Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.080
Filter
1.
Nutrients ; 16(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38794677

ABSTRACT

Resveratrol and caffeic acid are some of the most consumed antioxidants during the day, so their importance as sources and their benefits need to be evaluated and updated. This survey aimed not only to analyze whether young Romanian consumers are informed about the benefits of antioxidants in general, and resveratrol and caffeic acid in particular, but also to observe the degree of nutritional education of these participants. Young consumers know the concept of antioxidants relatively well; they managed to give examples of antioxidants and indicate their effects. The majority of those chosen drink wine and coffee, but many are unaware of their health advantages and antioxidant properties. Students are less familiar with the antioxidant chemicals resveratrol and caffeic acid. It is advised to have a thorough understanding of these significant antioxidants and their nutritional content as they are present in our regular diets, and further studies on different kinds of antioxidants are required to increase the awareness of people concerning their importance in daily life.


Subject(s)
Antioxidants , Caffeic Acids , Coffee , Health Knowledge, Attitudes, Practice , Resveratrol , Humans , Antioxidants/administration & dosage , Antioxidants/pharmacology , Resveratrol/pharmacology , Resveratrol/administration & dosage , Caffeic Acids/pharmacology , Female , Male , Young Adult , Adult , Coffee/chemistry , Romania , Adolescent , Wine/analysis , Surveys and Questionnaires , Nutritive Value
2.
Ren Fail ; 46(1): 2350235, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38721924

ABSTRACT

Increasing evidence suggests that peritoneal fibrosis induced by peritoneal dialysis (PD) is linked to oxidative stress. However, there are currently no effective interventions for peritoneal fibrosis. In the present study, we explored whether adding caffeic acid phenethyl ester (CAPE) to peritoneal dialysis fluid (PDF) improved peritoneal fibrosis caused by PD and explored the molecular mechanism. We established a peritoneal fibrosis model in Sprague-Dawley rats through intraperitoneal injection of PDF and lipopolysaccharide (LPS). Rats in the PD group showed increased peritoneal thickness, submesothelial collagen deposition, and the expression of TGFß1 and α-SMA. Adding CAPE to PDF significantly inhibited PD-induced submesothelial thickening, reduced TGFß1 and α-SMA expression, alleviated peritoneal fibrosis, and improved the peritoneal ultrafiltration function. In vitro, peritoneal mesothelial cells (PMCs) treated with PDF showed inhibition of the AMPK/SIRT1 pathway, mitochondrial membrane potential depolarization, overproduction of mitochondrial reactive oxygen species (ROS), decreased ATP synthesis, and induction of mesothelial-mesenchymal transition (MMT). CAPE activated the AMPK/SIRT1 pathway, thereby inhibiting mitochondrial membrane potential depolarization, reducing mitochondrial ROS generation, and maintaining ATP synthesis. However, the beneficial effects of CAPE were counteracted by an AMPK inhibitor and siSIRT1. Our results suggest that CAPE maintains mitochondrial homeostasis by upregulating the AMPK/SIRT1 pathway, which alleviates oxidative stress and MMT, thereby mitigating the damage to the peritoneal structure and function caused by PD. These findings suggest that adding CAPE to PDF may prevent and treat peritoneal fibrosis.


Subject(s)
AMP-Activated Protein Kinases , Caffeic Acids , Peritoneal Dialysis , Peritoneal Fibrosis , Phenylethyl Alcohol , Rats, Sprague-Dawley , Sirtuin 1 , Animals , Peritoneal Fibrosis/etiology , Peritoneal Fibrosis/metabolism , Peritoneal Fibrosis/prevention & control , Sirtuin 1/metabolism , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacology , Caffeic Acids/pharmacology , Caffeic Acids/therapeutic use , Rats , Male , AMP-Activated Protein Kinases/metabolism , Peritoneal Dialysis/adverse effects , Mitochondria/drug effects , Mitochondria/metabolism , Disease Models, Animal , Signal Transduction/drug effects , Peritoneum/pathology , Peritoneum/drug effects , Peritoneum/metabolism , Homeostasis/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Transforming Growth Factor beta1/metabolism , Membrane Potential, Mitochondrial/drug effects , Dialysis Solutions
3.
Sci Rep ; 14(1): 11931, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789509

ABSTRACT

Oxidative stress induced endothelial dysfunction plays a particularly important role in promoting the development of cardiovascular diseases (CVDs). Salvianolic acid A (SalA) is a water-soluble component of traditional Chinese medicine Salvia miltiorrhiza Bunge with anti-oxidant potency. This study aims to explore the regulatory effect of SalA on oxidative injury using an in vitro model of H2O2-induced injury in human umbilical vein endothelial cells (HUVECs). In the study, we determined cell viability, the activities of Lactate dehydrogenase (LDH) and Superoxide dismutase (SOD), cell proliferation rate and intracellular reactive oxygen species (ROS). Flow cytometry was used to detect cell apoptosis. Western-blotting was used to evaluate the expression of cell senescence, apoptosis, autophagy and pyroptosis protein factors. The expression level of miRNA was determined by qRT-PCR. Compared with H2O2-induced HUVECs, SalA promoted cell viability and cell proliferation rate; decreased LDH and ROS levels; and increased SOD activity. SalA also significantly attenuated endothelial senescence, inhibited cell apoptosis, reversed the increase of LC3 II/I ratio and NLRP3 accumulation. Furthermore, miR-204-5p was regulated by SalA. Importantly, miR-204-5p inhibitor had similar effect to that of SalA on H2O2-induced HUVECs. Our results indicated that SalA could alleviate H2O2-induced oxidative injury by downregulating miR-204-5p in HUVECs.


Subject(s)
Apoptosis , Cell Survival , Human Umbilical Vein Endothelial Cells , Hydrogen Peroxide , Lactates , MicroRNAs , Oxidative Stress , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Hydrogen Peroxide/toxicity , Hydrogen Peroxide/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Oxidative Stress/drug effects , Lactates/pharmacology , Lactates/metabolism , Apoptosis/drug effects , Cell Survival/drug effects , Caffeic Acids/pharmacology , Cell Proliferation/drug effects , Reactive Oxygen Species/metabolism , Autophagy/drug effects , Cellular Senescence/drug effects , Antioxidants/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124403, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38710138

ABSTRACT

In order to make novel breakthroughs in molecular salt studies of BCS class-IV antifungal medication bifonazole (BIF), a salification-driven strategy towards ameliorating attributes and aiding augment efficiency is raised. This strategy fully harnesses structural characters together attributes and benefits of caffeic acid (CAF) to concurrently enhance dissolvability and permeability of BIF by introducing the two ingredients into the identical molecular salt lattice through the salification reaction, which, coupled with the aroused potential activity of CAF significantly amplifies the antifungal efficacy of BIF. Guided by this route, the first BIF-organic molecular salt, BIF-CAF, is directionally designed and synthesized with satisfactorily structural characterizations and integrated theoretical and experimental explorations on the pharmaceutical properties. Single-crystal X-ray diffraction resolving confirms that there is a lipid-water amphiphilic sandwich structure constructed by robust charge-assistant hydrogen bonds in the salt crystal, endowing the molecular salt with the potential to enhance both dissolvability and permeability relative to the parent drug, which is validated by experimental evaluations. Remarkably, the comprehensive DFT-based theoretical investigations covering frontier molecular orbital, molecular electrostatic potential, Hirshfeld surface analysis, reduced density gradient, topology, sphericity and planarity analysis strongly support these observations, thereby allowing some positive relationships between macroscopic properties and microstructures of the molecular salt can be made. Intriguingly, the optimal properties, together with the stimulated activity of CAF markedly augment in vitro antifungal ability of the molecular salt, with magnifying inhibition zones and reducing minimum inhibitory concentrations. These findings fill in the gaps on researches of BIF-organic molecular salt, and adequately exemplify the feasibility and validity by integrating theoretical and experimental approaches to resolve BIF's problems via the salification-driven tactic.


Subject(s)
Antifungal Agents , Caffeic Acids , Imidazoles , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Imidazoles/chemistry , Imidazoles/pharmacology , Caffeic Acids/chemistry , Caffeic Acids/pharmacology , Salts/chemistry , Quantum Theory , Models, Molecular , Microbial Sensitivity Tests , Crystallography, X-Ray , Hydrogen Bonding , Static Electricity
5.
ACS Appl Mater Interfaces ; 16(19): 24351-24371, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38690969

ABSTRACT

Chronic nonhealing wounds are serious complications of diabetes with a high morbidity, and they can lead to disability or death. Conventional drug therapy is ineffective for diabetic wound healing because of the complex environment of diabetic wounds and the depth of drug penetration. Here, we developed a self-healing, dual-layer, drug-carrying microneedle (SDDMN) for diabetic wound healing. This SDDMN can realize transdermal drug delivery and broad-spectrum sterilization without drug resistance and meets the multiple needs of the diabetic wound healing process. Quaternary ammonium chitosan cografted with dihydrocaffeic acid (Da) and l-arginine and oxidized hyaluronic acid-dopamine are the main parts of the self-healing hydrogel patch. Methacrylated poly(vinyl alcohol) (methacrylated PVA) and phenylboronic acid (PBA) were used as the main part of the MN, and gallium porphyrin modified with 3-amino-1,2 propanediol (POGa) and insulin were encapsulated at its tip. Under hyperglycaemic conditions, the PBA moiety in the MN reversibly formed a glucose-boronic acid complex that promoted the rapid release of POGa and insulin. POGa is disguised as hemoglobin through a Trojan-horse strategy, which is then taken up by bacteria, allowing it to target bacteria and infected lesions. Based on the synergistic properties of these components, SDDMN-POGa patches exhibited an excellent biocompatibility, slow drug release, and antimicrobial properties. Thus, these patches provide a potential therapeutic approach for the treatment of diabetic wounds.


Subject(s)
Boronic Acids , Diabetes Mellitus, Experimental , Glucose , Wound Healing , Wound Healing/drug effects , Animals , Boronic Acids/chemistry , Glucose/metabolism , Diabetes Mellitus, Experimental/drug therapy , Needles , Insulin/administration & dosage , Mice , Chitosan/chemistry , Polyvinyl Alcohol/chemistry , Rats , Hyaluronic Acid/chemistry , Male , Caffeic Acids/chemistry , Caffeic Acids/pharmacology , Drug Delivery Systems , Rats, Sprague-Dawley , Humans , Hydrogels/chemistry
6.
Sci Rep ; 14(1): 12427, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816543

ABSTRACT

Intracerebral hemorrhage (ICH) is a common cerebral vascular disease with high incidence, disability, and mortality. Ferroptosis is a regulated type of iron-dependent, non-apoptotic programmed cell death. There is increasing evidence that ferroptosis may lead to neuronal damage mediated by hemorrhagic stroke mediated neuronal damage. Salvianolic acid A (SAA) is a natural bioactive polyphenol compound extracted from salvia miltiorrhiza, which has anti-inflammatory, antioxidant, and antifibrosis activities. SAA is reported to be an iron chelator that inhibits lipid peroxidation and provides neuroprotective effects. However, whether SAA improves neuronal ferroptosis mediated by hemorrhagic stroke remains unclear. The study aims to evaluate the therapeutic effect of SAA on Ferroptosis mediated by Intracerebral hemorrhage and explore its potential mechanisms. We constructed in vivo and in vitro models of intracerebral hemorrhage in rats. Multiple methods were used to analyze the inhibitory effect of SAA on ferroptosis in both in vivo and in vitro models of intracerebral hemorrhage in rats. Then, network pharmacology is used to identify potential targets and mechanisms for SAA treatment of ICH. The SAA target ICH network combines SAA and ICH targets with protein-protein interactions (PPIs). Find the specific mechanism of SAA acting on ferroptosis through molecular docking and functional enrichment analysis. In rats, SAA (10 mg/kg in vivo and 50 µM in vitro, p < 0.05) alleviated dyskinesia and brain injury in the ICH model by inhibiting ferroptosis (p < 0.05). The molecular docking results and functional enrichment analyses suggested that AKT (V-akt murine thymoma viral oncogene homolog) could mediate the effect of SAA. NRF2 (Nuclear factor erythroid 2-related factor 2) was a potential target of SAA. Our further experiments showed that salvianolic acid A enhanced the Akt /GSK-3ß/Nrf2 signaling pathway activation in vivo and in vitro. At the same time, SAA significantly expanded the expression of GPX4, XCT proteins, and the nuclear expression of Nrf2, while the AKT inhibitor SH-6 and the Nrf2 inhibitor ML385 could reduce them to some extent. Therefore, SAA effectively ameliorated ICH-mediated neuronal ferroptosis. Meanwhile, one of the critical mechanisms of SAA inhibiting ferroptosis was activating the Akt/GSK-3ß/Nrf2 signaling pathway.


Subject(s)
Caffeic Acids , Cerebral Hemorrhage , Ferroptosis , Lactates , Neuroprotective Agents , Animals , Ferroptosis/drug effects , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/metabolism , Caffeic Acids/pharmacology , Caffeic Acids/chemistry , Rats , Lactates/pharmacology , Lactates/chemistry , Lactates/therapeutic use , Male , Neuroprotective Agents/pharmacology , Rats, Sprague-Dawley , NF-E2-Related Factor 2/metabolism , Molecular Docking Simulation , Disease Models, Animal , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism
7.
Anticancer Res ; 44(6): 2587-2595, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821580

ABSTRACT

BACKGROUND/AIM: Apoptosis resistance in cancer cells adapted to acidic microenvironments poses a challenge for effective treatment. This study investigated the potential use of caffeic acid as an adjunct therapy to overcome drug resistance in colorectal cancer cells under acidic conditions. MATERIALS AND METHODS: Long-term exposure to low-pH conditions induced resistance in HCT116 colorectal cancer cells. The effects of caffeic acid on proliferation, clonogenicity, and apoptosis induction were assessed alone and in combination with oxaliplatin and 5-Fluorouracil. The signaling pathways involved in drug resistance were examined by assessing the activities of PI3K/Akt and ERK1/2. RESULTS: Caffeic acid inhibited the proliferation and clonogenicity of acid-adapted cancer cells, and enhanced apoptosis when combined with anticancer drugs. Mechanistically, caffeic acid attenuated the hyperactivation of the PI3K/Akt and ERK1/2 signaling pathways associated with drug resistance. CONCLUSION: Caffeic acid is a promising therapeutic agent for targeting resistant cancer cells in acidic microenvironments. Its ability to inhibit proliferation, sensitize cells to apoptosis, and modulate signaling pathways highlights its potential for overcoming drug resistance in cancer therapy.


Subject(s)
Apoptosis , Caffeic Acids , Cell Proliferation , Colonic Neoplasms , Drug Resistance, Neoplasm , Fluorouracil , Humans , Caffeic Acids/pharmacology , Apoptosis/drug effects , HCT116 Cells , Cell Proliferation/drug effects , Fluorouracil/pharmacology , Drug Resistance, Neoplasm/drug effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Antineoplastic Agents/pharmacology , Oxaliplatin/pharmacology , Signal Transduction/drug effects , Hydrogen-Ion Concentration , Drug Synergism , Phosphatidylinositol 3-Kinases/metabolism , Organoplatinum Compounds/pharmacology , Tumor Microenvironment/drug effects
8.
Anticancer Res ; 44(6): 2407-2415, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821617

ABSTRACT

BACKGROUND/AIM: Caffeic acid phenethyl ester (CAPE) exerts anticancer effects against several cancer types, including breast cancer. Pulsed electromagnetic field (PEMF) improves the efficiency of some chemotherapeutic drugs. In this study, we examined the effects of PEMF stimulation on the anticancer activity of CAPE in MCF-7 breast cancer cells and the underlying signal transduction pathways. MATERIALS AND METHODS: MCF-7 cells were seeded and incubated for 24 h. Each of the drugs (5-fluorouracil, paclitaxel, gefitinib, or CAPE) was added to the cells on day 0. Then, cells were immediately stimulated with a 60-min PEMF session thrice a day (with 4-h interval between sessions) for 1-3 days. Cell death and viability were assessed by flow cytometry and trypan blue dye exclusion assay. Molecular mechanisms involved in cell death were confirmed by western blot assay. RESULTS: Compared with treatment with CAPE alone, co-treatment with CAPE and PEMF more strongly reduced the viability of MCF-7 cells, further increased the percentage of the sub-G1 population, poly (ADP-ribose) polymerase (PARP) cleavage, activation of apoptotic caspases, up-regulation of pro-apoptotic proteins, such as Fas cell surface death receptor (FAS) and BCL2 associated X, apoptosis regulator (BAX), and reduced the expression of anti-apoptotic proteins, such as BCL-2 apoptosis regulator (BCL-2), MCL-1 apoptosis regulator, BCL-2 family member (MCL-1), and survivin. PEMF stimulation also increased CAPE-induced phosphorylation of p53, and inhibition of p53 partially restored the PEMF-reduced viability of CAPE-treated MCF-7 cells. CONCLUSION: PEMF stimulation enhanced CAPE-induced cell death by activating p53, which regulates the expression of apoptosis-related molecules, subsequently activating the caspase-dependent apoptotic pathway in MCF-7 cells, suggesting that PEMF can be utilized as an adjuvant to enhance the effect of CAPE on breast cancer cells.


Subject(s)
Apoptosis , Breast Neoplasms , Caffeic Acids , Electromagnetic Fields , Phenylethyl Alcohol , Humans , Caffeic Acids/pharmacology , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacology , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , MCF-7 Cells , Female , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , Signal Transduction/drug effects
9.
Int J Pharm ; 658: 124199, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38703928

ABSTRACT

Dendrimers have emerged as an important group of nanoparticles to transport drugs, DNA, or RNA into target cells in cancer and other diseases. Various functional modifications can be imposed on dendrimers to increase the efficacy and specificity in delivering their cargo to the target cells and decrease their toxicity. In the present work, we evaluated the potential of carbosilane polyphenolic dendrimers modified with caffeic acid (CA) and polyethylene glycol (PEG) to deliver proapoptotic Mcl-1 and Bcl-2 siRNAs to A549 cancer cells. Dendrimers formed stable complexes with siRNAs as assessed by transmission electron microscopy and gel electrophoresis. Modification of dendrimers with PEG reduced the size and the zeta potential of dendrimer/siRNA complexes. The presence of PEG caused a red shift of the CD spectrum, and this effect was the more pronounced, the higher the dendrimer/siRNA ratio was. The nanocomplexes were internalized by A549. All studied dendrimer/siRNA formulations inhibited tumor cell migration and adhesion and caused an increase in the population of early apoptotic cells. Among four tested dendrimers, the polyphenolic compound containing two caffeic acid moieties complexed with siRNA demonstrated the lowest polydispersity index and showed an excellent transfection profile. In conclusion, this dendrimer are a promising candidate for the delivery of siRNA into cancer cells in further in vivo studies.


Subject(s)
Apoptosis , Dendrimers , Polyethylene Glycols , Polyphenols , RNA, Small Interfering , Humans , Dendrimers/chemistry , Dendrimers/administration & dosage , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/chemistry , A549 Cells , Apoptosis/drug effects , Polyphenols/chemistry , Polyphenols/pharmacology , Polyphenols/administration & dosage , Polyethylene Glycols/chemistry , Proto-Oncogene Proteins c-bcl-2/genetics , Caffeic Acids/chemistry , Caffeic Acids/pharmacology , Caffeic Acids/administration & dosage , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Cell Movement/drug effects , Drug Carriers/chemistry , Silanes/chemistry , Transfection/methods , Cell Line, Tumor
10.
Int Immunopharmacol ; 132: 111971, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38565040

ABSTRACT

DNA damage resulting from UV irradiation on the skin has been extensively documented in numerous studies. In our prior investigations, we demonstrated that UVB-induced DNA breakage from keratinocytes can activate the cGAS-STING pathway in macrophages. The cGAS-STING signaling pathway serves as the principal effector for detecting and responding to abnormal double-stranded DNA in the cytoplasm. Expanding on our previous findings, we have further validated that STING knockout significantly diminishes UVB-induced skin damage, emphasizing the critical role of cGAS-STING activation in this context. Salvianolic acid A, a principal active constituent of Salvia miltiorrhiza Burge, has been extensively studied for its therapeutic effects in conditions such as coronary heart disease, angina pectoris, and diabetic peripheral neuropathy. However, its effect on cGAS-STING pathway and its ability to alleviate skin damage have not been previously reported. In a co-culture system, supernatant from UVB-treated keratinocytes induced IRF3 activation in macrophages, and this activation was inhibited by salvianolic acid A. Our investigation, employing photodamage and photoaging models, establishes that salvianolic acid A effectively mitigates UV-induced epidermal thickening and collagen degeneration. Treatment with salvianolic acid A significantly reduced skin damage, epidermal thickness increase, and keratinocyte hyperproliferation compared to the untreated photo-damage and photoaging model groups. In summary, salvianolic acid A emerges as a promising candidate for preventing UV-induced skin damage by inhibiting cGAS-STING activation. This research enhances our understanding of the intricate mechanisms underlying skin photodamage and provides a potential avenue for the development of therapeutic interventions.


Subject(s)
Caffeic Acids , Keratinocytes , Lactates , Membrane Proteins , Nucleotidyltransferases , Signal Transduction , Skin , Ultraviolet Rays , Ultraviolet Rays/adverse effects , Membrane Proteins/metabolism , Membrane Proteins/genetics , Animals , Signal Transduction/drug effects , Keratinocytes/drug effects , Keratinocytes/radiation effects , Skin/drug effects , Skin/pathology , Skin/radiation effects , Nucleotidyltransferases/metabolism , Caffeic Acids/pharmacology , Humans , Mice , Macrophages/drug effects , Macrophages/immunology , Mice, Inbred C57BL , Skin Aging/drug effects , Skin Aging/radiation effects , DNA Damage/drug effects , Interferon Regulatory Factor-3/metabolism , Female , RAW 264.7 Cells
11.
Int J Biol Macromol ; 268(Pt 2): 131683, 2024 May.
Article in English | MEDLINE | ID: mdl-38649076

ABSTRACT

Polyphenols and dietary fibers in whole grains are important bioactive compounds to reduce risks for obesity. However, whether the combination of the two components exhibits a stronger anti-obesity effect remains unclear. Caffeic acid is a major phenolic acid in cereals, and arabinoxylan and ß-glucan are biological macromolecules with numerous health benefits. Here, we investigated the effect of caffeic acid combined with arabinoxylan or ß-glucan on glucose and lipid metabolism, gut microbiota, and metabolites in mice fed a high-fat diet (HFD). Caffeic acid combined with arabinoxylan or ß-glucan significantly reduced the body weight, blood glucose, and serum free fatty acid concentrations. Caffeic acid combined with ß-glucan effectively decreased serum total cholesterol levels and hepatic lipid accumulation, modulated oxidative and inflammatory stress, and improved gut barrier function. Compared with arabinoxylan, ß-glucan, and caffeic acid alone, caffeic acid combined with arabinoxylan or ß-glucan exhibited a better capacity to modulate gut microbiota, including increased microbial diversity, reduced Firmicutes/Bacteroidetes ratio, and increased abundance of beneficial bacteria such as Bifidobacterium. Furthermore, caffeic acid combined with ß-glucan reversed HFD-induced changes in microbiota-derived metabolites involving tryptophan, purine, and bile acid metabolism. Thus, caffeic acid and ß-glucan had a synergistic anti-obesity effect by regulating specific gut microbiota and metabolites.


Subject(s)
Caffeic Acids , Diet, High-Fat , Gastrointestinal Microbiome , Obesity , Xylans , beta-Glucans , Animals , Xylans/pharmacology , Gastrointestinal Microbiome/drug effects , beta-Glucans/pharmacology , Obesity/metabolism , Obesity/drug therapy , Caffeic Acids/pharmacology , Mice , Diet, High-Fat/adverse effects , Male , Mice, Inbred C57BL , Lipid Metabolism/drug effects
12.
Shock ; 61(5): 748-757, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38662612

ABSTRACT

ABSTRACT: Cardiac fibrosis, characterized by excessive collagen accumulation in heart tissues, poses a significant clinical challenge in various heart diseases and complications. Although salvianolic acid A (Sal A) from Danshen ( Salvia miltiorrhiza ) has shown promise in the treatment of ischemic heart disease, myocardial infarction, and atherosclerosis, its effects on cardiac fibrosis remain unexplored. Our study investigated the efficacy of Sal A in reducing cardiac fibrosis and elucidated its underlying molecular mechanisms. We observed that Sal A demonstrated significant cardioprotective effects against Angiotensin II (Ang II)-induced cardiac remodeling and fibrosis, showing a dose-dependent reduction in fibrosis in mice and suppression of cardiac fibroblast proliferation and fibrotic protein expression in vitro . RNA sequencing revealed that Sal A counteracted Ang II-induced upregulation of Txnip, and subsequent experiments indicated that it acts through the inflammasome and ROS pathways. These findings establish the antifibrotic effects of Sal A, notably attenuated by Txnip overexpression, and highlight its significant role in modulating inflammation and oxidative stress pathways. This underscores the importance of further research on Sal A and similar compounds, especially regarding their effects on inflammation and oxidative stress, which are key factors in various cardiovascular diseases.


Subject(s)
Angiotensin II , Carrier Proteins , Fibrosis , Lactates , Signal Transduction , Thioredoxins , Animals , Mice , Signal Transduction/drug effects , Carrier Proteins/metabolism , Male , Lactates/pharmacology , Lactates/therapeutic use , Caffeic Acids/pharmacology , Caffeic Acids/therapeutic use , Mice, Inbred C57BL , Myocardium/metabolism , Myocardium/pathology , Cell Cycle Proteins/metabolism
13.
Int J Biol Macromol ; 267(Pt 1): 131166, 2024 May.
Article in English | MEDLINE | ID: mdl-38582464

ABSTRACT

Here, the simultaneous effect of chemo- and photothermal therapy against epidermoid carcinoma (EC) was investigated. A novel hydrogel, termed bionanogel (BNG), was designed using psyllium mucilage polysaccharide and bacterial gellan gum, incorporated with nanocomplex carrying caffeic acid (CA) and IR-820, and further characterized. The dual effect of BNG and 808 nm laser (BNG + L) on EC was investigated. Staining and scratch assays were performed to analyze their therapeutic effect on EC. In vivo evaluations of BNG + L in xenograft models were performed. Rapid transition, limited swelling, degradability and high tensile strength indicated BNG stability and sustained drug release. Irradiation with 808 nm laser light at 1.25 W /cm2 for 4 min resulted in a temperature increase of 53 °C and facilitated cell ablation. The in vitro studies showed that BNG + L suppressed cancer progression via a late apoptotic effect. The in vivo study showed that the slow release of CA from BNG + L significantly attenuated EC with low mitotic index and downregulation of proteins involved in cancer proliferation such as EGFR, AKT, PI3K, ERK, mTOR and HIF-1α. Thus, BNG could be a novel medium for targeted and controlled drug delivery for the treatment of epidermoid cancer when triggered by NIR light.


Subject(s)
Caffeic Acids , Carcinoma, Squamous Cell , Polysaccharides, Bacterial , Psyllium , Caffeic Acids/pharmacology , Caffeic Acids/chemistry , Caffeic Acids/administration & dosage , Animals , Humans , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/pharmacology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Mice , Psyllium/chemistry , Psyllium/pharmacology , Cell Line, Tumor , Polysaccharides/chemistry , Polysaccharides/pharmacology , Hydrogels/chemistry , Xenograft Model Antitumor Assays , Drug Delivery Systems
14.
Int J Food Microbiol ; 417: 110710, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38643598

ABSTRACT

Postharvest loss caused by a range of pathogens necessitates exploring novel antifungal compounds that are safe and efficient in managing the pathogens. This study evaluated the antifungal activity of ethyl ferulate (EF) and explored its mechanisms of action against Alternaria alternata, Aspergillus niger, Botrytis cinerea, Penicillium expansum, Penicillium digitatum, Geotrichum candidum and evaluated its potential to inhibit postharvest decay. The results demonstrated that EF exerts potent antifungal activity against a wide board of postharvest pathogens. Results also revealed that its antifungal mechanism is multifaceted: EF may be involved in binding to and disturbing the integrity of the fungal plasma membrane, causing leakage of intracellular content and losing normal morphology and ultrastructure. EF also induced oxidative stress in the pathogen, causing membrane lipid peroxidation and malondialdehyde accumulation. EF inhibited the critical gene expression of the pathogen, affecting its metabolic regulation, antioxidant metabolism, and cell wall degrading enzymes. EF exhibited antifungal inhibitory activity when applied directly into peel wounds or after incorporation with chitosan coating. Due to its wide board and efficient antifungal activity, EF has the potential to provide a promising alternative to manage postharvest decay.


Subject(s)
Antifungal Agents , Botrytis , Caffeic Acids , Penicillium , Penicillium/drug effects , Penicillium/metabolism , Antifungal Agents/pharmacology , Botrytis/drug effects , Caffeic Acids/pharmacology , Alternaria/drug effects , Aspergillus niger/drug effects , Food Preservation/methods , Geotrichum/drug effects , Fungi/drug effects , Food Microbiology , Fruit/microbiology , Oxidative Stress/drug effects
15.
Nutrients ; 16(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38674835

ABSTRACT

Inflammatory bowel disease (IBD) has attracted much attention worldwide due to its prevalence. In this study, the effect of a solid-in-oil-in-water (S/O/W) emulsion with Caffeic acid phenethyl ester (CAPE, a polyphenolic active ingredient in propolis) on dextran sulfate sodium (DSS)-induced colitis in C57BL/6 mice was evaluated. The results showed that CAPE-emulsion could significantly alleviate DSS-induced colitis through its effects on colon length, reduction in the disease activity index (DAI), and colon histopathology. The results of ELISA and Western blot analysis showed that CAPE-emulsion can down-regulate the excessive inflammatory cytokines in colon tissue and inhibit the expression of p65 in the NF-κB pathway. Furthermore, CAPE-emulsion promoted short-chain fatty acids production in DSS-induced colitis mice. High-throughput sequencing results revealed that CAPE-emulsion regulates the imbalance of gut microbiota by enhancing diversity, restoring the abundance of beneficial bacteria (such as Odoribacter), and suppressing the abundance of harmful bacteria (such as Afipia, Sphingomonas). The results of fecal metabolome showed that CAPE-emulsion restored the DSS-induced metabolic disorder by affecting metabolic pathways related to inflammation and cholesterol metabolism. These research results provide a scientific basis for the use of CPAE-emulsions for the development of functional foods for treating IBD.


Subject(s)
Caffeic Acids , Colitis , Emulsions , Animals , Male , Mice , Caffeic Acids/pharmacology , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colon/drug effects , Colon/metabolism , Colon/microbiology , Cytokines/metabolism , Dextran Sulfate/adverse effects , Disease Models, Animal , Emulsions/chemistry , Emulsions/pharmacology , Feces/microbiology , Feces/chemistry , Gastrointestinal Microbiome/drug effects , Metabolome/drug effects , Mice, Inbred C57BL , NF-kappa B/drug effects , NF-kappa B/metabolism , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacology , Signal Transduction/drug effects
16.
Biomed Pharmacother ; 174: 116556, 2024 May.
Article in English | MEDLINE | ID: mdl-38636398

ABSTRACT

Skeletal muscle atrophy is a common complication of chronic kidney disease (CKD) that affects the quality of life and prognosis of patients. We aimed to investigate the effects and mechanisms of caffeic acid (CA), a natural phenolic compound, on skeletal muscle atrophy in CKD rats. Male Sprague-Dawley rats underwent 5/6 nephrectomy (NPM) and were treated with CA (20, 40, or 80 mg/kg/day) for 10 weeks. The body and muscle weights, renal function, hemoglobin, and albumin were measured. The histological, molecular, and biochemical changes in skeletal muscles were evaluated using hematoxylin-eosin staining, quantitative real-time PCR, malondialdehyde/catalase/superoxide dismutase/glutathione level detection, and enzyme-linked immunosorbent assay. Western blotting and network pharmacology were applied to identify the potential targets and pathways of CA, CKD, and muscle atrophy. The results showed that CA significantly improved NPM-induced muscle-catabolic effects, reduced the expression of muscle atrophy-related proteins (muscle atrophy F-box and muscle RING finger 1) and proinflammatory cytokines (interleukin [IL]-6, tumor necrosis factor-alpha, and IL-1ß), and attenuated muscle oxidative stress. Network pharmacology revealed that CA modulated the response to oxidative stress and nuclear factor kappa B (NF-κB) signaling pathway and that Toll-like receptor 4 (TLR4) was a key target. In vivo experiment confirmed that CA inhibited the TLR4/myeloid differentiation primary response 88 (MYD88)/NF-kB signaling pathway, reduced muscle iron levels, and restored glutathione peroxidase 4 activity, thereby alleviating ferroptosis and inflammation in skeletal muscles. Thus, CA might be a promising therapeutic agent for preventing and treating skeletal muscle atrophy in CKD by modulating the TLR4/MYD88/NF-κB pathway and ferroptosis.


Subject(s)
Caffeic Acids , Muscular Atrophy , Myeloid Differentiation Factor 88 , Renal Insufficiency, Chronic , Signal Transduction , Animals , Male , Rats , Caffeic Acids/pharmacology , Cytokines/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscle, Skeletal/metabolism , Muscular Atrophy/drug therapy , Muscular Atrophy/pathology , Muscular Atrophy/etiology , Muscular Atrophy/prevention & control , Muscular Atrophy/metabolism , Myeloid Differentiation Factor 88/metabolism , Nephrectomy/adverse effects , NF-kappa B/metabolism , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism
17.
Nutrients ; 16(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38474755

ABSTRACT

The inflammatory process is triggered by several factors such as toxins, pathogens, and damaged cells, promoting inflammation in various systems, including the cardiovascular system, leading to heart failure. The link between periodontitis as a chronic inflammatory disease and cardiovascular disease is confirmed. Propolis and its major component, caffeic acid phenethyl ester (CAPE), exhibit protective mechanisms and anti-inflammatory effects on the cardiovascular system. The objective of the conducted study was to assess the anti-inflammatory effects of the Polish ethanolic extract of propolis (EEP) and its major component-CAPE-in interferon-alpha (IFN-α), lipopolysaccharide (LPS), LPS + IFN-α-induced human gingival fibroblasts (HGF-1). EEP and CAPE were used at 10-100 µg/mL. A multiplex assay was used for interleukin and adhesive molecule detection. Our results demonstrate that EEP, at a concentration of 25 µg/mL, decreases pro-inflammatory cytokine IL-6 in LPS-induced HGF-1. At the same concentration, EEP increases the level of anti-inflammatory cytokine IL-10 in LPS + IFN-α-induced HGF-1. In the case of CAPE, IL-6 in LPS and LPS + IFN-α induced HGF-1 was decreased in all concentrations. However, in the case of IL-10, CAPE causes the highest increase at 50 µg/mL in IFN-α induced HGF-1. Regarding the impact of EEP on adhesion molecules, there was a noticeable reduction of E-selectin by EEP at 25, 50, and100 µg/mL in IFN-α -induced HGF-1. In a range of 10-100 µg/mL, EEP decreased endothelin-1 (ET-1) during all stimulations. CAPE statistically significantly decreases the level of ET-1 at 25-100 µg/mL in IFN-α and LPS + IFN-α. In the case of intercellular adhesion molecule-1 (ICAM-1), EEP and CAPE downregulated its expression in a non-statistically significant manner. Based on the obtained results, EEP and CAPE may generate beneficial cardiovascular effects by influencing selected factors. EEP and CAPE exert an impact on cytokines in a dose-dependent manner.


Subject(s)
Cardiovascular Diseases , Phenylethyl Alcohol , Phenylethyl Alcohol/analogs & derivatives , Propolis , Humans , Lipopolysaccharides/pharmacology , Interleukin-10 , Interferon-alpha , Propolis/pharmacology , Cardiotonic Agents , Interleukin-6 , Phenylethyl Alcohol/pharmacology , Ethanol , Caffeic Acids/pharmacology , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology
18.
J Transl Med ; 22(1): 304, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528569

ABSTRACT

BACKGROUND: The treatment of spinal cord injury (SCI) has always been a significant research focus of clinical neuroscience, with inhibition of microglia-mediated neuro-inflammation as well as oxidative stress key to successful SCI patient treatment. Caffeic acid phenethyl ester (CAPE), a compound extracted from propolis, has both anti-inflammatory and anti-oxidative effects, but its SCI therapeutic effects have rarely been reported. METHODS: We constructed a mouse spinal cord contusion model and administered CAPE intraperitoneally for 7 consecutive days after injury, and methylprednisolone (MP) was used as a positive control. Hematoxylin-eosin, Nissl, and Luxol Fast Blue staining were used to assess the effect of CAPE on the structures of nervous tissue after SCI. Basso Mouse Scale scores and footprint analysis were used to explore the effect of CAPE on the recovery of motor function by SCI mice. Western blot analysis and immunofluorescence staining assessed levels of inflammatory mediators and oxidative stress-related proteins both in vivo and in vitro after CAPE treatment. Further, reactive oxygen species (ROS) within the cytoplasm were detected using an ROS kit. Changes in mitochondrial membrane potential after CAPE treatment were detected with 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine iodide. Mechanistically, western blot analysis and immunofluorescence staining were used to examine the effect of CAPE on the SIRT1/PGC1α/DRP1 signaling pathway. RESULTS: CAPE-treated SCI mice showed less neuronal tissue loss, more neuronal survival, and reduced demyelination. Interestingly, SCI mice treated with CAPE showed better recovery of motor function. CAPE treatment reduced the expression of inflammatory and oxidative mediators, including iNOS, COX-2, TNF-α, IL-1ß, 1L-6, NOX-2, and NOX-4, as well as the positive control MP both in vitro and in vivo. In addition, molecular docking experiments showed that CAPE had a high affinity for SIRT1, and that CAPE treatment significantly activated SIRT1 and PGC1α, with down-regulation of DRP1. Further, CAPE treatment significantly reduced the level of ROS in cellular cytoplasm and increased the mitochondrial membrane potential, which improved normal mitochondrial function. After administering the SIRT1 inhibitor nicotinamide, the effect of CAPE on neuro-inflammation and oxidative stress was reversed.On the contrary, SIRT1 agonist SRT2183 further enhanced the anti-inflammatory and antioxidant effects of CAPE, indicating that the anti-inflammatory and anti-oxidative stress effects of CAPE after SCI were dependent on SIRT1. CONCLUSION: CAPE inhibits microglia-mediated neuro-inflammation and oxidative stress and supports mitochondrial function by regulating the SIRT1/PGC1α/DRP1 signaling pathway after SCI. These effects demonstrate that CAPE reduces nerve tissue damage. Therefore, CAPE is a potential drug for the treatment of SCI through production of anti-inflammatory and anti-oxidative stress effects.


Subject(s)
Caffeic Acids , Mitochondrial Diseases , Phenylethyl Alcohol , Spinal Cord Injuries , Animals , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/metabolism , Caffeic Acids/pharmacology , Caffeic Acids/therapeutic use , Inflammation/drug therapy , Inflammation/metabolism , Methylprednisolone/pharmacology , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/metabolism , Molecular Docking Simulation , Oxidative Stress/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Phenylethyl Alcohol/analogs & derivatives , Reactive Oxygen Species/metabolism , Signal Transduction , Sirtuin 1/metabolism , Spinal Cord , Spinal Cord Injuries/drug therapy , Dynamins/drug effects
19.
Neurotherapeutics ; 21(3): e00342, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38493057

ABSTRACT

Novel therapeutics for the treatment of ischemic stroke remains to be the unmet clinical needs. Previous studies have indicated that salvianolic acid A (SAA) is a promising candidate for the treatment of the brain diseases. However, SAA has poor absolute bioavailability and does not efficiently cross the intact blood-brain barrier (BBB), which limit its efficacy. To this end we developed a brain-targeted liposomes for transporting SAA via the BBB by incorporating the liposomes to a transport receptor, insulin-like growth factor-1 receptor (IGF1R). The liposomes were prepared by ammonium sulfate gradients loading method. The prepared SAA-loaded liposomes (Lipo/SAA) were modified with IGF1R monoclonal antibody to generate IGF1R antibody-conjugated Lipo/SAA (IGF1R-targeted Lipo/SAA). The penetration of IGF1R-targeted Lipo/SAA into the brain was confirmed by labeling with Texas Red, and their efficacy were evaluate using middle cerebral artery occlusion (MCAO) model. The results showed that IGF1R-targeted Lipo/SAA are capable of transporting SAA across the BBB into the brain, accumulation in brain tissue, and sustained releasing SAA for several hours. Administration o IGF1R-targeted Lipo/SAA notably reduced infarct size and neuronal damage, improved neurological function and inhibited cerebral inflammation, which had much higher efficiency than no-targeted SAA.


Subject(s)
Ischemic Stroke , Liposomes , Animals , Ischemic Stroke/drug therapy , Male , Caffeic Acids/administration & dosage , Caffeic Acids/chemistry , Caffeic Acids/pharmacology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Receptor, IGF Type 1/metabolism , Mice , Lactates/administration & dosage , Lactates/chemistry , Infarction, Middle Cerebral Artery/drug therapy , Drug Delivery Systems/methods , Rats, Sprague-Dawley , Rats , Brain/metabolism , Brain/drug effects
20.
Infect Immun ; 92(5): e0008024, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38534100

ABSTRACT

Traditional folk treatments for the prevention and management of urinary tract infections (UTIs) and other infectious diseases often include plants and plant extracts that are rich in phenolic compounds. These have been ascribed a variety of activities, including inhibition of bacterial interactions with host cells. Here, we tested a panel of four well-studied phenolic compounds-caffeic acid phenethyl ester (CAPE), resveratrol, catechin, and epigallocatechin gallate-for the effects on host cell adherence and invasion by uropathogenic Escherichia coli (UPEC). These bacteria, which are the leading cause of UTIs, can bind and subsequently invade bladder epithelial cells via an actin-dependent process. Intracellular UPEC reservoirs within the bladder are often protected from antibiotics and host defenses and likely contribute to the development of chronic and recurrent infections. In cell culture-based assays, only resveratrol had a notable negative effect on UPEC adherence to bladder cells. However, both CAPE and resveratrol significantly inhibited UPEC entry into the host cells, coordinate with attenuated phosphorylation of the host actin regulator Focal Adhesion Kinase (FAK or PTK2) and marked increases in the numbers of focal adhesion structures. We further show that the intravesical delivery of resveratrol inhibits UPEC infiltration of the bladder mucosa in a murine UTI model and that resveratrol and CAPE can disrupt the ability of other invasive pathogens to enter host cells. Together, these results highlight the therapeutic potential of molecules like CAPE and resveratrol, which could be used to augment antibiotic treatments by restricting pathogen access to protective intracellular niches.IMPORTANCEUrinary tract infections (UTIs) are exceptionally common and increasingly difficult to treat due to the ongoing rise and spread of antibiotic-resistant pathogens. Furthermore, the primary cause of UTIs, uropathogenic Escherichia coli (UPEC), can avoid antibiotic exposure and many host defenses by invading the epithelial cells that line the bladder surface. Here, we identified two plant-derived phenolic compounds that disrupt activation of the host machinery needed for UPEC entry into bladder cells. One of these compounds, resveratrol, effectively inhibited UPEC invasion of the bladder mucosa in a mouse UTI model, and both phenolic compounds significantly reduced host cell entry by other invasive pathogens. These findings suggest that select phenolic compounds could be used to supplement existing antibacterial therapeutics by denying uropathogens shelter within host cells and tissues and help explain some of the benefits attributed to traditional plant-based medicines.


Subject(s)
Escherichia coli Infections , Focal Adhesion Kinase 1 , Phenols , Plant Extracts , Urinary Tract Infections , Uropathogenic Escherichia coli , Animals , Female , Humans , Mice , Bacterial Adhesion/drug effects , Caffeic Acids/pharmacology , Catechin/pharmacology , Catechin/analogs & derivatives , Cell Line , Epithelial Cells/microbiology , Epithelial Cells/drug effects , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/antagonists & inhibitors , Phenols/pharmacology , Phenylethyl Alcohol/analogs & derivatives , Plant Extracts/pharmacology , Resveratrol/pharmacology , Urinary Bladder/microbiology , Urinary Bladder/drug effects , Urinary Bladder/pathology , Urinary Tract Infections/microbiology , Urinary Tract Infections/drug therapy , Uropathogenic Escherichia coli/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...