Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.614
Filter
1.
ACS Chem Biol ; 19(5): 1180-1193, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38652683

ABSTRACT

C. elegans numr-1/2 (nuclear-localized metal-responsive) is an identical gene pair encoding a nuclear protein previously shown to be activated by cadmium and disruption of the integrator RNA metabolism complex. We took a chemical genetic approach to further characterize regulation of this novel metal response by screening 41,716 compounds and extracts for numr-1p::GFP activation. The most potent activator was chaetocin, a fungal 3,6-epidithiodiketopiperazine (ETP) with promising anticancer activity. Chaetocin activates numr-1/2 strongly in the alimentary canal but is distinct from metal exposure, because it represses canonical cadmium-responsive metallothionine genes. Chaetocin has diverse targets in cancer cells including thioredoxin reductase, histone lysine methyltransferase, and acetyltransferase p300/CBP; further work is needed to identify the mechanism in C. elegans as genetic disruption and RNAi screening of homologues did not induce numr-1/2 in the alimentary canal and chaetocin did not affect markers of integrator dysfunction. We demonstrate that disulfides in chaetocin and chetomin, a dimeric ETP analog, are required to induce numr-1/2. ETP monomer gliotoxin, despite possessing a disulfide linkage, had almost no effect on numr-1/2, suggesting a dimer requirement. Chetomin inhibits C. elegans growth at low micromolar levels, and loss of numr-1/2 increases sensitivity; C. elegans and Chaetomiaceae fungi inhabit similar environments raising the possibility that numr-1/2 functions as a defense mechanism. There is no direct orthologue of numr-1/2 in humans, but RNaseq suggests that chaetocin affects expression of cellular processes linked to stress response and metal homeostasis in colorectal cancer cells. Our results reveal interactions between metal response gene regulation and ETPs and identify a potential mechanism of resistance to this versatile class of preclinical compounds.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Homeostasis , Mycotoxins , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Animals , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Mycotoxins/pharmacology , Mycotoxins/metabolism , Homeostasis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Piperazines/pharmacology , Piperazines/chemistry , Humans , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Cadmium/pharmacology
2.
J Proteomics ; 300: 105178, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38636824

ABSTRACT

Employing microbial systems for the bioremediation of contaminated waters represent a potential option, however, limited understanding of the underlying mechanisms hampers the implication of microbial-mediated bioremediation. The omics tools offer a promising approach to explore the molecular basis of the bioremediation process. Here, a mass spectrometry-based quantitative proteome profiling approach was conducted to explore the differential protein levels in cadmium-treated Paramecium multimicronucleatum. The Proteome Discoverer software was used to identify and quantify differentially abundant proteins. The proteome profiling generated 7,416 peptide spectral matches, yielding 2824 total peptides, corresponding to 989 proteins. The analysis revealed that 29 proteins exhibited significant (p ≤ 0.05) differential levels, including a higher abundance of 6 proteins and reduced levels of 23 proteins in Cd2+ treated samples. These differentially abundant proteins were associated with stress response, energy metabolism, protein degradation, cell growth, and hormone processing. Briefly, a comprehensive proteome profile in response to cadmium stress of a newly isolated Paramecium has been established that will be useful in future studies identifying critical proteins involved in the bioremediation of metals in ciliates. SIGNIFICANCE: Ciliates are considered a good biological indicator of chemical pollution and relatively sensitive to heavy metal contamination. A prominent ciliate, Paramecium is a promising candidate for the bioremediation of polluted water. The proteins related to metal resistance in Paramecium species are still largely unknown and need further exploration. In order to identify and reveal the proteins related to metal resistance in Paramecia, we have reported differential protein abundance in Paramecium multimicronucleatum in response to cadmium stress. The proteins found in our study play essential roles during stress response, hormone processing, protein degradation, energy metabolism, and cell growth. It seems likely that Paramecia are not a simple sponge for metals but they could also transform them into less toxic derivatives or by detoxification by protein binding. This data will be helpful in future studies to identify critical proteins along with their detailed mechanisms involved in the bioremediation and detoxification of metal ions in Paramecium species.


Subject(s)
Cadmium , Paramecium , Proteome , Protozoan Proteins , Cadmium/toxicity , Cadmium/pharmacology , Proteome/metabolism , Proteome/drug effects , Paramecium/metabolism , Paramecium/drug effects , Protozoan Proteins/metabolism , Stress, Physiological/drug effects , Biodegradation, Environmental , Proteomics/methods
3.
Chem Biodivers ; 21(5): e202301667, 2024 May.
Article in English | MEDLINE | ID: mdl-38502834

ABSTRACT

In this paper, a new tridentate Schiff base ligand (L) with nitrogen donor atoms and its cadmium(II) complexes with the general formula of CdLX2 (X=Cl-, Br-, I-, SCN-, N3 -, NO3 -) have been synthesized and characterized by physical and spectral (FT/IR, UV-Vis, Mass, and 1H, 13C NMR spectroscopies) methods. Also nano-structured cadmium chloride and bromide complexes were synthesized by sonochemical method and then used to prepare nanostructured cadmium oxide confirmed by XRD and SEM techniques. Thermal behavior of the compounds was studied in the temperature range of 25 to 900 °C under N2 atmosphere at a heating rate of 20 °C/ min. Moreover, thermo-kinetic activation parameters of thermal decomposition steps were calculated according to the Coats-Redfern relationship. Antimicrobial activities of the synthesized compounds against two gram-positive and two gram-negative bacteria such as Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and two fungi of Candida albicans and Aspergillus niger were investigated by well diffusion method. SEM technique was used to monitor the morphological changes of the bacteria treated with the compounds. The 2,2-Diphenyl-1-picrylhydrazyl(DPPH) and the ferric reducing antioxidant power (FRAP) methods were used to evaluate the antioxidant ability of the ligand and its cadmium(II) complexes. In final, the cytotoxicity properties of the ligand and some cadmium(II) complexes against PC3 cancer cells were evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) bioassay and nitric oxide (NO) level measurement. The morphological changes of prostate cancer (PC3) cells due to treatment with the ligand and its complexes confirmed their anticancer effectiveness.


Subject(s)
Antineoplastic Agents , Antioxidants , Cadmium , Coordination Complexes , Microbial Sensitivity Tests , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Antioxidants/chemistry , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cadmium/chemistry , Cadmium/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Cell Line, Tumor , Drug Screening Assays, Antitumor , Gram-Positive Bacteria/drug effects , Cell Survival/drug effects , Gram-Negative Bacteria/drug effects , Molecular Structure , Schiff Bases/chemistry , Schiff Bases/pharmacology , Schiff Bases/chemical synthesis , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacology , Candida albicans/drug effects , Cell Proliferation/drug effects , Fungi/drug effects , Structure-Activity Relationship , Picrates/antagonists & inhibitors , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Temperature
4.
J Biomater Appl ; 38(9): 943-956, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462970

ABSTRACT

Bletilla striata polysaccharide (BSP) was added to curdlan to form a blend hydrogel through a simple heating-cooling procedure to improve the hydrophilicity and healing efficacy of curdlan-based hydrogel used in wound healing. We explored the interplay between BSP and curdlan, studied how BSP concentration affects the physical properties and microstructures of hydrogels, and examined the biocompatibility and healing properties of the blend hydrogel. It was proved that the hydrogel framework was primarily formed by ordered arranged curdlan molecules, with BSP uniformly dispersed and intertwined with curdlan through hydrogen bonding. This effectively improved its hydrophilicity and strengthened the microstructure. Curdlan was found to be compatible with BSP. The blend hydrogel B3Cd3 (containing 1.5% BSP and 1.5% curdlan, w/v) was identified as the optimal formulation based on its higher water adsorption, water retention, thermal stability and interconnected microstructure, and was thus selected for further research. In vitro experiments revealed the highest cell viability of L929 in B3Cd3 extracts compared to those extracts of single-component curdlan hydrogel (Cd). In vivo, animal studies indicated that the B3Cd3 accelerated wound healing compared to the control group by improving re-epithelialization and blood vessel regeneration. On Days 3 and 11, the therapeutic benefits of B3Cd3 exceeded those of the Cd group, and no significant differences were observed in wound healing rates between the B and B3Cd3 groups from Day 7. The study proves that BSP enhances the physical and healing properties, as well as cell proliferation, of the curdlan-based hydrogel. The blend hydrogel B3Cd3, with its exceptional properties, holds potential for future application as a material for non-infected wound healing.


Subject(s)
Hydrogels , Orchidaceae , beta-Glucans , Animals , Hydrogels/pharmacology , Cadmium/pharmacology , Wound Healing , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Polysaccharides/chemistry , Orchidaceae/chemistry , Water/pharmacology
5.
Int J Mol Sci ; 25(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38473702

ABSTRACT

The aim of this study was to investigate how introducing halophilic sulfur-oxidizing bacteria (SOB) Halothiobacillus halophilus to the growth substrate affects the physiological and biochemical responses of the halophyte Tripolium pannonicum (also known as sea aster or seashore aster) under salt and cadmium stress conditions. This study assessed the plant's response to these stressors and bacterial inoculation by analyzing various factors including the accumulation of elements such as sodium (Na), chloride (Cl), cadmium (Cd) and sulfur (S); growth parameters; levels of photosynthetic pigments, proline and phenolic compounds; the formation of malondialdehyde (MDA); and the plant's potential to scavenge 2,2-Diphenyl-1-picrylhydrazyl (DPPH). The results revealed that bacterial inoculation was effective in mitigating the deleterious effect of cadmium stress on some growth criteria. For instance, stem length was 2-hold higher, the growth tolerance index was 3-fold higher and there was a 20% increase in the content of photosynthetic pigments compared to non-inoculated plants. Furthermore, the SOB contributed to enhancing cadmium tolerance in Tripolium pannonicum by increasing the availability of sulfur in the plant's leaves, which led to the maintenance of an appropriate, about 2-fold-higher level of phenolic compounds (phenylpropanoids and flavonols), as well as chloride ions. The level of MDA decreased after bacterial application in all experimental variants except when both salt and cadmium stress were present. These findings provide novel insights into how halophytes respond to abiotic stress following inoculation of the growth medium with sulfur-oxidizing bacteria. The data suggest that inoculating the substrate with SOB has a beneficial effect on T. pannonicum's tolerance to cadmium stress.


Subject(s)
Cadmium , Salt-Tolerant Plants , Cadmium/pharmacology , Chlorides/pharmacology , Sodium Chloride/pharmacology , Sodium Chloride, Dietary/pharmacology , Sodium/pharmacology , Oxidation-Reduction , Sulfur/pharmacology , Bacteria
6.
Int J Biol Macromol ; 262(Pt 1): 130019, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38331077

ABSTRACT

As an essential trace element for plant growth and development, manganese plays a crucial role in the uptake of the heavy metal cadmium by rice (Oryza sativa L.). In this study, we developed a novel slow-release manganese fertilizer named Mn@LNS-EL. Initially, lignin nanoparticles were derived from sodium lignosulfonate, and a one-step emulsification strategy was employed to prepare a water-in-oil-in-water (W/O/W) Pickering double emulsions. These double emulsions served as the template for interfacial polymerization of lignin nanoparticles and epichlorohydrin, resulting in the formation of microcapsule wall materials. Subsequently, manganese fertilizer (MnSO4) was successfully encapsulated within the microcapsules. Hydroponic experiments were conducted to investigate the effects of Mn@LNS-EL on rice growth and the cadmium and manganese contents in the roots and shoots of rice under cadmium stress conditions. The results revealed that the treatment with Mn@LNS-EL markedly alleviated the inhibitory effects of cadmium on rice growth, leading to notably lower cadmium levels in the rice roots and shoots compared to the specimens treated without manganese fertilizer. Specifically, there was a reduction of 37.9 % in the root cadmium content and a 17.1 % decrease in the shoot cadmium content. In conclusion, this study presents an innovative approach for the high-value utilization of lignin through effective encapsulation and slow-release mechanisms of trace-element fertilizers while offering a promising strategy for efficiently remediating cadmium pollution in rice.


Subject(s)
Oryza , Soil Pollutants , Trace Elements , Manganese/pharmacology , Lignin/pharmacology , Fertilizers/analysis , Cadmium/pharmacology , Water/pharmacology , Soil Pollutants/pharmacology , Plant Roots/chemistry , Soil
7.
Plant Physiol Biochem ; 207: 108430, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38364632

ABSTRACT

Copper oxide nanoparticles (CuO NPs) influence the uptake of heavy metal ions by plants, but molecular mechanism is still unknown. Here, we proved the mechanism of CuO NPs affecting Cd absorption in Arabidopsis root. 4-d-old seedlings were treated by 10 and 20 mg/L CuO NPs for 3 d, which decreased the contents of cellulose and hemicellulose in roots. Moreover, the contents of some important monosaccharides were altered by CuO NPs, including arabinose, glucose and mannose. Biosynthesis of cellulose and hemicellulose is regulated by cellulose synthase A complexe (CSC) dynamics. The synthesis of tubulin cytoskeleton was inhibited by CuO NPs, which resulted in the decrease of CSCs bidirectional velocities. Furthermore, the arrangement and network of cellulose fibrillar bundles were disrupted by CuO NPs. CuO NPs treatment significantly increased the influx of Cd2+. The accumulation and translocation of Cd were increased by 10 and 20 mg/L CuO NPs treatment. The subcellular distribution of Cd in root cells indicated CuO NPs decrease the enrichment of Cd in cell wall, but increase the enrichment of Cd in soluble fraction and organelle. In light of these findings, we proposed a mechanistic model in which CuO NPs destroy the ordered structure of the cell wall, alter the uptake and distribution of Cd in Arabidopsis.


Subject(s)
Arabidopsis , Metal Nanoparticles , Nanoparticles , Copper/pharmacology , Copper/chemistry , Cadmium/pharmacology , Nanoparticles/chemistry , Oxides , Cellulose , Metal Nanoparticles/chemistry
8.
Sci Total Environ ; 918: 170773, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38336054

ABSTRACT

Cadmium (Cd) exposure is known to enhance breast cancer (BC) progression. Cd promotes epithelial-mesenchymal transition (EMT) in BC cells, facilitating BC cell aggressiveness and invasion, but the underlying molecular mechanisms are unclear. Hence, transgenic MMTV-Erbb2 mice (6 weeks) were orally administered Cd (3.6 mg/L, approximately equal to 19.64 µΜ) for 23 weeks, and BC cells (BT474 cells) were exposed to Cd (0, 0.1, 1 or 10 µΜ) for 72 h to investigate the effect of Cd exposure on EMT in BC cells. Chronic Cd exposure dramatically expedited tumor metastasis to multiple organs; decreased E-cadherin density; and increased Vimentin, N-cadherin, ZEB1, and Twist density in the tumor tissues of MMTV-Erbb2 mice. Notably, transcriptomic analysis of BC tumors revealed cytochrome P450 1B1 (CYP1B1) as a key factor that regulates EMT progression in Cd-treated MMTV-Erbb2 mice. Moreover, Cd increased CYP1B1 expression in MMTV-Erbb2 mouse BC tumors and in BT474 cells, and CYP1B1 inhibition decreased Cd-induced BC cell malignancy and EMT in BT474 cells. Importantly, the promotion of EMT by CYP1B1 in Cd-treated BC cells was presumably controlled by glutamine metabolism. This study offers novel perspectives into the effect of environmental Cd exposure on driving BC progression and metastasis, and this study provides important guidance for comprehensively assessing the ecological and health risks of Cd.


Subject(s)
Cadmium , Neoplasms , Mice , Animals , Cadmium/pharmacology , Cell Line, Tumor , Glutamine/metabolism , Glutamine/pharmacology , Metabolic Reprogramming , Epithelial-Mesenchymal Transition , Cadherins/genetics , Cadherins/metabolism , Cadherins/pharmacology
9.
Sci Total Environ ; 921: 171024, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38387586

ABSTRACT

Cadmium (Cd) is detrimental to plant growth and threatens human health. Here, we investigated the potential for remediation of Cd-contaminated soil with high copper (Cu) background using Cd hyperaccumulator ecotype (HE) Sedum alfredii. We assessed effects of Cu on Cd accumulation, compartmentation and translocation in HE S. alfredii, and compared with those in a related non-accumulator ecotype (NHE). We found that Cu supply significantly induced Cd accumulation in roots and shoots of long-term soil-cultivated HE S. alfredii. A large fraction of root Cd was accumulated in the organelles, but a small fraction was stored in the cell wall. Importantly, Cu addition reduced Cd accumulation in the cell wall and the organelles in root cells. Furthermore, leaf cell capacity to sequestrate Cd in the organelles was greatly improved upon Cu exposure. We also found that genes involving metal transport and cell wall remodeling were distinctly regulated to mediate Cd accumulation in HE S. alfredii. These findings indicate that Cu-dependent decrease of root cell-wall-bound Cd, and stimulation of efflux/influx of organelle Cd transport in root and leaf cells plays a role in the dramatic Cd hyperaccumulation expressed in naturally survived HE S. alfredii.


Subject(s)
Sedum , Soil Pollutants , Humans , Cadmium/pharmacology , Copper/pharmacology , Plant Roots/chemistry , Soil , Soil Pollutants/analysis , Biodegradation, Environmental
10.
Chemosphere ; 351: 141265, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38246497

ABSTRACT

Plant enrichment and tolerance to heavy metals are crucial for the phytoremediation of coal gangue mountain. However, understanding of how plants mobilize and tolerate heavy metals in coal gangue is limited. This study conducted potted experiments using Setaria viridis as a pioneer remediation plant to evaluate its tolerance to coal gangue, its mobilization and enrichment of metals, and its impact on the soil environment. Results showed that the addition of 40% gangue enhanced plant metal and oxidative stress resistance, thereby promoting plant growth. However, over 80% of the gangue inhibited the chlorophyll content, photoelectron conduction rate, and biomass of S. viridis, leading to cellular peroxidative stress. An analysis of metal resistance showed that endogenous S in coal gangue promoted the accumulation of glutathione, plant metal chelators, and non-protein thiols, thereby enhancing its resistance to metal stress. Setaria viridis cultivation affected soil properties by decreasing nitrogen, phosphorus, conductivity, and urease and increasing sucrase and acid phosphatase in the rhizosphere soil. In addition, S. viridis planting increased V, Cr, Ni, As, and Zn in the exchangeable and carbonate-bound states within the gangue, effectively enriching Cd, Cr, Fe, S, U, Cu, and V. The increased mobility of Cd and Pb was correlated with a higher abundance of Proteobacteria and Acidobacteria. Heavy metals, such as As, Fe, V, Mn, Ni, and Cu, along with environmental factors, including total nitrogen, total phosphorus, urease, and acid phosphatase, were the primary regulatory factors for Sphingomonas, Gemmatimonas, and Bryobacter. In summary, S. viridis adapted to gangue stress by modulating antioxidant and elemental enrichment systems and regulating the release and uptake of heavy metals through enhanced bacterial abundance and the recruitment of gangue-tolerant bacteria. These findings highlight the potential of S. viridis for plant enrichment in coal gangue areas and will aid the restoration and remediation of these environments.


Subject(s)
Metals, Heavy , Setaria Plant , Soil Pollutants , Cadmium/pharmacology , Setaria Plant/metabolism , Coal , Urease , Metals, Heavy/analysis , Plants/metabolism , Phosphorus/pharmacology , Bacteria/metabolism , Sulfur/pharmacology , Soil , Acid Phosphatase , Nitrogen/pharmacology , Soil Pollutants/analysis
11.
Environ Pollut ; 344: 123436, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38281573

ABSTRACT

Environmental pollutants interfere with plant photosynthesis, thus reduce the crop yield and carbon storage capacity of farmland. This study comparatively explored the effects and mechanisms of polycyclic aromatic hydrocarbons (PAHs, e.g., phenanthrene, pyrene, and benzo[a]pyrene) and cadmium (Cd) on the carbon fixation capacity of rice throughout the growth period. Cd posed severer inhibition on the net carbon fixation of rice than PAHs, with the inhibition rates of 1.40-14.8-fold over PAHs at the concentrations of 0.5 or 5 mg/kg soil. Ribulose diphosphate carboxylase/oxygenase (Rubisco) involved in the Calvin cycle was identified as the common target of these pollutants to inhibit the photosynthetic carbon fixation. Further investigation demonstrated that the different inhibitory effects of Cd and PAHs was resulted from their different interference on the dual catalysis function (carboxylation and oxygenation) of Rubisco. Cd disturbed the balance of the intercellular CO2/O2, thus promoting the oxygenation and inhibiting the carboxylation of the substrate of Rubisco. Under the stress of Cd, the downstream metabolites (e.g. glycolate, glyoxylate, and serine) of Rubisco oxygenation were upregulated by over 2.01-3.24-fold, whereas the carboxylation efficiency (Vcmax) was decreased by 5.58-29.3%. Comparatively, PAHs inhibited both the carboxylation and oxygenation by down-regulating the expression of Rubisco coding gene (OsRBCS2, Log2FC < -2). This study broadens the understanding of the mechanisms of different environmental pollutants on the carbon fixation, providing valuable information for the quantitative estimation of their impacts on the farmland carbon sink. The results would be constructive to develop strategies for eliminating the adverse effects of contaminants and assist the carbon-neutral programs.


Subject(s)
Environmental Pollutants , Oryza , Polycyclic Aromatic Hydrocarbons , Cadmium/pharmacology , Oryza/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Photosynthesis , Carbon/metabolism , Carbon Cycle , Environmental Pollutants/pharmacology , Carbon Dioxide/metabolism
12.
Sci Total Environ ; 912: 169105, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38070566

ABSTRACT

Improving nitrogen use efficiency of chemical fertilizers is essential to mitigate the negative environmental impacts of nitrogen. Nitrification, the conversion of ammonium to nitrate via nitrite by soil microbes, is a prominent source of nitrogen loss in soil systems. The effectiveness of nitrification inhibitors in reducing nitrogen loss through inhibition of nitrification is well-documented, however, their efficacy in heavy metals-contaminated soils needs thorough investigations. The current study assessed the efficacy of nitrification inhibitor 3, 4-dimethylpyrazole phosphate (DMPP) in reducing nitrous oxide (N2O) emissions in cadmium (Cd) contaminated paddy and red soils under lab-controlled environment. Obtained results indicated the substantial reduction in N2O emissions with DMPP in paddy and red soil by 48 and 35 %, respectively. However, Cd contamination resulted in reduced efficacy of DMPP, thus decreased the N2O emissions by 36 and 25 % in paddy and red soil, respectively. It was found that addition of DMPP had a significant effect on the abundance of ammonia oxidizing bacteria (AOB) and archaea (AOA). Notably, the reduction in N2O emissions by DMPP varied with the abundance of AOB. Moreover, Cd pollution resulted in a significant (P < 0.05) reduction in the abundance of archaeal and bacterial amoA genes, as well as bacterial nirK, nirS, and nosZ genes. The combined treatment of Cd and DMPP had a detrimental impact on denitrifiers, thereby influencing the overall efficiency of DMPP. These findings provide novel insights into the application of DMPP to mitigate nitrification and its potential role in reducing N2O emissions in contaminated soils.


Subject(s)
Cadmium , Phosphates , Cadmium/pharmacology , Dimethylphenylpiperazinium Iodide/pharmacology , Ammonia/pharmacology , Soil Microbiology , Archaea , Nitrification , Soil , Nitrous Oxide/analysis , Nitrogen/pharmacology , Fertilizers/analysis
13.
Biol Trace Elem Res ; 202(2): 643-658, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37231320

ABSTRACT

Heavy metals (HM)in the environment have provoked global attention because of its deleterious effects. This study evaluated the protection offered by Zn or Se or both against HMM-induced alterations in the kidney. Male Sprague Dawley rats were distributed into 5 groups of 7 rats each. Group I served as normal control with unrestricted access to food and water. Group II received Cd, Pb, and As (HMM) per oral daily for 60 days while groups III and IV received HMM in addition to Zn and Se respectively for 60 days. Group V received both Zn and Se in addition to HMM for 60 days. Metal accumulation in feces was assayed at days 0, 30, and 60 while accumulation in the kidney and kidney weight were measured at day 60. Kidney function tests, NO, MDA, SOD, catalase, GSH, GPx, NO, IL-6, NF-Κb, TNFα, caspase 3, and histology were assessed. There is a significant increase in urea, creatinine, and bicarbonate ions while potassium ions decreased. There was significant increase in renal function biomarkers, MDA, NO, NF-Κb, TNFα, caspase 3, and IL-6 while SOD, catalase, GSH, and GPx decrease. Administration of HMM distorted the integrity of the rat kidney, and co-treatment with Zn or Se or both offered reasonable protection suggesting that Zn or Se could be used as an antidot against the deleterious effects of these metals.


Subject(s)
Metals, Heavy , Selenium , Rats , Male , Animals , Catalase/metabolism , Caspase 3/metabolism , Selenium/pharmacology , Tumor Necrosis Factor-alpha/metabolism , NF-kappa B/metabolism , Interleukin-6/metabolism , Rats, Wistar , Rats, Sprague-Dawley , Metals, Heavy/metabolism , Kidney/metabolism , Zinc/pharmacology , Zinc/metabolism , Superoxide Dismutase/metabolism , Dietary Supplements , Oxidative Stress , Cadmium/pharmacology
14.
Biol Trace Elem Res ; 202(3): 1140-1149, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37392360

ABSTRACT

Cadmium (Cd)-induced immunotoxicity has become a matter of public health concern owing to its prevalence in the environment consequently, great potential for human exposure. Zinc (Zn) has been known to possess antioxidant, anti-inflammatory, and immune-boosting properties. However, the ameliorating influence of Zn against Cd-induced immunotoxicity connecting the IDO pathway is lacking. Adult male Wistar rats were exposed to normal drinking water with no metal contaminants (group 1), group 2 received drinking water containing 200 µg/L of Cd, group 3 received drinking water containing 200 µg/L of Zn, and group 4 received Cd and Zn as above in drinking water for 42 days. Cd exposure alone significantly triggered the splenic oxidative-inflammatory stress, increased activities of immunosuppressive tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenases (IDO) activities/protein expression, and decreased CD4+ T cell count, and a corresponding increase in the serum kynurenine concentration, as well as alterations in the hematological parameters and histologic structure when compared with the control (p < 0.05). Zn alone did not have any effect relative to the control group while co-exposure significantly (p < 0.05) assuaged the Cd-induced alterations in the studied parameters relative to the control. Cd-induced modifications in IDO 1 protein expression, IDO/TDO activities, oxidative-inflammatory stress, hematological parameters/CD4+ T cell, and histological structure in the spleen of rats within the time course of the investigation were prevented by Zn co-exposure via inhibition of Cd uptake.


Subject(s)
Drinking Water , Zinc , Rats , Male , Humans , Animals , Rats, Wistar , Zinc/pharmacology , Zinc/metabolism , Cadmium/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/pharmacology , Spleen/metabolism , Oxidative Stress , T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes
15.
Biometals ; 37(1): 87-100, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37702876

ABSTRACT

Parsley (Petroselinum crispum) is herb with many biological and medicinal benefits for humans. However, growth on zinc (Zn) and cadmium (Cd) contaminated sites might get severely affected due to over accumulation of heavy metals (HM) in different plant tissues. Antioxidants play a crucial role in minimizing the negative effects of HM. The present study investigates the effects of Zn and Cd stress on P. crispum morphological parameters, enzymatic/non-enzymatic antioxidant profiling and metal accumulation in shoot/root. Plants were exposed to different concentrations of Zn (50, 100, 150 and 200 µM) and Cd (10, 20, 40 and 80 µM) along with control (no stress), in soil-less Hoagland's solution. The results showed that Zn and Cd substantially decrease the growth parameters with increased contents of malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EL). Non-enzymatic antioxidant activities, like total phenolic contents (TPC) and ferric reducing antioxidant power (FRAP), were induced high in leaves only upon Cd stress and contrarily decreased upon Zn stress. Total flavonoid contents (TFC) were decreased under Zn and Cd stress. Enzymatic antioxidant activities like superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were also strongly induced upon Cd stress. At the same time, SOD and guaiacol peroxidase (GPX) activity was induced significantly upon Zn stress. Cd uptake and accumulation was notably high in roots as compared to shoots, which suggests P. crispum have a reduced ability to translocate Cd towards aboveground parts (leaves). Additionally, strong induction of antioxidants by P. crispum under Cd stress might indicate the capacity to effectively re-modulate its physiological response. However, further investigations regarding other HMs and experiments at the molecular level are still needed.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Antioxidants/pharmacology , Cadmium/pharmacology , Petroselinum/metabolism , Zinc/pharmacology , Hydrogen Peroxide , Metals, Heavy/pharmacology , Superoxide Dismutase/metabolism , Plant Roots/metabolism , Oxidative Stress
16.
Biol Trace Elem Res ; 202(4): 1628-1643, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37468716

ABSTRACT

Drinking water polluted by heavy metals has the potential to expose delicate biological systems to a range of health issues. This study embraced the health risks that may arise from subchronic exposure of thirty-four male Wistar rats to nickel (Ni)-cadmium (Cd)-contaminated water. It was done by using the Box-Behnken design (BBD) with three treatment factors (Ni and Cd doses at 50-150 mg/L and exposure at 14-21-28 days) at a single alpha level, resulting in seventeen experimental combinations. Responses such as serum creatinine (CREA) level, blood urea nitrogen (BUN) level, BUN/CREA ratio (BCR), aspartate and alanine aminotransferases (AST and ALT) activities, and the De Ritis ratio (DRR), as well as malondialdehyde (MDA) level, catalase (CAT), and superoxide dismutase (SOD) activities, were evaluated. The results revealed that these pollutants jointly caused hepatocellular damage by raising AST and ALT activities and renal dysfunction by increasing CREA and BUN levels in Wistar rats' sera (p < 0.05). These outcomes were further supported by BCR and DRR values beyond 1. In rats' hepatocytes and renal tissues, synergistic interactions of these metals resulted in higher MDA levels and significant impairments of CAT and SOD activities (p < 0.05). In order to accurately forecast the effects on the responses, the study generated seven acceptable regression models (p < 0.05) with r-squared values of > 80% at no discernible lack of fit (p > 0.05). The findings hereby demonstrated that Wistar rats exposed to these pollutants at varied doses had increased risks of developing liver cirrhosis and azotemia marked by metabolic stress.


Subject(s)
Azotemia , Drinking Water , Environmental Pollutants , Metals, Heavy , Rats , Male , Animals , Cadmium/pharmacology , Rats, Wistar , Nickel/toxicity , Nickel/metabolism , Azotemia/metabolism , Azotemia/pathology , Metals, Heavy/metabolism , Antioxidants/metabolism , Liver Cirrhosis/metabolism , Stress, Physiological , Superoxide Dismutase/metabolism , Environmental Pollutants/metabolism , Oxidative Stress , Liver/metabolism , Kidney/metabolism
17.
Br J Nutr ; 131(6): 956-963, 2024 03 28.
Article in English | MEDLINE | ID: mdl-37905696

ABSTRACT

To explore the relationship between dietary antioxidant quality score (DAQS) and Cd exposure both alone and in combination with osteoporosis and bone mineral density (BMD) among postmenopausal women. In total, 4920 postmenopausal women from the National Health and Nutrition Examination Survey were included in this cross-sectional study. Weighted univariate and multivariate logistic regression analyses to assess the association between DAQS and Cd exposure with femur neck BMD, total femur BMD, osteoporosis among postmenopausal women, respectively, and the coexistence effect of DAQS and Cd exposure. Four hundred and ninety-nine had osteoporosis. DAQS (OR = 0·86, 95 % CI 0·77, 0·97) and high DAQS (OR = 0·60, 95 % CI 0·36, 0·99) were found to be associated with decreased odds of osteoporosis, while Cd exposure (OR = 1·34, 95 % CI 1·04, 1·72) and high Cd exposure (OR = 1·45, 95 % CI 1·02, 2·06) were related to increased odds of osteoporosis. A positive correlation was observed between high DAQS and both total femur BMD and femur neck BMD. Conversely, Cd exposure was found to be negatively correlated with total femur BMD and femur neck BMD. Additionally, taking low-Cd and high-quality DAQS group as reference, the joint effect of Cd exposure and DAQS showed greater increased odds of osteoporosis and decreased total femur BMD and femur neck BMD as Cd level and DAQS combinations worsened. There may be an interaction between Cd exposure and DAQS for femur neck BMD, total femur BMD, and osteoporosis in postmenopausal women.


Subject(s)
Osteoporosis, Postmenopausal , Osteoporosis , Female , Humans , Bone Density , Cadmium/pharmacology , Antioxidants/pharmacology , Nutrition Surveys , Cross-Sectional Studies , Osteoporosis/etiology , Femur Neck , Osteoporosis, Postmenopausal/etiology , Lumbar Vertebrae , Absorptiometry, Photon
18.
Biomolecules ; 13(12)2023 12 07.
Article in English | MEDLINE | ID: mdl-38136629

ABSTRACT

(1) Background: Cadmium (Cd) is a potentially toxic element with a long half-life in the human body (20-40 years). Cytotoxicity mechanisms of Cd include increased levels of oxidative stress and apoptotic signaling, and recent studies have suggested that these aspects of Cd toxicity contribute a role in the pathobiology of non-alcoholic fatty liver disease (NAFLD), a highly prevalent ailment associated with hepatic lipotoxicity and an increased generation of reactive oxygen species (ROS). In this study, Cd toxicity and its interplay with fatty acid (FA)-induced lipotoxicity have been studied in intestinal epithelium and liver cells; the cytoprotective function of melatonin (MLT) has been also evaluated. (2) Methods: human liver cells (HepaRG), primary murine hepatocytes and Caco-2 intestinal epithelial cells were exposed to CdCl2 before and after induction of lipotoxicity with oleic acid (OA) and/or palmitic acid (PA), and in some experiments, FA was combined with MLT (50 nM) treatment. (3) Results: CdCl2 toxicity was associated with ROS induction and reduced cell viability in both the hepatic and intestinal cells. Cd and FA synergized to induce lipid droplet formation and ROS production; the latter was higher for PA compared to OA in liver cells, resulting in a higher reduction in cell viability, especially in HepaRG and primary hepatocytes, whereas CACO-2 cells showed higher resistance to Cd/PA-induced lipotoxicity compared to liver cells. MLT showed significant protection against Cd toxicity either considered alone or combined with FFA-induced lipotoxicity in primary liver cells. (4) Conclusions: Cd and PA combine their pro-oxidant activity to induce lipotoxicity in cellular populations of the gut-liver axis. MLT can be used to lessen the synergistic effect of Cd-PA on cellular ROS formation.


Subject(s)
Melatonin , Non-alcoholic Fatty Liver Disease , Mice , Humans , Animals , Fatty Acids, Nonesterified , Cadmium/pharmacology , Melatonin/pharmacology , Reactive Oxygen Species , Caco-2 Cells , Hepatocytes , Non-alcoholic Fatty Liver Disease/prevention & control , Fatty Acids/pharmacology , Palmitic Acid/pharmacology , Oleic Acid/pharmacology
19.
Protein Sci ; 32(12): e4809, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37853808

ABSTRACT

ß-Lactamases grant resistance to bacteria against ß-lactam antibiotics. The active center of TEM-1 ß-lactamase accommodates a Ser-Xaa-Xaa-Lys motif. TEM-1 ß-lactamase is not a metalloenzyme but it possesses several putative metal ion binding sites. The sites composed of His residue pairs chelate borderline transition metal ions such as Ni(II). In addition, there are many sulfur-containing donor groups that can coordinate soft metal ions such as Hg(II). Cd(II) may bind to both types of the above listed donor groups. No significant change was observed in the circular dichroism spectra of TEM-1 ß-lactamase on increasing the metal ion content of the samples, with the exception of Hg(II) inducing a small change in the secondary structure of the protein. A weak nonspecific binding of Hg(II) was proven by mass spectrometry and 119m Hg perturbed angular correlation spectroscopy. The hydrolytic process of ampicillin catalyzed by TEM-1 ß-lactamase was described by the kinetic analysis of the set of full catalytic progress curves, where the slow, yet observable conversion of the primary reaction product into a second one, identified as ampilloic acid by mass spectrometry, needed also to be considered in the applied model. Ni(II) and Cd(II) slightly promoted the catalytic activity of the enzyme while Hg(II) exerted a noticeable inhibitory effect. Hg(II) and Ni(II), applied at 10 µM concentration, inhibited the growth of E. coli BL21(DE3) in M9 minimal medium in the absence of ampicillin, but addition of the antibiotic could neutralize this toxic effect by complexing the metal ions.


Subject(s)
Cadmium , Mercury , Cadmium/pharmacology , Escherichia coli/metabolism , Hydrolysis , Kinetics , beta-Lactamases/chemistry , Ampicillin/pharmacology , Mercury/pharmacology , Catalysis , Ions
20.
J Glob Antimicrob Resist ; 35: 279-288, 2023 12.
Article in English | MEDLINE | ID: mdl-37879458

ABSTRACT

BACKGROUND: Heavy metals and antimicrobials co-exist in many environmental settings. The co-exposure of heavy metals and antimicrobials can drive emergence of antimicrobial resistant (AMR) Enterobacteriaceae. We hypothesized that co-exposure to heavy metals and a low concentration of antibiotic might alter antimicrobial susceptibility patterns, which facilitate emergence of AMR Staphylococcus aureus. METHODS: The growth kinetics of antimicrobial susceptible S. aureus was carried out in the presence of chromium or cadmium salt and a low concentration of antibiotics. Subsequently, the antimicrobial susceptibility pattern was determined by the Kirby-Bauer disc diffusion method. Moreover, the mRNA copy number was determined by reverse transcription polymerase chain reaction. RESULTS: The antimicrobial susceptibility profile revealed that the zone of inhibition (ZOI) for ampicillin, amoxicillin, ciprofloxacin and doxycycline was significantly decreased in chromium pre-exposed S. aureus compared to unexposed bacteria, whereas cadmium pre-exposed bacteria only showed significant decreased in ZOI for amoxicillin. Moreover, the MIC of amoxicillin for S. aureus was increased by 8-fold in chromium and 32-fold in cadmium when bacteria were co-exposed with low concentrations of amoxicillin. The mRNA expression of femX, mepA and norA also significantly increased in S. aureus after exposure to chromium and a low concentration of amoxicillin. CONCLUSION: Cultivation of S. aureus at the minimum levels of chromium or cadmium and a low concentration of amoxicillin increased the inhibitory concentration of amoxicillin through inducing bacterial efflux pumps and antibiotic resistant genes. However, it is warranted to assess the whole transcriptome to find out all responsible factors behind this de novo amoxicillin resistant S. aureus.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus/genetics , Amoxicillin/pharmacology , Cadmium/pharmacology , Chromium/pharmacology , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/microbiology , Anti-Infective Agents/pharmacology , RNA, Messenger
SELECTION OF CITATIONS
SEARCH DETAIL
...