest new associations for hearing loss. Molecular characterization of hearing loss in our cohort revealed high genetic heterogeneity with a 75% diagnostic rate.


Subject(s)
Exome Sequencing , Hearing Loss , Sulfate Transporters , Humans , Male , Child , Female , Hearing Loss/genetics , Sulfate Transporters/genetics , Adolescent , Cadherin Related Proteins , Cadherins/genetics , Membrane Proteins/genetics , Connexin 26/genetics , Genetic Predisposition to Disease , Pakistan , Consanguinity , Connexins/genetics , Mutation, Missense , Myosins
6.
Curr Biol ; 34(18): 4224-4239.e4, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39214087

ABSTRACT

Neurons form cell-type-specific morphologies that are shaped by cell-surface molecules and their cellular events governing dendrite growth. One growth rule is dendrite self-avoidance, whereby dendrites distribute uniformly within a neuron's territory by avoiding sibling branches. In mammalian neurons, dendrite self-avoidance is regulated by a large family of cell-recognition molecules called the clustered protocadherins (cPcdhs). Genetic and molecular studies suggest that the cPcdhs mediate homophilic recognition and repulsion between self-dendrites. However, this model has not been tested through direct investigation of self-avoidance during development. Here, we performed live imaging and four-dimensional (4D) quantifications of dendrite morphogenesis to define the dynamics and cPcdh-dependent mechanisms of self-avoidance. We focused on the mouse retinal starburst amacrine cell (SAC), which requires the gamma-Pcdhs (Pcdhgs) and self/non-self-recognition to establish a stereotypic radial morphology while permitting dendritic interactions with neighboring SACs. Through morphogenesis, SACs extend dendritic protrusions that iteratively fill the growing arbor and contact and retract from nearby self-dendrites. Compared to non-self-contacting protrusions, self-contacting events have longer lifetimes, and a subset persists as loops. In the absence of the Pcdhgs, non-self-contacting dynamics are unaffected but self-contacting retractions are significantly diminished. Self-contacting bridges accumulate, leading to the bundling of dendritic processes and disruption to the arbor shape. By tracking dendrite self-avoidance in real time, our findings establish that the γ-Pcdhs mediate self-recognition and retraction between contacting sibling dendrites. Our results also illustrate how self-avoidance shapes stochastic and space-filling dendritic outgrowth for robust pattern formation in mammalian neurons.


Subject(s)
Amacrine Cells , Cadherin Related Proteins , Cadherins , Dendrites , Animals , Dendrites/physiology , Dendrites/metabolism , Mice , Cadherins/metabolism , Cadherins/genetics , Amacrine Cells/metabolism , Amacrine Cells/physiology , Retina/metabolism , Morphogenesis
7.
Ophthalmic Genet ; 45(5): 516-521, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39092760

ABSTRACT

BACKGROUND: Biallelic pathogenic variants in CDH23 can cause Usher syndrome type I (USH1), typically characterized by sensorineural hearing loss, variable vestibular areflexia, and a progressive form of rod-cone dystrophy. While missense variants in CDH23 can cause DFNB12 deafness, other variants can affect the cadherin 23 function, more severely causing Usher syndrome type I D. The main purpose of our study is to describe the genotypes and phenotypes of patients with mild retinitis pigmentosa (RP), including sector RP with two pathogenic variants in CDH23. MATERIALS AND METHODS: Clinical examination included medical history, comprehensive ophthalmologic examination, and multimodal retinal imaging, and in case 1 and 2, full-field electroretinography (ERG). Genetic analysis was performed in all cases, and segregation testing of proband relatives was performed in case 1 and 3. RESULTS: Three unrelated cases presented with variable clinical phenotype for USH1 and were found to have two pathogenic variants in CDH23, with missense variant, c.5237 G > A: p.Arg1746Gln being common to all. All probands had mild to profound hearing loss. Case 1 and 3 had mild RP with mid peripheral and posterior pole sparing, while case 2 had sector RP. ERG results were consistent with the marked loss of retinal function in both eyes at the level of photoreceptor in case 1 and case 2, with normal peak time in the former. CONCLUSION: Patients harbouring c.5237 G > A: p.Arg1746Gln variants in CDH23 can present with a mild phenotype including sector RP. This can aid in better genetic counselling and in prognostication.


Subject(s)
Cadherins , Electroretinography , Mutation, Missense , Pedigree , Retinitis Pigmentosa , Humans , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/diagnosis , Cadherins/genetics , Male , Female , Adult , Phenotype , Middle Aged , Cadherin Related Proteins , Usher Syndromes/genetics , Usher Syndromes/diagnosis
8.
BMC Ophthalmol ; 24(1): 373, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39187782

ABSTRACT

BACKGROUND: Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal diseases. However, it is still not well understand about the relationship between PCDH15 variants and RP. METHODS: In this study, we enrolled a Chinese autosomal recessive retinitis pigmentosa (arRP) pedigree and identified the causative gene in the proband by targeted whole exome sequencing (WES). The variants were validated in the family members by Sanger sequencing and co-segregation analysis. RESULTS: Novel compound heterozygous, Frame shift variants of the PCDH15 gene, NM_001384140.1:c.4368 - 2147_4368-2131del and NM_001384140.1:c exon19:c.2505del: p. T836Lfs*6 were identified in the arRP pedigree, which co-segregated with the clinical RP phenotypes. The PCDH15 protein is highly conserved among species. CONCLUSION: This is the first study to identify novel compound heterozygous variants c.4368 - 2147_4368-2131del and c.2505del(p.T836Lfs*6) in the PCDH15 gene which might be disease-causing variants, and extending the variant spectra. All above findings may be contribute to genetic counseling, molecular diagnosis and clinical management of arRP disease.


Subject(s)
Cadherin Related Proteins , Retinitis Pigmentosa , Adult , Female , Humans , Male , Middle Aged , Cadherin Related Proteins/genetics , China/epidemiology , DNA Mutational Analysis , East Asian People/genetics , Exome Sequencing , Heterozygote , Pedigree , Phenotype , Retinitis Pigmentosa/genetics
9.
J Ovarian Res ; 17(1): 162, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39123216

ABSTRACT

BACKGROUND: Dachsous cadherin related 1 (DCHS1) is one of calcium-dependent adhesion membrane proteins and is mainly involved in the development of mammalian tissues. There is a lack of more detailed research on the biological function of DCHS1 in pan-cancer. MATERIALS AND METHODS: We evaluated the expression, the prognostic value, the diagnostic value and genomic alterations of DCHS1 by using the databases, including TCGA, UALCAN, HPA, GEPIA2.0 and GSCA. We employed the databases of UCSC, TIMER2.0, TISIDB, GSCA to analyze the association between DCHS1 expression and the immune microenvironment, stemness, TMB, MSI and anticancer drug sensitivity. BioGRID, STRING and GEPIA2.0 were used to perform protein interaction and functional enrichment analysis. Real-time quantitative PCR, CCK8, Transwell assay and Western blot were performed to determine the function of DCHS1 in UCEC. RESULTS: DCHS1 is differentially expressed in many cancers and its expression is significantly associated with tumor prognosis and diagnosis. DCHS1 expression was significantly correlated with the infiltration of cancer-associated fibroblasts (CAFs), Endothelial cell (ECs), and Hematopoietic stem cell in most cancers. In addition, DCHS1 was significantly associated with sensitivity to many antitumor drugs. Functional enrichment analysis revealed that DCHS1-related proteins were involved in Focal adhesion, Endometrial cancer and Wnt signaling pathway. GSEA results showed that DCHS1 was related to epithelial-mesenchymal transition (EMT) in many cancers. In vitro experiments in UCEC showed that DCHS1 regulated cell proliferation, migration and EMT. CONCLUSIONS: Our findings indicated that DCHS1 might be a novel prognostic and diagnostic biomarker and immunotherapy target, and plays an important role in the proliferation, migration and EMT in UCEC.


Subject(s)
Biomarkers, Tumor , Endometrial Neoplasms , Epithelial-Mesenchymal Transition , Female , Humans , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Cadherin Related Proteins , Cell Line, Tumor , Endometrial Neoplasms/metabolism , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Endometrial Neoplasms/immunology , Gene Expression Regulation, Neoplastic , Prognosis , Tumor Microenvironment/immunology
10.
Viruses ; 16(8)2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39205256

ABSTRACT

Rhinovirus C (RV-C) infects airway epithelial cells and is an important cause of acute respiratory disease in humans. To interrogate the mechanisms of RV-C-mediated disease, animal models are essential. Towards this, RV-C infection was recently reported in wild-type (WT) mice, yet, titers were not sustained. Therefore, the requirements for RV-C infection in mice remain unclear. Notably, prior work has implicated human cadherin-related family member 3 (CDHR3) and stimulator of interferon genes (STING) as essential host factors for virus uptake and replication, respectively. Here, we report that even though human (h) and murine (m) CDHR3 orthologs have similar tissue distribution, amino acid sequence homology is limited. Further, while RV-C can replicate in mouse lung epithelial type 1 (LET1) cells and produce infectious virus, we observed a significant increase in the frequency and intensity of dsRNA-positive cells following hSTING expression. Based on these findings, we sought to assess the impact of hCDHR3 and hSTING on RV-C infection in mice in vivo. Thus, we developed hCDHR3 transgenic mice, and utilized adeno-associated virus (AAV) to deliver hSTING to the murine airways. Subsequent challenge of these mice with RV-C15 revealed significantly higher titers 24 h post-infection in mice expressing both hCDHR3 and hSTING-compared to either WT mice, or mice with hCDHR3 or hSTING alone, indicating more efficient infection. Ultimately, this mouse model can be further engineered to establish a robust in vivo model, recapitulating viral dynamics and disease.


Subject(s)
Cadherin Related Proteins , Cadherins , Mice, Transgenic , Virus Replication , Animals , Mice , Humans , Cadherins/genetics , Cadherins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Epithelial Cells/virology , Disease Models, Animal , Enterovirus/physiology , Enterovirus/genetics , Cell Line , Picornaviridae Infections/virology , Mice, Inbred C57BL , Lung/virology
11.
Hum Mol Genet ; 33(19): 1648-1659, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-38981620

ABSTRACT

Hearing loss is the most common congenital sensory deficit worldwide and exhibits high genetic heterogeneity, making molecular diagnoses elusive for most individuals. Detecting novel mutations that contribute to hearing loss is crucial to providing accurate personalized diagnoses, tailored interventions, and improving prognosis. Copy number variants (CNVs) are structural mutations that are understudied, potential contributors to hearing loss. Here, we present the Abnormal Wobbly Gait (AWG) mouse, the first documented mutant exhibiting waltzer-like locomotor dysfunction, hyperactivity, circling behaviour, and profound deafness caused by a spontaneous CNV deletion in cadherin 23 (Cdh23). We were unable to identify the causative mutation through a conventional whole-genome sequencing (WGS) and variant detection pipeline, but instead found a linked variant in hexokinase 1 (Hk1) that was insufficient to recapitulate the AWG phenotype when introduced into C57BL/6J mice using CRISPR-Cas9. Investigating nearby deafness-associated genes revealed a pronounced downregulation of Cdh23 mRNA and a complete absence of full-length CDH23 protein, which is critical for the development and maintenance of inner ear hair cells, in whole head extracts from AWG neonates. Manual inspection of WGS read depth plots of the Cdh23 locus revealed a putative 10.4 kb genomic deletion of exons 11 and 12 that was validated by PCR and Sanger sequencing. This study underscores the imperative to refine variant detection strategies to permit identification of pathogenic CNVs easily missed by conventional variant calling to enhance diagnostic precision and ultimately improve clinical outcomes for individuals with genetically heterogenous disorders such as hearing loss.


Subject(s)
Cadherins , DNA Copy Number Variations , Deafness , Animals , DNA Copy Number Variations/genetics , Cadherins/genetics , Mice , Deafness/genetics , Vestibular Diseases/genetics , Humans , Hexokinase/genetics , Disease Models, Animal , Mice, Inbred C57BL , Whole Genome Sequencing , Phenotype , Cadherin Related Proteins , Mutation
12.
Invest Ophthalmol Vis Sci ; 65(8): 27, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39017633

ABSTRACT

Purpose: The purpose of this study was to analyze the clinical spectrum and natural history of CDH23-associated Usher syndrome type ID (USH1D). Methods: Molecularly-confirmed individuals had data extracted from medical records. Retinal imaging was extracted from an in-house database. The main outcome measurements were retinal imaging and electroretinography (ERG) and clinical findings, including age of onset, symptoms, best-corrected visual acuity (BCVA), outer nuclear layer (ONL) thickness, ellipsoid zone width (EZW), and hyperautofluorescent ring area. Results: Thirty-one patients were identified, harboring 40 variants in CDH23 (10 being novel). The mean (range, ±SD) age of symptom onset was 10.1 years (range = 1-18, SD = ±4.1). The most common visual symptoms at presentation were nyctalopia (93.5%) and peripheral vision difficulties (61.3%). The mean BCVA at baseline was 0.25 ± 0.22 in the right eyes and 0.35 ± 0.58 LogMAR in the left eyes. The mean annual loss rate in BCVA was 0.018 LogMAR/year over a mean follow-up of 9.5 years. Individuals harboring the c.5237G>A p.(Arg1746Gln) allele had retinitis pigmentosa (RP) sparing the superior retina. Seventy-seven percent of patients had hyperautofluorescent rings in fundus autofluorescence. Full-field and pattern ERGs indicated moderate-severe rod-cone or photoreceptor dysfunction with relative sparing of macular function in most patients tested. Optical coherence tomography (OCT) revealed intraretinal cysts in the transfoveal B-scan of 13 individuals (43.3%). The rate of EZW and ONL thickness loss was mild and suggestive of a wide window of macular preservation. Conclusions: Despite the early onset of symptoms, USH1D has a slowly progressive phenotype. There is high interocular symmetry across all parameters, making it an attractive target for novel therapies.


Subject(s)
Cadherins , Electroretinography , Tomography, Optical Coherence , Usher Syndromes , Visual Acuity , Humans , Usher Syndromes/genetics , Usher Syndromes/diagnosis , Usher Syndromes/physiopathology , Male , Female , Adolescent , Visual Acuity/physiology , Child , Tomography, Optical Coherence/methods , Cadherins/genetics , Young Adult , Adult , Child, Preschool , Retina/diagnostic imaging , Retina/pathology , Infant , Mutation , Middle Aged , Retrospective Studies , Phenotype , Fluorescein Angiography/methods , Cadherin Related Proteins
13.
Mol Genet Genomic Med ; 12(6): e2434, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860500

ABSTRACT

BACKGROUND: Hearing loss (HL) is the most frequent sensory deficit in humans, with strong genetic heterogeneity. The genetic diagnosis of HL is very important to aid treatment decisions and to provide prognostic information and genetic counselling for the patient's family. METHODS: We detected and analysed 362 Chinese non-syndromic HL patients by screening of variants in 15 hot spot mutations. Subsequently, 40 patients underwent further whole-exome sequencing (WES) to determine genetic aetiology. The candidate variants were verified using Sanger sequencing. Twenty-three carrier couples with pathogenic variants or likely pathogenic variants chose to proceed with prenatal diagnosis using Sanger sequencing. RESULTS: Among the 362 HL patients, 102 were assigned a molecular diagnosis with 52 different variants in 22 deafness genes. A total of 41 (11.33%) cases with the biallelic GJB2 (OMIM # 220290) gene mutations were detected, and 21 (5.80%) had biallelic SLC26A4 (OMIM # 605646) mutations. Mitochondrial gene (OMIM # 561000) mutations were detected in seven (1.93%) patients. Twenty of the variants in 15 deafness genes were novel. SOX10 (OMIM # 602229), MYO15A (OMIM # 602666) and WFS1 (OMIM # 606201) were each detected in two patients. Meanwhile, OSBPL2 (OMIM # 606731), RRM2B (OMIM # 604712), OTOG (OMIM # 604487), STRC (OMIM # 606440), PCDH15 (OMIM # 605514), LOXHD1 (OMIM # 613072), CDH23 (OMIM # 605516), TMC1 (OMIM # 606706), CHD7 (OMIM # 608892), DIAPH3 (OMIM # 614567), TBC1D24 (OMIM # 613577), TIMM8A (OMIM # 300356), PTPRQ (OMIM # 603317), SALL1 (OMIM # 602218), and GSDME (OMIM # 608798) were each detected in one patient. In addition, as regards one couple with a heterozygous variant of CDH23 and PCDH15, respectively, prenatal diagnosis results suggest that the foetus had double heterozygous (DH) variants of CDH23 and PCDH15, which has a high risk to cause ID/F type Usher syndrome. CONCLUSION: Our study expanded the spectrum of deafness gene variation, which will contribute to the genetic diagnosis, prenatal diagnosis and the procreation guidance of deaf couple. In addition, the deafness caused by two genes should be paid attention to in the prenatal diagnosis of families with both deaf patients.


Subject(s)
Mutation , Humans , Female , Male , China , Child , Hearing Loss/genetics , Adult , Child, Preschool , Sulfate Transporters/genetics , Adolescent , Cadherin Related Proteins
14.
Stem Cell Res ; 79: 103471, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38878669

ABSTRACT

Cadherin 23 (CDH23) is one of the most common genes responsible for hereditary hearing loss; a mutation of CDH23 can cause a wide range of symptoms depending on the variant. In this study, an iPSC line was generated from a patient with late-onset, progressive high frequency hearing loss caused by c.[719C > T];[6085C > T]:p.[P240L];[R2029W] compound heterozygous variants of CDH23. The cells were confirmed to have a normal karyotype, express markers of pluripotency, and have tri-embryonic differentiation potential. This disease-specific iPSC line will further the construction of disease models and the elucidation of the pathophysiology of CDH23 mutations.


Subject(s)
Cadherins , Hearing Loss , Induced Pluripotent Stem Cells , Mutation , Humans , Induced Pluripotent Stem Cells/metabolism , Cadherins/genetics , Cadherins/metabolism , Hearing Loss/genetics , Hearing Loss/pathology , Cell Line , Cell Differentiation , Male , Cadherin Related Proteins
15.
Dev Neurobiol ; 84(3): 217-235, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38837880

ABSTRACT

The Pcdhg gene cluster encodes 22 γ-Protocadherin (γ-Pcdh) cell adhesion molecules that critically regulate multiple aspects of neural development, including neuronal survival, dendritic and axonal arborization, and synapse formation and maturation. Each γ-Pcdh isoform has unique protein domains-a homophilically interacting extracellular domain and a juxtamembrane cytoplasmic domain-as well as a C-terminal cytoplasmic domain shared by all isoforms. The extent to which isoform-specific versus shared domains regulate distinct γ-Pcdh functions remains incompletely understood. Our previous in vitro studies identified protein kinase C (PKC) phosphorylation of a serine residue within a shared C-terminal motif as a mechanism through which γ-Pcdh promotion of dendrite arborization via myristoylated alanine-rich C-kinase substrate (MARCKS) is abrogated. Here, we used CRISPR/Cas9 genome editing to generate two new mouse lines expressing only non-phosphorylatable γ-Pcdhs, due either to a serine-to-alanine mutation (PcdhgS/A) or to a 15-amino acid C-terminal deletion resulting from insertion of an early stop codon (PcdhgCTD). Both lines are viable and fertile, and the density and maturation of dendritic spines remain unchanged in both PcdhgS/A and PcdhgCTD cortex. Dendrite arborization of cortical pyramidal neurons, however, is significantly increased in both lines, as are levels of active MARCKS. Intriguingly, despite having significantly reduced levels of γ-Pcdh proteins, the PcdhgCTD mutation yields the strongest phenotype, with even heterozygous mutants exhibiting increased arborization. The present study confirms that phosphorylation of a shared C-terminal motif is a key γ-Pcdh negative regulation point and contributes to a converging understanding of γ-Pcdh family function in which distinct roles are played by both individual isoforms and discrete protein domains.


Subject(s)
Cadherin Related Proteins , Cadherins , Cerebral Cortex , Dendrites , Protein Kinase C , Animals , Cerebral Cortex/metabolism , Cerebral Cortex/cytology , Cadherins/metabolism , Cadherins/genetics , Phosphorylation/physiology , Dendrites/metabolism , Mice , Protein Kinase C/metabolism , Protein Kinase C/genetics , Myristoylated Alanine-Rich C Kinase Substrate/metabolism , Myristoylated Alanine-Rich C Kinase Substrate/genetics , Amino Acid Motifs/physiology , Mice, Transgenic
16.
HGG Adv ; 5(3): 100314, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38816995

ABSTRACT

Inherited retinal diseases (IRDs) are a group of rare monogenic diseases with high genetic heterogeneity (pathogenic variants identified in over 280 causative genes). The genetic diagnostic rate for IRDs is around 60%, mainly thanks to the routine application of next-generation sequencing (NGS) approaches such as extensive gene panels or whole exome analyses. Whole-genome sequencing (WGS) has been reported to improve this diagnostic rate by revealing elusive variants, such as structural variants (SVs) and deep intronic variants (DIVs). We performed WGS on 33 unsolved cases with suspected autosomal recessive IRD, aiming to identify causative genetic variants in non-coding regions or to detect SVs that were unexplored in the initial screening. Most of the selected cases (30 of 33, 90.9%) carried monoallelic pathogenic variants in genes associated with their clinical presentation, hence we first analyzed the non-coding regions of these candidate genes. Whenever additional pathogenic variants were not identified with this approach, we extended the search for SVs and DIVs to all IRD-associated genes. Overall, we identified the missing causative variants in 11 patients (11 of 33, 33.3%). These included three DIVs in ABCA4, CEP290 and RPGRIP1; one non-canonical splice site (NCSS) variant in PROM1 and three SVs (large deletions) in EYS, PCDH15 and USH2A. For the previously unreported DIV in CEP290 and for the NCCS variant in PROM1, we confirmed the effect on splicing by reverse transcription (RT)-PCR on patient-derived RNA. This study demonstrates the power and clinical utility of WGS as an all-in-one test to identify disease-causing variants missed by standard NGS diagnostic methodologies.


Subject(s)
Retinal Diseases , Whole Genome Sequencing , Humans , Retinal Diseases/genetics , Retinal Diseases/diagnosis , Male , Female , Italy , Child , Adult , Adolescent , Genetic Predisposition to Disease/genetics , Cytoskeletal Proteins/genetics , Child, Preschool , Cadherins/genetics , Mutation , Genetic Variation/genetics , High-Throughput Nucleotide Sequencing , Cadherin Related Proteins , Young Adult , ATP-Binding Cassette Transporters/genetics , Middle Aged , Eye Proteins/genetics , Antigens, Neoplasm/genetics , Pedigree , Cell Cycle Proteins
17.
Sci Rep ; 14(1): 10596, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38720048

ABSTRACT

To investigate the association between hereditary hearing loss and vestibular function, we compared vestibular function and symptoms among patients with GJB2, SLC26A4, and CDH23 variants. Thirty-nine patients with sensory neural hearing loss (11 males and 28 females) with biallelic pathogenic variants in either GJB2, SLC26A4, or CDH23 were included in this study (13 GJB2, 15 SLC26A4, and 11 CDH23). The patients were examined using caloric testing and cervical and ocular vestibular-evoked myogenic potentials (cVEMP and oVEMP). We also compared vestibular function and symptoms between patients with these gene variants and 78 normal-hearing ears without vestibular symptoms as controls. The frequency of semicircular canal hypofunction in caloric testing was higher in patients with SLC26A4 variants (47%) than in those with GJB2 (0%) and CDH23 variants (27%). According to the cVEMP results, 69% of patients with GJB2 variants had saccular hypofunction, a significantly higher proportion than in those carrying other variants (SLC26A4, 20%; CDH23, 18%). In oVEMP, which reflects utricular function, no difference was observed in the frequency of hypofunction among the three genes (GJB2, 15%; SLC26A4, 40%; and CDH23, 36%). Hence, discernable trends indicate vestibular dysfunction associated with each gene.


Subject(s)
Cadherin Related Proteins , Cadherins , Connexin 26 , Sulfate Transporters , Humans , Female , Male , Cadherins/genetics , Sulfate Transporters/genetics , Connexin 26/genetics , Adult , Adolescent , Middle Aged , Child , Young Adult , Vestibular Evoked Myogenic Potentials , Membrane Transport Proteins/genetics , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/physiopathology , Vestibular Function Tests , Child, Preschool , Vestibule, Labyrinth/physiopathology , Connexins/genetics
18.
Cell Mol Neurobiol ; 44(1): 41, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656449

ABSTRACT

The cadherin family plays a pivotal role in orchestrating synapse formation in the central nervous system. Cadherin-related family member 1 (CDHR1) is a photoreceptor-specific calmodulin belonging to the expansive cadherin superfamily. However, its role in traumatic brain injury (TBI) remains largely unknown. CDHR1 expression across various brain tissue sites was analyzed using the GSE104687 dataset. Employing a summary-data-based Mendelian Randomization (SMR) approach, integrated analyses were performed by amalgamating genome-wide association study abstracts from TBI with public data on expressed quantitative trait loci and DNA methylation QTL from both blood and diverse brain tissues. CDHR1 expression and localization in different brain tissues were meticulously delineated using western blotting, immunohistochemistry, and enzyme-linked immunosorbent assay. CDHR1 expression was consistently elevated in the TBI group compared to that in the sham group across multiple tissues. The inflammatory response emerged as a crucial biological mechanism, and pro-inflammatory and anti-inflammatory factors were not expressed in either group. Integrated SMR analyses encompassing both blood and brain tissues substantiated the heightened CDHR1 expression profiles, with methylation modifications emerging as potential contributing factors for increased TBI risk. This was corroborated by western blotting and immunohistochemistry, confirming augmented CDHR1 expression following TBI. This multi-omics-based genetic association study highlights the elevated TBI risk associated with CDHR1 expression coupled with putative methylation modifications. These findings provide compelling evidence for future targeted investigations and offer promising avenues for developing interventional therapies for TBI.


Subject(s)
Brain Injuries, Traumatic , Cadherins , Animals , Humans , Male , Brain/metabolism , Brain/pathology , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/metabolism , Cadherin Related Proteins , Cadherins/genetics , Cadherins/metabolism , DNA Methylation/genetics , Genome-Wide Association Study , Quantitative Trait Loci/genetics
19.
Neurosurg Rev ; 47(1): 144, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38594575

ABSTRACT

Recent studies suggest that differential DNA methylation could play a role in the mechanism of cerebral vasospasm (CVS) and delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (aSAH). Considering the significance of this matter and a lack of effective prophylaxis against DCI, we aim to summarize the current state of knowledge regarding their associations with DNA methylation and identify the gaps for a future trial. PubMed MEDLINE, Scopus, and Web of Science were searched by two authors in three waves for relevant DNA methylation association studies in DCI after aSAH. PRISMA checklist was followed for a systematic structure. STROBE statement was used to assess the quality and risk of bias within studies. This research was funded by the National Science Centre, Poland (grant number 2021/41/N/NZ2/00844). Of 70 records, 7 peer-reviewed articles met the eligibility criteria. Five studies used a candidate gene approach, three were epigenome-wide association studies (EWAS), one utilized bioinformatics of the previous EWAS, with two studies using more than one approach. Methylation status of four cytosine-guanine dinucleotides (CpGs) related to four distinct genes (ITPR3, HAMP, INSR, CDHR5) have been found significantly or suggestively associated with DCI after aSAH. Analysis of epigenetic clocks yielded significant association of lower age acceleration with radiological CVS but not with DCI. Hub genes for hypermethylation (VHL, KIF3A, KIFAP3, RACGAP1, OPRM1) and hypomethylation (ALB, IL5) in DCI have been indicated through bioinformatics analysis. As none of the CpGs overlapped across the studies, meta-analysis was not applicable. The identified methylation sites might potentially serve as a biomarker for early diagnosis of DCI after aSAH in future. However, a lack of overlapping results prompts the need for large-scale multicenter studies. Challenges and prospects are discussed.


Subject(s)
Brain Ischemia , Subarachnoid Hemorrhage , Vasospasm, Intracranial , Humans , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/genetics , DNA Methylation , Cerebral Infarction/complications , Brain Ischemia/genetics , Brain Ischemia/complications , Biomarkers , Vasospasm, Intracranial/genetics , Vasospasm, Intracranial/complications , Cadherin Related Proteins
20.
Biomolecules ; 14(3)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38540785

ABSTRACT

Inherited macular dystrophies (iMDs) are a group of genetic disorders, which affect the central region of the retina. To investigate the genetic basis of iMDs, we used single-molecule Molecular Inversion Probes to sequence 105 maculopathy-associated genes in 1352 patients diagnosed with iMDs. Within this cohort, 39.8% of patients were considered genetically explained by 460 different variants in 49 distinct genes of which 73 were novel variants, with some affecting splicing. The top five most frequent causative genes were ABCA4 (37.2%), PRPH2 (6.7%), CDHR1 (6.1%), PROM1 (4.3%) and RP1L1 (3.1%). Interestingly, variants with incomplete penetrance were revealed in almost one-third of patients considered solved (28.1%), and therefore, a proportion of patients may not be explained solely by the variants reported. This includes eight previously reported variants with incomplete penetrance in addition to CDHR1:c.783G>A and CNGB3:c.1208G>A. Notably, segregation analysis was not routinely performed for variant phasing-a limitation, which may also impact the overall diagnostic yield. The relatively high proportion of probands without any putative causal variant (60.2%) highlights the need to explore variants with incomplete penetrance, the potential modifiers of disease and the genetic overlap between iMDs and age-related macular degeneration. Our results provide valuable insights into the genetic landscape of iMDs and warrant future exploration to determine the involvement of other maculopathy genes.


Subject(s)
Macular Degeneration , Humans , Mutation , Penetrance , Pedigree , Macular Degeneration/genetics , Retina , Phenotype , ATP-Binding Cassette Transporters/genetics , Eye Proteins , Cadherin Related Proteins , Nerve Tissue Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL