Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 244
Filter
1.
Sci Rep ; 11(1): 8254, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33859232

ABSTRACT

The human and canine parasitic nematode Strongyloides stercoralis utilizes an XX/XO sex determination system, with parasitic females reproducing by mitotic parthenogenesis and free-living males and females reproducing sexually. However, the genes controlling S. stercoralis sex determination and male development are unknown. We observed precocious development of rhabditiform males in permissive hosts treated with corticosteroids, suggesting that steroid hormones can regulate male development. To examine differences in transcript abundance between free-living adult males and other developmental stages, we utilized RNA-Seq. We found two clusters of S. stercoralis-specific genes encoding predicted transmembrane proteins that are only expressed in free-living males. We additionally identified homologs of several genes important for sex determination in Caenorhabditis species, including mab-3, tra-1, fem-2, and sex-1, which may have similar functions. However, we identified three paralogs of gld-1; Ss-qki-1 transcripts were highly abundant in adult males, while Ss-qki-2 and Ss-qki-3 transcripts were highly abundant in adult females. We also identified paralogs of pumilio domain-containing proteins with sex-specific transcripts. Intriguingly, her-1 appears to have been lost in several parasite lineages, and we were unable to identify homologs of tra-2 outside of Caenorhabditis species. Together, our data suggest that different mechanisms control male development in S. stercoralis and Caenorhabditis species.


Subject(s)
Caenorhabditis/genetics , Genes, Helminth/genetics , Genes, Helminth/physiology , Helminth Proteins/genetics , Helminth Proteins/physiology , Sex Determination Processes/genetics , Strongyloides stercoralis/genetics , Transcription, Genetic , Animals , Caenorhabditis/physiology , Female , Gonadal Steroid Hormones/physiology , Male , Models, Genetic , Strongyloides stercoralis/physiology
2.
Elife ; 102021 01 11.
Article in English | MEDLINE | ID: mdl-33427200

ABSTRACT

Mating systems have profound effects on genetic diversity and compatibility. The convergent evolution of self-fertilization in three Caenorhabditis species provides a powerful lens to examine causes and consequences of mating system transitions. Among the selfers, Caenorhabditis tropicalis is the least genetically diverse and most afflicted by outbreeding depression. We generated a chromosomal-scale genome for C. tropicalis and surveyed global diversity. Population structure is very strong, and islands of extreme divergence punctuate a genomic background that is highly homogeneous around the globe. Outbreeding depression in the laboratory is caused largely by multiple Medea-like elements, genetically consistent with maternal toxin/zygotic antidote systems. Loci with Medea activity harbor novel and duplicated genes, and their activity is modified by mito-nuclear background. Segregating Medea elements dramatically reduce fitness, and simulations show that selfing limits their spread. Frequent selfing in C. tropicalis may therefore be a strategy to avoid Medea-mediated outbreeding depression.


Subject(s)
Biological Evolution , Caenorhabditis/physiology , Self-Fertilization , Animals
3.
J Evol Biol ; 33(12): 1677-1688, 2020 12.
Article in English | MEDLINE | ID: mdl-32945028

ABSTRACT

Sexual dimorphism in life history traits and their trade-offs is widespread among sexually reproducing animals and is strongly influenced by the differences in reproductive strategies between the sexes. We investigated how intrasexual competition influenced specific life history traits, important to fitness and their trade-offs in the outcrossing nematode Caenorhabditis remanei. Here, we altered the strength of sex-specific selection through experimental evolution with increased potential for intrasexual competition by skewing the adult sex ratio towards either females or males (1:10 or 10:1) over 30 generations and subsequently measured the phenotypic response to selection in three traits related to fitness: body size, fecundity and tolerance to heat stress. We observed a greater evolutionary change in females than males for body size and peak fitness, suggesting that females may experience stronger net selection and potentially harbour higher amounts of standing genetic variance compared to males. Our study highlights the importance of investigating direct and indirect effects of intrasexual competition in both sexes in order to capture sex-specific responses and understand the evolution of sexual dimorphism in traits expressed by both sexes.


Subject(s)
Caenorhabditis/physiology , Competitive Behavior , Life History Traits , Selection, Genetic , Sexual Behavior, Animal , Animals , Female , Genetic Fitness , Male , Sex Ratio
4.
Curr Biol ; 30(6): 1023-1031.e4, 2020 03 23.
Article in English | MEDLINE | ID: mdl-32109387

ABSTRACT

The free-living nematode Caenorhabditis elegans is a key laboratory model for metazoan biology. C. elegans has also become a model for parasitic nematodes despite being only distantly related to most parasitic species. All of the ∼65 Caenorhabditis species currently in culture are free-living, with most having been isolated from decaying plant or fungal matter. Caenorhabditis bovis is a particularly unusual species that has been isolated several times from the inflamed ears of Zebu cattle in Eastern Africa, where it is associated with the disease bovine parasitic otitis. C. bovis is therefore of particular interest to researchers interested in the evolution of nematode parasitism. However, as C. bovis is not in laboratory culture, it remains little studied. Here, by sampling livestock markets and slaughterhouses in Western Kenya, we successfully reisolated C. bovis from the ear of adult female Zebu. We sequenced the genome of C. bovis using the Oxford Nanopore MinION platform in a nearby field laboratory and used the data to generate a chromosome-scale draft genome sequence. We exploited this draft genome sequence to reconstruct the phylogenetic relationships of C. bovis to other Caenorhabditis species and reveal the changes in genome size and content that have occurred during its evolution. We also identified expansions in several gene families that have been implicated in parasitism in other nematode species. The high-quality draft genome and our analyses thereof represent a significant advancement in our understanding of this unusual Caenorhabditis species.


Subject(s)
Caenorhabditis/physiology , Genome Size , Genome, Helminth , Host-Parasite Interactions , Animals , Caenorhabditis/classification , Caenorhabditis/genetics , Cattle , Phylogeny
5.
J Gerontol A Biol Sci Med Sci ; 75(5): 843-848, 2020 04 17.
Article in English | MEDLINE | ID: mdl-31761926

ABSTRACT

Dietary restriction (DR) is a well-established intervention to extend lifespan across taxa. Recent studies suggest that DR-driven lifespan extension can be cost-free, calling into question a central tenant of the evolutionary theory of aging. Nevertheless, boosting parental longevity can reduce offspring fitness. Such intergenerational trade-offs are often ignored but can account for the "missing costs" of longevity. Here, we use the nematode Caenorhabditis remanei to test for effects of DR by fasting on fitness of females and their offspring. Females deprived of food for 6 days indeed had increased fecundity, survival, and stress resistance after re-exposure to food compared with their counterparts with constant food access. However, offspring of DR mothers had reduced early and lifetime fecundity, slower growth rate, and smaller body size at sexual maturity. These findings support the direct trade-off between investment in soma and gametes challenging the hypothesis that increased somatic maintenance and impaired reproduction can be decoupled.


Subject(s)
Aging/physiology , Caenorhabditis/physiology , Caloric Restriction , Animals , Body Size , Fasting , Female , Fertility , Longevity , Male , Reproduction
6.
J Evol Biol ; 33(2): 217-224, 2020 02.
Article in English | MEDLINE | ID: mdl-31677316

ABSTRACT

Dispersal often covaries with other traits, and this covariation was shown to have a genetic basis. Here, we wanted to explore to what extent genetic constraints and correlational selection can explain patterns of covariation between dispersal and key life-history traits-lifespan and reproduction. A prediction from the fitness-associated dispersal hypothesis was that lower genetic quality is associated with higher dispersal propensity as driven by the benefits of genetic mixing. We wanted to contrast it with a prediction from a different model that individuals putting more emphasis on current rather than future reproduction disperse more, as they are expected to be more risk-prone and exploratory. However, if dispersal has inherent costs, this will also result in a negative genetic correlation between higher rates of dispersal and some aspects of performance. To explore this issue, we used the dioecious nematode Caenorhabditis remanei and selected for increased and decreased dispersal propensity for 10 generations, followed by five generations of relaxed selection. Dispersal propensity responded to selection, and females from high-dispersal lines dispersed more than females from low-dispersal lines. Females selected for increased dispersal propensity produced fewer offspring and were more likely to die from matricide, which is associated with a low physiological condition in Caenorhabditis nematodes. There was no evidence for differences in age-specific reproductive effort between high- and low-dispersal females. Rather, reproductive output of high-dispersal females was consistently reduced. We argue that our data provide support for the fitness-associated dispersal hypothesis.


Subject(s)
Caenorhabditis/physiology , Models, Biological , Animal Distribution/physiology , Animals , Behavior, Animal/physiology , Caenorhabditis/classification , Female
7.
PLoS Genet ; 15(12): e1008520, 2019 12.
Article in English | MEDLINE | ID: mdl-31841515

ABSTRACT

Although most unicellular organisms reproduce asexually, most multicellular eukaryotes are obligately sexual. This implies that there are strong barriers that prevent the origin or maintenance of asexuality arising from an obligately sexual ancestor. By studying rare asexual animal species we can gain a better understanding of the circumstances that facilitate their evolution from a sexual ancestor. Of the known asexual animal species, many originated by hybridization between two ancestral sexual species. The balance hypothesis predicts that genetic incompatibilities between the divergent genomes in hybrids can modify meiosis and facilitate asexual reproduction, but there are few instances where this has been shown. Here we report that hybridizing two sexual Caenorhabditis nematode species (C. nouraguensis females and C. becei males) alters the normal inheritance of the maternal and paternal genomes during the formation of hybrid zygotes. Most offspring of this interspecies cross die during embryogenesis, exhibiting inheritance of a diploid C. nouraguensis maternal genome and incomplete inheritance of C. becei paternal DNA. However, a small fraction of offspring develop into viable adults that can be either fertile or sterile. Fertile offspring are produced asexually by sperm-dependent parthenogenesis (also called gynogenesis or pseudogamy); these progeny inherit a diploid maternal genome but fail to inherit a paternal genome. Sterile offspring are hybrids that inherit both a diploid maternal genome and a haploid paternal genome. Whole-genome sequencing of individual viable worms shows that diploid maternal inheritance in both fertile and sterile offspring results from an altered meiosis in C. nouraguensis oocytes and the inheritance of two randomly selected homologous chromatids. We hypothesize that hybrid incompatibility between C. nouraguensis and C. becei modifies maternal and paternal genome inheritance and indirectly induces gynogenetic reproduction. This system can be used to dissect the molecular mechanisms by which hybrid incompatibilities can facilitate the emergence of asexual reproduction.


Subject(s)
Caenorhabditis/physiology , Hybridization, Genetic , Reproduction, Asexual , Animals , Caenorhabditis/genetics , Female , Fertility , Male , Maternal Inheritance , Parthenogenesis , Paternal Inheritance , Whole Genome Sequencing
8.
Elife ; 82019 12 11.
Article in English | MEDLINE | ID: mdl-31825311

ABSTRACT

Heat Shock Factor 1 (HSF-1) is a key regulator of the heat shock response (HSR). Upon heat shock, HSF-1 binds well-conserved motifs, called Heat Shock Elements (HSEs), and drives expression of genes important for cellular protection during this stress. Remarkably, we found that substantial numbers of HSEs in multiple Caenorhabditis species reside within Helitrons, a type of DNA transposon. Consistent with Helitron-embedded HSEs being functional, upon heat shock they display increased HSF-1 and RNA polymerase II occupancy and up-regulation of nearby genes in C. elegans. Interestingly, we found that different genes appear to be incorporated into the HSR by species-specific Helitron insertions in C. elegans and C. briggsae and by strain-specific insertions among different wild isolates of C. elegans. Our studies uncover previously unidentified targets of HSF-1 and show that Helitron insertions are responsible for rewiring and diversifying the Caenorhabditis HSR.


Subject(s)
Caenorhabditis/physiology , Caenorhabditis/radiation effects , DNA Transposable Elements , Heat-Shock Response , Response Elements , Animals , Caenorhabditis/genetics , Caenorhabditis elegans Proteins/metabolism , Gene Expression Regulation , Gene Regulatory Networks , Protein Binding , RNA Polymerase II/metabolism , Transcription Factors/metabolism
9.
Genetics ; 213(1): 27-57, 2019 09.
Article in English | MEDLINE | ID: mdl-31488593

ABSTRACT

Males of Caenorhabditis elegans provide a crucial practical tool in the laboratory, but, as the rarer and more finicky sex, have not enjoyed the same depth of research attention as hermaphrodites. Males, however, have attracted the attention of evolutionary biologists who are exploiting the C. elegans system to test longstanding hypotheses about sexual selection, sexual conflict, transitions in reproductive mode, and genome evolution, as well as to make new discoveries about Caenorhabditis organismal biology. Here, we review the evolutionary concepts and data informed by study of males of C. elegans and other Caenorhabditis We give special attention to the important role of sperm cells as a mediator of inter-male competition and male-female conflict that has led to drastic trait divergence across species, despite exceptional phenotypic conservation in many other morphological features. We discuss the evolutionary forces important in the origins of reproductive mode transitions from males being common (gonochorism: females and males) to rare (androdioecy: hermaphrodites and males) and the factors that modulate male frequency in extant androdioecious populations, including the potential influence of selective interference, host-pathogen coevolution, and mutation accumulation. Further, we summarize the consequences of males being common vs rare for adaptation and for trait divergence, trait degradation, and trait dimorphism between the sexes, as well as for molecular evolution of the genome, at both micro-evolutionary and macro-evolutionary timescales. We conclude that C. elegans male biology remains underexploited and that future studies leveraging its extensive experimental resources are poised to discover novel biology and to inform profound questions about animal function and evolution.


Subject(s)
Caenorhabditis/genetics , Evolution, Molecular , Hybridization, Genetic , Mating Preference, Animal , Animals , Caenorhabditis/physiology
10.
Genetics ; 212(3): 801-813, 2019 07.
Article in English | MEDLINE | ID: mdl-31064822

ABSTRACT

Hybrid male progeny from interspecies crosses are more prone to sterility or inviability than hybrid female progeny, and the male sterility and inviability often demonstrate parent-of-origin asymmetry. However, the underlying genetic mechanism of asymmetric sterility or inviability remains elusive. We previously established a genome-wide hybrid incompatibility (HI) landscape between Caenorhabditis briggsae and C. nigoni by phenotyping a large collection of C. nigoni strains each carrying a C. briggsae introgression. In this study, we systematically dissect the genetic mechanism of asymmetric sterility and inviability in both hybrid male and female progeny between the two species. Specifically, we performed reciprocal crosses between C. briggsae and different C. nigoni strains that each carry a GFP-labeled C. briggsae genomic fragment referred to as introgression, and scored the HI phenotypes in the F1 progeny. The aggregated introgressions cover 94.6% of the C. briggsae genome, including 100% of the X chromosome. Surprisingly, we observed that two C. briggsaeX fragments that produce C. nigoni male sterility as an introgression rescued hybrid F1 sterility in males fathered by C. briggsae Subsequent backcrossing analyses indicated that a specific interaction between the X-linked interaction and one autosome introgression is required to rescue the hybrid male sterility. In addition, we identified another two C. briggsae genomic intervals on chromosomes II and IV that can rescue the inviability, but not the sterility, of hybrid F1 males fathered by C. nigoni, suggesting the involvement of differential epistatic interactions in the asymmetric hybrid male fertility and inviability. Importantly, backcrossing of the rescued sterile males with C. nigoni led to the isolation of a 1.1-Mb genomic interval that specifically interacts with an X-linked introgression, which is essential for hybrid male fertility. We further identified three C. briggsae genomic intervals on chromosome I, II, and III that produced inviability in all F1 progeny, dependent on or independent of the parent-of-origin. Taken together, we identified multiple independent interacting loci that are responsible for asymmetric hybrid male and female sterility, and inviability, which lays a foundation for their molecular characterization.


Subject(s)
Caenorhabditis/genetics , Infertility, Male/genetics , X Chromosome/genetics , Animals , Caenorhabditis/physiology , Epistasis, Genetic , Female , Hybridization, Genetic , Male
11.
G3 (Bethesda) ; 9(3): 969-982, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30679247

ABSTRACT

Organisms can cope with stressful environments via a combination of phenotypic plasticity at the individual level and adaptation at the population level. Changes in gene expression can play an important role in both. Significant advances in our understanding of gene regulatory plasticity and evolution have come from comparative studies in the field and laboratory. Experimental evolution provides another powerful path by which to learn about how differential regulation of genes and pathways contributes to both acclimation and adaptation. Here we present results from one such study using the nematode Caenorhabditis remanei We selected one set of lines to withstand heat stress and another oxidative stress. We then compared transcriptional responses to acute heat stress of both and an unselected control to the ancestral population using a weighted gene coexpression network analysis, finding that the transcriptional response is primarily dominated by a plastic response that is shared in the ancestor and all evolved populations. In addition, we identified several modules that respond to artificial selection by (1) changing the baseline level of expression, (2) altering the magnitude of the plastic response, or (3) a combination of the two. Our findings therefore reveal that while patterns of transcriptional response can be perturbed with short bouts of intense selection, the overall ancestral structure of transcriptional plasticity is largely maintained over time.


Subject(s)
Adaptation, Physiological , Caenorhabditis/physiology , Gene Regulatory Networks , Heat-Shock Response , Oxidative Stress , Transcriptome , Animals , Caenorhabditis/genetics , Caenorhabditis/metabolism , Sequence Analysis, RNA
12.
BMC Ecol ; 18(1): 46, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30400870

ABSTRACT

BACKGROUND: Reproductive interference can mediate interference competition between species through sexual interactions that reduce the fitness of one species by another. Theory shows that the positive frequency-dependent effects of such costly errors in mate recognition can dictate species coexistence or exclusion even with countervailing resource competition differences between species. While usually framed in terms of pre-mating or post-zygotic costs, reproductive interference manifests between individual Caenorhabditis nematodes from negative interspecies gametic interactions: sperm cells from interspecies matings can migrate ectopically to induce female sterility and premature death. The potential for reproductive interference to exert population level effects on Caenorhabditis trait evolution and community structure, however, remains unknown. RESULTS: Here we test whether a species that is superior in individual-level reproductive interference (C. nigoni) can exact negative demographic effects on competitor species that are superior in resource competition (C. briggsae and C. elegans). We observe coexistence over six generations and find evidence of demographic reproductive interference even under conditions unfavorable to its influence. C. briggsae and C. elegans show distinct patterns of reproductive interference in competitive interactions with C. nigoni. CONCLUSIONS: These results affirm that individual level negative effects of reproductive interference mediated by gamete interactions can ramify to population demography, with the potential to influence patterns of species coexistence separately from the effects of direct resource competition.


Subject(s)
Biota , Caenorhabditis/physiology , Animals , Caenorhabditis elegans/physiology , Population Dynamics , Population Growth , Reproduction
13.
PLoS One ; 13(8): e0200851, 2018.
Article in English | MEDLINE | ID: mdl-30074986

ABSTRACT

The lifestyle and feeding habits of nematodes are highly diverse. Several species of Pristionchus (Nematoda: Diplogastridae), including Pristionchus pacificus, have been reported to be necromenic, i.e. to associate with beetles in their dauer diapause stage and wait until the death of their host to resume development and feed on microbes in the decomposing beetle corpse. We review the literature and suggest that the association of Pristionchus to beetles may be phoretic and not necessarily necromenic. The view that Pristionchus nematodes have a necromenic lifestyle is based on studies that have sought Pristionchus only by sampling live beetles. By surveying for nematode genera in different types of rotting vegetal matter, we found Pristionchus spp. at a similar high frequency as Caenorhabditis, often in large numbers and in feeding stages. Thus, these Pristionchus species may feed in decomposing vegetal matter. In addition, we report that one species of Panagrellus (Nematoda: Panagrolaimidae), Panagrellus redivivoides, is found in rotting fruits but not in rotting stems, with a likely association with Drosophila fruitflies. Based on our sampling and the observed distribution of feeding and dauer stages, we propose a life cycle for Pristionchus nematodes and Panagrellus redivivoides that is similar to that of C. elegans, whereby they feed on the microbial blooms on decomposing vegetal matter and are transported between food patches by coleopterans for Pristionchus spp., fruitflies for Panagrellus redivivoides and isopods and terrestrial molluscs for C. elegans.


Subject(s)
Rhabditida/physiology , Animals , Caenorhabditis/physiology , Coleoptera/parasitology , DNA, Helminth/genetics , Feeding Behavior/physiology , Female , Fruit/parasitology , Host-Parasite Interactions , Life Cycle Stages , Male , Rhabditida/genetics , Rhabditida/pathogenicity , Species Specificity
14.
BMC Ecol ; 18(1): 26, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30129423

ABSTRACT

BACKGROUND: Biotic interactions are ubiquitous and require information from ecology, evolutionary biology, and functional genetics in order to be understood. However, study systems that are amenable to investigations across such disparate fields are rare. Figs and fig wasps are a classic system for ecology and evolutionary biology with poor functional genetics; Caenorhabditis elegans is a classic system for functional genetics with poor ecology. In order to help bridge these disciplines, here we describe the natural history of a close relative of C. elegans, Caenorhabditis inopinata, that is associated with the fig Ficus septica and its pollinating Ceratosolen wasps. RESULTS: To understand the natural context of fig-associated Caenorhabditis, fresh F. septica figs from four Okinawan islands were sampled, dissected, and observed under microscopy. C. inopinata was found in all islands where F. septica figs were found. C.i nopinata was routinely found in the fig interior and almost never observed on the outside surface. C. inopinata was only found in pollinated figs, and C. inopinata was more likely to be observed in figs with more foundress pollinating wasps. Actively reproducing C. inopinata dominated early phase figs, whereas late phase figs with emerging wasp progeny harbored C. inopinata dauer larvae. Additionally, C. inopinata was observed dismounting from Ceratosolen pollinating wasps that were placed on agar plates. C. inopinata was not found on non-pollinating, parasitic Philotrypesis wasps. Finally, C. inopinata was only observed in F. septica figs among five Okinawan Ficus species sampled. CONCLUSION: These are the first detailed field observations of C. inopinata, and they suggest a natural history where this species proliferates in early phase F. septica figs and disperses from late phase figs on Ceratosolen pollinating fig wasps. While consistent with other examples of nematode diversification in the fig microcosm, the fig and wasp host specificity of C. inopinata is highly divergent from the life histories of its close relatives and frames hypotheses for future investigations. This natural co-occurrence of the fig/fig wasp and C. inopinata study systems sets the stage for an integrated research program that can help to explain the evolution of interspecific interactions.


Subject(s)
Animal Distribution , Caenorhabditis/physiology , Ficus/physiology , Pollination , Symbiosis , Wasps/physiology , Animals , Fruit/physiology , Japan
15.
BMC Ecol ; 17(1): 43, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29258487

ABSTRACT

BACKGROUND: The drivers of species co-existence in local communities are especially enigmatic for assemblages of morphologically cryptic species. Here we characterize the colonization dynamics and abundance of nine species of Caenorhabditis nematodes in neotropical French Guiana, the most speciose known assemblage of this genus, with resource use overlap and notoriously similar external morphology despite deep genomic divergence. METHODS: To characterize the dynamics and specificity of colonization and exploitation of ephemeral resource patches, we conducted manipulative field experiments and the largest sampling effort to date for Caenorhabditis outside of Europe. This effort provides the first in-depth quantitative analysis of substrate specificity for Caenorhabditis in natural, unperturbed habitats. RESULTS: We amassed a total of 626 strain isolates from nine species of Caenorhabditis among 2865 substrate samples. With the two new species described here (C. astrocarya and C. dolens), we estimate that our sampling procedures will discover few additional species of these microbivorous animals in this tropical rainforest system. We demonstrate experimentally that the two most prevalent species (C. nouraguensis and C. tropicalis) rapidly colonize fresh resource patches, whereas at least one rarer species shows specialist micro-habitat fidelity. CONCLUSION: Despite the potential to colonize rapidly, these ephemeral patchy resources of rotting fruits and flowers are likely to often remain uncolonized by Caenorhabditis prior to their complete decay, implying dispersal-limited resource exploitation. We hypothesize that a combination of rapid colonization, high ephemerality of resource patches, and species heterogeneity in degree of specialization on micro-habitats and life histories enables a dynamic co-existence of so many morphologically cryptic species of Caenorhabditis.


Subject(s)
Animal Distribution , Caenorhabditis/physiology , Ecosystem , Animals , Biota , French Guiana , Population Density
16.
Elife ; 62017 03 14.
Article in English | MEDLINE | ID: mdl-28290982

ABSTRACT

Differences in longevity between sexes is a mysterious yet general phenomenon across great evolutionary distances. To test the roles of responses to environmental cues and sexual behaviors in longevity regulation, we examined Caenorhabditis male lifespan under solitary, grouped, and mated conditions. We find that neurons and the germline are required for male pheromone-dependent male death. Hermaphrodites with a masculinized nervous system secrete male pheromone and are susceptible to male pheromone killing. Male pheromone-mediated killing is unique to androdioecious Caenorhabditis, and may reduce the number of males in hermaphroditic populations; neither males nor females of gonochoristic species are susceptible to male pheromone killing. By contrast, mating-induced death, which is characterized by germline-dependent shrinking, glycogen loss, and ectopic vitellogenin expression, utilizes distinct molecular pathways and is shared between the sexes and across species. The study of sex- and species-specific regulation of aging reveals deeply conserved mechanisms of longevity and population structure regulation.


Subject(s)
Caenorhabditis/physiology , Longevity , Pheromones/metabolism , Sexual Behavior, Animal , Animals , Male
17.
J Therm Biol ; 62(Pt A): 37-49, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27839548

ABSTRACT

Cholinergic system plays important role in all functions of organisms of free-living soil nematodes C. elegans and C. briggsae. Using pharmacological analysis we showed the existence of two opposite responses of nematodes cholinergic system to moderate and extreme heat stress. Short-term (15min) noxious heat (31-32°C) caused activation of cholinergic synaptic transmission in C. elegans and C. briggsae organisms by sensitization of nicotinic ACh receptors. In contrast, hyperthermia blocked cholinergic synaptic transmission by inhibition of ACh secretion by neurons. The resistance of behavior to extreme high temperature (36-37°C) was significantly higher in C. briggsae than in C. elegans, and thermostability of cholinergic transmission correlated with resistance of behavior to hyperthermia. Activation of cholinergic transmission by moderate heat stress can be the reason of movement speed increase in such adaptive behavior as noxious heat escape. Inhibition of ACh release is one of reasons for behavior failure caused by extreme high temperature since partial inhibition of ACh-esterase by aldicarb protected C. elegans and C. briggsae behavior against hyperthermia. Antagonist of mAChRs atropine almost completely prevented the rise in behavior thermotolerance caused by aldicarb. Pilocarpine, agonist of mAChRs, protected nematodes behavior against hyperthermia similarly with aldicarb. Therefore it is evident that it is the deficiency of mAChRs activity that is the reason for nematodes' behavior failure by hyperthermia.


Subject(s)
Behavior, Animal/drug effects , Caenorhabditis/physiology , Fever/physiopathology , Heat-Shock Response , Receptors, Nicotinic/physiology , Acetylcholine/metabolism , Aldicarb/administration & dosage , Animals , Caenorhabditis elegans/physiology , Cholinesterase Inhibitors/administration & dosage , Levamisole/administration & dosage , Nicotine/administration & dosage , Nicotinic Agonists/administration & dosage , Swimming , Synaptic Transmission/drug effects
18.
Sci Rep ; 6: 35862, 2016 10 24.
Article in English | MEDLINE | ID: mdl-27775015

ABSTRACT

Small animals such as the roundworm C. elegans are excellent models for studying bacterial infection and host response, as well as for genetic and chemical screens. A key methodology is the killing assay, in which the number of surviving animals is tracked as a function of the time post infection. This is a labor-intensive procedure, prone to human error and subjective choices, and often involves undesired perturbation to the animals and their environment. In addition, the survival of animals is just one aspect of a multi-dimensional complex biological process. Here we report a microfluidic-based approach for performing killing assays in worms, compatible with standard assays performed on solid media. In addition to providing accurate and reproducible survival curves at a considerably reduced labor, this approach allows acquisition of a multitude of quantitative data with minimal undesired perturbations. These measurements are obtained automatically at a worm-by-worm resolution using a custom image processing workflow. The proposed approach is simple, scalable, and extendable, and is significantly more economical than standard manual protocols.


Subject(s)
Caenorhabditis/physiology , Lab-On-A-Chip Devices , Mass Screening/methods , Parasitology/methods , Animals , Mass Screening/instrumentation , Parasitology/instrumentation , Survival Analysis
19.
Evolution ; 70(7): 1667-73, 2016 07.
Article in English | MEDLINE | ID: mdl-27271732

ABSTRACT

Prezygotic reproductive isolation can evolve quickly when sexual selection drives divergence in traits important for sexual interactions between populations. It has been hypothesized that standing variation for male/female traits and preferences facilitates this rapid evolution and that variation in these traits is maintained by male-female genotype interactions in which specific female genotypes prefer specific male traits. This hypothesis can also explain patterns of speciation when ecological divergence is lacking, but this remains untested because it requires information about sexual interactions in ancestral lineages. Using a set of ancestral genotypes that previously had been identified as evolving reproductive isolation, we specifically asked whether there is segregating variation in female preference and whether segregating variation in sexual interactions is a product of male-female genotype interactions. Our results provide evidence for segregating variation in female preference and further that male-female genotype interactions are important for maintaining variation that selection can act on and that can lead to reproductive isolation.


Subject(s)
Caenorhabditis/physiology , Genotype , Mating Preference, Animal , Phenotype , Reproductive Isolation , Animals , Biological Evolution , Caenorhabditis/genetics , Computer Simulation , Female , Male
20.
BMC Evol Biol ; 16: 36, 2016 Feb 09.
Article in English | MEDLINE | ID: mdl-26860745

ABSTRACT

BACKGROUND: Inbreeding increases homozygosity and exposes deleterious recessive alleles, generally decreasing the fitness of inbred individuals. Interestingly, males and females are usually affected differently by inbreeding, though the more vulnerable sex depends on the species and trait measured. RESULTS: We used the soil-dwelling nematode Caenorhabditis remanei to examine sex-specific inbreeding depression across nine lineages, five levels of inbreeding, and hundreds of thousands of progeny. Female nematodes consistently suffered greater fitness losses than their male counterparts, especially at high levels of inbreeding. CONCLUSIONS: These results suggest that females experience stronger selection on genes contributing to reproductive traits. Inbreeding depression in males may be further reduced by sex chromosome hemizygosity, which affects the dominance of some mutations, as well as by the absence of sexual selection. Determining the relative contributions of sex-specific expression, genes on the sex chromosomes, and the environment they are filtered through-including opportunities for sexual selection-may explain the frequent though inconsistent records of sex differences in inbreeding depression, along with their implications for conservation and the evolution of mating systems.


Subject(s)
Caenorhabditis/genetics , Inbreeding , Sex Characteristics , Animals , Biological Evolution , Caenorhabditis/physiology , Female , Homozygote , Male , Mating Preference, Animal , Mutation , Reproduction/genetics , Reproduction/physiology , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...