Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 941
Filter
1.
Compr Rev Food Sci Food Saf ; 23(5): e13414, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39137004

ABSTRACT

Coffee is one of the most consumed beverages worldwide, recognized for its unique taste and aroma and for its social and health impacts. Coffee contains a plethora of nutritional and bioactive components, whose content can vary depending on their origin, processing, and extraction methods. Gathered evidence in literature shows that the regular coffee consumption containing functional compounds (e.g., polysaccharides, phenolic compounds, and melanoidins) can have potential beneficial effects on cardiometabolic risk factors such as abdominal adiposity, hyperglycemia, and lipogenesis. On the other hand, coffee compounds, such as caffeine, diterpenes, and advanced glycation end products, may be considered a risk for cardiometabolic health. The present comprehensive review provides up-to-date knowledge on the structure-function relationships between different chemical compounds present in coffee, one of the most prevalent beverages present in human diet, and cardiometabolic health.


Subject(s)
Coffee , Coffee/chemistry , Humans , Cardiovascular Diseases/prevention & control , Caffeine/analysis , Caffeine/chemistry , Nutritive Value , Phenols/analysis , Phenols/chemistry
2.
Sci Rep ; 14(1): 18118, 2024 08 05.
Article in English | MEDLINE | ID: mdl-39103402

ABSTRACT

Breast cancer is among the highest morbidity and mortality rates in women around the world. In the present investigation we aimed to synthesis novel nanosystem combining two naturally important anticancer agents with different mechanism of action namely Moringa oleifera and caffeine. Firstly, chemical analysis of Moringa oleifera extract and caffeine was done by gas chromatography-mass spectroscopy (GC-MS) in order to assess the main chemical compounds present and correlate between them and the possible anticancer effect. The novel nanosystem was characterized through dynamic light scattering techniques which revealed the stability and homogeneity of the prepared M. oleifera leaves extract/Caffeine loaded chitosan nanoparticles, while FTIR and transmission electron microscope (TEM) proved the shape and the successful incorporation of M. oleifera leaves extract/Caffeine onto the nanochitosan carrier. Our initial step was to assess the anticancer effect in vitro in cancer cell line MCF-7 which proved the significant enhanced effect of M. oleifera leaves extract/Caffeine nanosystem compared to M. oleifera leaves extract or caffeine loaded nanoparticles. Further studies were conducted in vivo namely tumor biomarkers, tumor volume, bioluminescence imaging, molecular and histopathological investigations. The present study proved the potent anticancer effect of the synthesized M. oleifera leaves extract/Caffeine loaded chitosan nanoparticles. Mo/Caf/CsNPs exhibited a large number of apoptotic cells within the tumor mass while the adipose tissue regeneration was higher compared to the positive control. The prepared nanoparticles downregulated the expression of Her2, BRCA1 and BRCA2 while mTOR expression was upregulated. The aforementioned data demonstrated the successful synergistic impact of Moringa and caffeine in decreasing the carcinoma grade.


Subject(s)
BRCA1 Protein , BRCA2 Protein , Breast Neoplasms , Caffeine , Chitosan , Nanoparticles , Plant Extracts , Plant Leaves , Receptor, ErbB-2 , Chitosan/chemistry , Humans , Caffeine/pharmacology , Caffeine/chemistry , Nanoparticles/chemistry , Plant Leaves/chemistry , Female , Plant Extracts/pharmacology , Plant Extracts/chemistry , MCF-7 Cells , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Animals , Moringa oleifera/chemistry , Mice , Gene Expression Regulation, Neoplastic/drug effects
3.
Int J Biol Macromol ; 275(Pt 2): 133615, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960221

ABSTRACT

Microencapsulation has emerged as a promising strategy to enhance the stability and protection of bioactive compounds. In this work, roasted mate tea was microencapsulated using 15 % maltodextrin and lasiodiplodan (0.5-1.25 %) as wall coating materials. The microcapsules were characterized for encapsulation efficiency, hygroscopicity, moisture, water activity, water solubility, dissolubility, scanning electron microscopy, FT-IR spectroscopy, thermal analysis, colorimetry, antioxidant activity, as well as quantification of phenolic compounds and caffeine. Microencapsulation yields ranged from 44.92 to 56.39 %, and encapsulation efficiency varied from 66.54 to 70.16 by increasing the lasiodiplodan concentration. FT-IR revealed phenolic acids, flavonoids, and polyphenolics. Minor color variations were observed among the samples. Thermal analysis demonstrated the microencapsulates exhibited good thermal stability with no degradation below 250 °C. Encapsulated samples showed high levels of bioactive compounds, suggesting that microencapsulation by spray-drying was a favorable process, where maltodextrin, a low-cost protective agent, when combined with the properties of lasiodiplodan, can be a good option for stabilizing mate extracts.


Subject(s)
Antioxidants , Drug Compounding , Polysaccharides , Tea , Polysaccharides/chemistry , Drug Compounding/methods , Antioxidants/chemistry , Antioxidants/pharmacology , Tea/chemistry , Plant Extracts/chemistry , Solubility , Spectroscopy, Fourier Transform Infrared , Capsules , beta-Glucans/chemistry , Polyphenols/chemistry , Caffeine/chemistry
4.
J Hazard Mater ; 477: 135277, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39047568

ABSTRACT

Waste-derived organics introduced to soils along with pharmaceutical active compounds (PhAC) are a crude mixture of compounds occurring in various size and polarity fractions. They affect the sorption of PhACs to soil; however, the relevant knowledge is still insufficient. The effects of different size and polarity fractions of manure-derived mobile organic matter (<63 µm) on the sorption of sulfadiazine, caffeine and atenolol to five topsoils were investigated. Mobilization of the PhACs was strongest in the presence of dissolved organic matter (mDOM, <0.45 µm), with a reduction of Kd of sulfadiazine, caffeine and atenolol by mean factors of 0.66, 0.57 and 0.41, respectively. The mobilizing effects of colloidal organic matter (0.45-10 µm) were slightly smaller. Fine particulate organic matter (10-63 µm) reduced the sorption of the PhACs in slightly acidic soils (pH 6.0), but increased it in strongly acidic soil (pH 4.3). Furthermore, hydrophobic (HO-mDOM) and hydrophilic (HI-mDOM) fractions of mDOM reduced the sorption capacity but increased the sorption nonlinearity of PhACs in soils. Effects of HO-mDOM and HI-mDOM were PhAC specific. It is suggested to consider the varying impacts of mobile fractions in animal manure and/or treated wastewater in evaluating the fate and environmental relevance of associated PhACs.


Subject(s)
Atenolol , Caffeine , Manure , Soil Pollutants , Soil , Sulfadiazine , Sulfadiazine/chemistry , Atenolol/chemistry , Adsorption , Soil Pollutants/chemistry , Caffeine/chemistry , Soil/chemistry , Particle Size , Animals , Hydrogen-Ion Concentration
5.
Molecules ; 29(14)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39064880

ABSTRACT

Cancer is a complicated and ever-evolving disease that remains a significant global cause of disease and mortality. Its complexity, which is evident at the genetic and phenotypic levels, contributes to its diversity and resistance to treatment. Numerous scientific investigations on human and animal models demonstrate the potential of phytochemicals in cancer prevention. Coffee has been shown to possess potent anti-carcinogenic properties, and studies have documented the consumption of coffee as a beverage reduces the risk of cancer occurrence. The major secondary metabolites of coffee, named caffeine and chlorogenic acid, have been linked to anti-inflammatory and antineoplastic effects through various signaling. In light of this, this review article provides a comprehensive analysis based on studies in anticancer effects of coffee, chlorogenic acid, and caffeine published between 2010 and 2023, sourced from Scopus, Pubmed, and Google Scholar databases. We summarize recent advances and scientific evidence on the association of phytochemicals found in coffee with a special emphasis on their biological activities against cancer and their molecular mechanism deemed potential to be used as a novel therapeutic target for cancer prevention and therapy.


Subject(s)
Caffeine , Chlorogenic Acid , Coffee , Neoplasms , Chlorogenic Acid/pharmacology , Chlorogenic Acid/chemistry , Humans , Caffeine/pharmacology , Caffeine/chemistry , Coffee/chemistry , Neoplasms/prevention & control , Neoplasms/drug therapy , Neoplasms/metabolism , Animals , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/therapeutic use , Chemoprevention , Anticarcinogenic Agents/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry
6.
ACS Chem Biol ; 19(7): 1661-1670, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38975966

ABSTRACT

The calcium-sensing receptor (CaSR), abundantly expressed in the parathyroid gland and kidney, plays a central role in calcium homeostasis. In addition, CaSR exerts multimodal roles, including inflammation, muscle contraction, and bone remodeling, in other organs and tissues. The diverse functions of CaSR are mediated by many endogenous and exogenous ligands, including calcium, amino acids, glutathione, cinacalcet, and etelcalcetide, that have distinct binding sites in CaSR. However, strategies to evaluate ligand interactions with CaSR remain limited. Here, we developed a glutathione-based photoaffinity probe, DAZ-G, that analyzes ligand binding to CaSR. We showed that DAZ-G binds to the amino acid binding site in CaSR and acts as a positive allosteric modulator of CaSR. Oxidized and reduced glutathione and phenylalanine effectively compete with DAZ-G conjugation to CaSR, while calcium, cinacalcet, and etelcalcetide have cooperative effects. An unexpected finding was that caffeine effectively competes with DAZ-G's conjugation to CaSR and acts as a positive allosteric modulator of CaSR. The effective concentration of caffeine for CaSR activation (<10 µM) is easily attainable in plasma by ordinary caffeine consumption. Our report demonstrates the utility of a new chemical probe for CaSR and discovers a new protein target of caffeine, suggesting that caffeine consumption can modulate the diverse functions of CaSR.


Subject(s)
Caffeine , Glutathione , Receptors, Calcium-Sensing , Receptors, Calcium-Sensing/metabolism , Humans , Allosteric Regulation/drug effects , Caffeine/chemistry , Caffeine/pharmacology , Caffeine/metabolism , Glutathione/metabolism , Glutathione/chemistry , Calcium/metabolism , Photoaffinity Labels/chemistry , Binding Sites , HEK293 Cells , Ligands , Cinacalcet/chemistry , Cinacalcet/pharmacology
7.
Chem Commun (Camb) ; 60(58): 7431-7434, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38938210

ABSTRACT

The 1967 attempt of structural analysis of the solid-state complex of caffeine and pyrogallol was a pioneering structural investigation in the supramolecular chemistry of caffeine, of what today would easily be considered an archetype of a model pharmaceutical cocrystal. Re-investigating this historically important system demonstrates that this long overlooked complex is most likely a tetrahydrate with a different structure and composition than initially proposed, and provides the crystal structure of the anhydrous cocrystal.


Subject(s)
Caffeine , Pyrogallol , Caffeine/chemistry , Pyrogallol/chemistry , Pyrogallol/analogs & derivatives , Molecular Structure , Crystallization , Models, Molecular , Crystallography, X-Ray
8.
Int J Biol Macromol ; 275(Pt 1): 133469, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945345

ABSTRACT

The objective of the present research was to develop chitosan-coated nanoliposomes using a modified heating method as a delivery system for simultaneous encapsulation of caffeine and roselle anthocyanin to fortify beverage. Response surface methodology was used to ascertain the optimized formulation, aiming to maximize the encapsulation efficiency, minimize the particle size, and maximize the zeta potential. The liposomes fabricated under the optimized conditions (lecithin to cholesterol ratio of 13 and wall to core ratio of 2.16) showed encapsulation efficiency values of 66.73 % for caffeine and 97.03 % for anthocyanin, with a size of 268.1 nm and a zeta potential of -39.11 mV. Fourier transform infrared spectroscopy confirmed the formation of hydrogen bonds between the polar sites of lecithin and the loaded core compounds. Thermal analysis suggested the successful encapsulation of the caffeine and anthocyanin. Transmission and scanning electron microscopy images confirmed a uniform spherical shape with a smooth surface. Fortifying the model beverage with the liposome and the chitosan-coated nanoliposome revealed higher values of encapsulation efficiency of anthocyanin (70.33 ± 3.11 %), caffeine (86.37 ± 2.17 %) and smaller size (280.5 ± 0.74 nm) of the chitosan-coated nanoliposomes at the end of 60the days. A hedonic sensory test of the fortified beverage with chitosan-coated nanoliposomes confirmed an improvement in the organoleptic properties of the beverage by masking its bitterness (receiving three more sensory scores in perceiving the bitterness intensity). Overall, our study indicates that the high potential of the chitosan-coated nanoliposomes for the simultaneous loading of the caffeine and anthocyanin, as well as their possible application in food and beverage formulations.


Subject(s)
Anthocyanins , Caffeine , Chitosan , Liposomes , Nanoparticles , Particle Size , Chitosan/chemistry , Liposomes/chemistry , Caffeine/chemistry , Anthocyanins/chemistry , Nanoparticles/chemistry , Beverages , Spectroscopy, Fourier Transform Infrared
9.
Environ Res ; 258: 119446, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38909946

ABSTRACT

Rapid global urbanization and population growth have ignited an alarming surge in emerging contaminants in water bodies, posing health risks, even at trace concentrations. To address this challenge, novel water treatment and reuse technologies are required as current treatment systems are associated with high costs and energy requirements. These drawbacks provide additional incentives for the application of cost-effective and sustainable biomass-derived activated carbon, which possesses high surface area and low toxicity. Herein, we synthesized microporous activated carbon (MAC) and its magnetic derivative (m-MAC) from tannic acid to decaffeinate contaminated aqueous solutions. Detailed characterization using SEM, BET, and PXRD revealed a very high surface area (>1800 m2/g) and a highly porous, amorphous, heterogeneous sponge-like structure. Physicochemical and thermal analyses using XPS, TGA, and EDS confirmed thermal stability, unique surface moieties, and homogeneous elemental distribution. High absorption performance (>96 %) and adsorption capacity (287 and 394 mg/g) were recorded for m-MAC and MAC, respectively. Mechanistic studies showed that the sorption of caffeine is in tandem with multilayer and chemisorptive mechanisms, considering the models' correlation and error coefficients. π-π stacking and hydrogen bonding were among the interactions that could facilitate MAC-Caffeine and m-MAC-Caffeine bonding interactions. Regeneration and reusability experiments revealed adsorption efficiency ranging from 90.5 to 98.4 % for MAC and 88.6-93.7 % for m-MAC for five cycles. Our findings suggest that MAC and its magnetic derivative are effective for caffeine removal, and potentially other organic contaminants with the possibility of developing commercially viable and cost-effective water polishing tools.


Subject(s)
Water Pollutants, Chemical , Water Purification , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Adsorption , Kinetics , Water Purification/methods , Caffeine/chemistry , Porosity , Charcoal/chemistry , Recycling/methods , Carbon/chemistry
10.
Molecules ; 29(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38893465

ABSTRACT

Yerba Mate drink made from dried and crushed leaves and twigs of Paraguayan holly (Ilex paraguariensis A. St.-Hil.), which is a valuable source of bioactive substances, in particular antioxidants. The available literature lacks data on changes in the content and profile of bioactive compounds such as tannins, caffeine, the phenolic acid profile of flavonoids and carotenoids, as well as total polyphenol content and antioxidant activity in Yerba Mate infusions depending on different brewing conditions, and how different brewing conditions affect the physicochemical properties of these infusions. Therefore, this study evaluated the physicochemical properties of dried and Yerba Mate infusions prepared via single and double brewing processes at 70 °C and 100 °C. The organoleptic evaluation, as well as the instrumental color measurement, showed significant changes in the total color difference (ΔE) and the L*a*b* chromatic coordinates of dried Yerba Mate samples and their infusions. Moreover, the research showed higher contents of tannins (mean 1.36 ± 0.14 g/100 g d.m.), caffeine (mean 17.79 ± 3.49 mg/g d.m.), carotenoids (mean 12.90 ± 0.44 µg/g d.m.), phenolic acids (mean 69.97 ± 7.10 mg/g d.m.), flavonoids (mean 5.47 ± 1.78 mg/g d.m.), total polyphenols (mean 55.26 ± 8.51 mg GAE/g d.m.), and antioxidant activity (mean 2031.98 ± 146.47 µM TEAC/g d.m.) in single-brewed Yerba Mate infusions compared to double-brewed (0.77 ± 0.12 g/100 g d.m., 14.28 ± 5.80 mg/g d.m., 12.67 ± 0.62 µg/g d.m., 57.75 ± 8.73 mg/g d.m., 3.64 ± 0.76 mg/g d.m., 33.44 ± 6.48 mg GAE/g d.m. and 1683.09 ± 155.34 µM TEAC/g d.m., respectively). In addition, infusions prepared at a lower temperature (70 °C) were characterized by a higher content of total polyphenols and higher antioxidant activity, in contrast to the tannin and carotenoid contents, the levels of which were higher at 100 °C than at 70 °C. Considering the high amount of bioactive ingredients, in particular antioxidants, and a wide range of health benefits, it is worth including Yerba Mate in the daily diet.


Subject(s)
Antioxidants , Ilex paraguariensis , Polyphenols , Ilex paraguariensis/chemistry , Antioxidants/chemistry , Antioxidants/analysis , Polyphenols/chemistry , Polyphenols/analysis , Tannins/analysis , Tannins/chemistry , Flavonoids/analysis , Flavonoids/chemistry , Carotenoids/chemistry , Carotenoids/analysis , Plant Extracts/chemistry , Plant Leaves/chemistry , Caffeine/analysis , Caffeine/chemistry , Hydroxybenzoates/chemistry , Hydroxybenzoates/analysis , Beverages/analysis
11.
Yakugaku Zasshi ; 144(7): 715-732, 2024.
Article in Japanese | MEDLINE | ID: mdl-38945846

ABSTRACT

An aqueous solution of 2,3-cis gallate type catechin (-)-epigallocatechin-3-O-gallate (EGCg) and caffeine afforded a precipitate of Creaming-down Phenomenon, which crystallized slowly for about three months to give a colorless block crystal. By X-ray crystallographic analysis, the crystal was determined to be a 2 : 2 complex of EGCg and caffeine, in which caffeine molecules were captured in a hydrophobic space formed with three aromatic A, B, and B' rings of EGCg. It was considered that the solubility of the 2 : 2 complex in water rapidly decreased and the 2 : 2 complex precipitated from aqueous solution. The hydrophobic spaces of EGCg captured a variety of heterocyclic compounds, and the molecular capture abilities of heterocyclic compounds using EGCg from the aqueous solutions were evaluated. Since the C ring of EGCg has two chiral carbon atoms, C2 and C3, the hydrophobic space of EGCg was a chiral space. EGCg captured diketopiperazine cyclo(Pro-Xxx) (Xxx=Phe, Tyr) and pharmaceuticals with a xanthine skeleton, proxyphylline and diprophylline, in the hydrophobic space, and recognized their chirality.


Subject(s)
Caffeine , Catechin , Hydrophobic and Hydrophilic Interactions , Solubility , Tea , Catechin/chemistry , Catechin/analogs & derivatives , Tea/chemistry , Caffeine/chemistry , Crystallography, X-Ray , Stereoisomerism , Water/chemistry , Crystallization , Solutions , Heterocyclic Compounds/chemistry , Xanthines/chemistry
12.
Molecules ; 29(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38930987

ABSTRACT

Peanut shells' adsorption performance in caffeine and triclosan removal was studied. Peanut shells were analyzed for their chemical composition, morphology, and surface functional groups. Batch adsorption and fixed-bed column experiments were carried out with solutions containing 30 mg/L of caffeine and triclosan. The parameters examined included peanut shell particle size (120-150, 300-600, and 800-2000 µm), adsorbent dose (0.02-60 g/L), contact time (up to 180 min), bed height (4-8 cm), and hydraulic loading rate (2.0 and 4.0 m3/m2-day). After determining the optimal adsorption conditions, kinetics, isotherm, and breakthrough curve models were applied to analyze the experimental data. Peanut shells showed an irregular surface and consisted mainly of polysaccharides (around 70% lignin, cellulose, and hemicellulose), with a specific surface area of 1.7 m2/g and a pore volume of 0.005 cm3/g. The highest removal efficiencies for caffeine (85.6 ± 1.4%) and triclosan (89.3 ± 1.5%) were achieved using the smallest particles and 10.0 and 0.1 g/L doses over 180 and 45 min, respectively. Triclosan showed easier removal compared to caffeine due to its higher lipophilic character. The pseudo-second-order kinetics model provided the best fit with the experimental data, suggesting a chemisorption process between caffeine/triclosan and the adsorbent. Equilibrium data were well-described by the Sips model, with maximum adsorption capacities of 3.3 mg/g and 289.3 mg/g for caffeine and triclosan, respectively. In fixed-bed column adsorption tests, particle size significantly influenced efficiency and hydraulic behavior, with 120-150 µm particles exhibiting the highest adsorption capacity for caffeine (0.72 mg/g) and triclosan (143.44 mg/g), albeit with clogging issues. The experimental data also showed good agreement with the Bohart-Adams, Thomas, and Yoon-Nelson models. Therefore, the findings of this study highlight not only the effective capability of peanut shells to remove caffeine and triclosan but also their versatility as a promising option for water treatment and sanitation applications in different contexts.


Subject(s)
Arachis , Caffeine , Triclosan , Caffeine/chemistry , Caffeine/isolation & purification , Triclosan/chemistry , Triclosan/isolation & purification , Arachis/chemistry , Adsorption , Kinetics , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Particle Size , Water Purification/methods
13.
Anal Methods ; 16(24): 3993-4001, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38855887

ABSTRACT

A facile electrochemical approach is proposed for the synchronous determination of acetaminophen (ACP), codeine (COD) and caffeine (CAF) utilizing unmodified screen-printed electrodes (SPEs). The determination of ACP, COD and CAF has been explored across different supporting electrolytes including sulfuric acid (H2SO4), hydrochloric acid (HCl), phosphoric acid (H3PO4) and Briton Robinson (B.R) buffer solutions. It was found that a 0.05 mol L-1 sulfuric acid solution is an optimal supporting electrolyte utilized for voltammetric analysis of ACP, COD, and CAF with improved sensitivity, stability, and reproducibility. The electro-analytical sensing of ACP, COD and CAF was investigated using SPEs within linear concentration ranges of 3.0-35.0 µmol L-1, 10-160 µmol L-1 and 10-160 µmol L-1 and revealed competitively low limits of detection (3S/N) of 0.9, 4.8 and 6.3 µmol L-1 for ACP, COD and CAF, respectively. The results indicated the possibility of such a simple and quick electroanalytical protocol for online monitoring of pharmaceutical formulations comprising ACP, COD, and CAF drugs in human fluids with satisfactory recovery.


Subject(s)
Acetaminophen , Caffeine , Codeine , Electrochemical Techniques , Electrodes , Graphite , Acetaminophen/analysis , Acetaminophen/chemistry , Codeine/analysis , Codeine/chemistry , Caffeine/analysis , Caffeine/chemistry , Humans , Graphite/chemistry , Electrochemical Techniques/methods , Limit of Detection , Reproducibility of Results
14.
J Phys Chem B ; 128(19): 4670-4684, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38717304

ABSTRACT

Ryanodine receptor type 1 (RyR1) is a Ca2+-release channel central to skeletal muscle excitation-contraction (EC) coupling. RyR1's cryo-EM structures reveal a zinc-finger motif positioned within the cytoplasmic C-terminal domain (CTD). Yet, owing to limitations in cryo-EM resolution, RyR1 structures lack precision in detailing the metal coordination structure, prompting the need for an accurate model. In this study, we employed molecular dynamics (MD) simulations and the density functional theory (DFT) method to refine the binding characteristics of Zn2+ in the zinc-finger site of the RyR1 channel. Our findings also highlight substantial conformational changes in simulations conducted in the absence of Zn2+. Notably, we observed a loss of contact at the interface between protein domains proximal to the zinc-finger site, indicating a crucial role of Zn2+ in maintaining structural integrity and interdomain interactions within RyR1. Furthermore, this study provides valuable insights into the modulation of ATP, Ca2+, and caffeine binding, shedding light on the intricate relationship between Zn2+ coordination and the dynamic behavior of RyR1. Our integrative approach combining MD simulations and DFT calculations enhances our understanding of the molecular mechanisms governing ligand binding in RyR1.


Subject(s)
Molecular Dynamics Simulation , Ryanodine Receptor Calcium Release Channel , Zinc , Ryanodine Receptor Calcium Release Channel/chemistry , Ryanodine Receptor Calcium Release Channel/metabolism , Zinc/chemistry , Zinc/metabolism , Ligands , Calcium/chemistry , Calcium/metabolism , Density Functional Theory , Binding Sites , Protein Binding , Zinc Fingers , Caffeine/chemistry , Caffeine/metabolism , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Humans
15.
Chem Biodivers ; 21(7): e202400050, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38719741

ABSTRACT

Caffeine and purine derivatives represent interesting chemical moieties, which show various biological activities. Caffeine is an alkaloid that belongs to the family of methylxanthine alkaloids and it is present in food, beverages, and drugs. Coffee, tea, and some other beverages are a major source of caffeine in the human diet. Caffeine can be extracted from tea or coffee using hot water with dichloromethane or chloroform and the leftover is known as decaffeinated coffee or tea. Caffeine and its derivatives were synthesized via different procedures on small and large scales. It competitively antagonizes the adenosine receptors (ARs), which are G protein-coupled receptors largely distributed in the human body, including the heart, vessels, brain, and kidneys. Recently, many reports showed the effect of caffeine derivatives in the treatment of many diseases such as Alzheimer's, asthma, parkinsonism, and cancer. Also, it is used as an antioxidant, anti-inflammatory, analgesic, and hypocholesterolemic agent. The present review article discusses the synthesis, reactivity, and biological and pharmacological properties of caffeine and its derivatives. The biosynthesis and biotransformation of caffeine in coffee and tea leaves and the human body were summarized in the review.


Subject(s)
Caffeine , Purines , Animals , Humans , Caffeine/chemistry , Caffeine/metabolism , Caffeine/pharmacology , Coffee/chemistry , Coffee/metabolism , Purines/chemistry , Purines/biosynthesis , Purines/pharmacology , Purines/metabolism
16.
J Chromatogr Sci ; 62(7): 627-634, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38704242

ABSTRACT

Design of experiment is an efficient and cost-effective tool to optimize the chromatographic separation of a multicomponent mixture. The central composite design was conducted to develop and optimize a green high performance liquid chromatography (HPLC) method for simultaneous quantitation of a quaternary mixture of paracetamol, chlorpheniramine maleate, caffeine and ascorbic acid in their pharmaceutical dosage form as well as the determination of their dissolution profile. A five-level three-factor model was performed to investigate the effect of mobile phase composition, pH and flow rate on enhanced resolution and short run time. Analysis was performed using a Kinitex EVO C18 column and a mobile phase composed of methanol: 0.02 M phosphate buffer pH 3.3 (34:66, v/v) at 1.0 mL/min using photodiode array detection. Optimum chromatographic separation was achieved in <6 min with a desirability of 0.999. Linearity was achieved over a range of 1.00-300.00, 1.00-50.00, 2.00-50.00 and 2.00-100.00 µg/mL for paracetamol, chlorpheniramine maleate, caffeine and ascorbic acid, respectively, with a limit of detection (<0.1 µg/mL). The greenness profile was evaluated using the analytical eco-scale and Analytical GREEnness Metric Approach with values of 81 and 0.77, respectively.


Subject(s)
Acetaminophen , Ascorbic Acid , Caffeine , Chlorpheniramine , Limit of Detection , Chlorpheniramine/analysis , Chlorpheniramine/chemistry , Chromatography, High Pressure Liquid/methods , Caffeine/analysis , Caffeine/chemistry , Ascorbic Acid/analysis , Ascorbic Acid/chemistry , Acetaminophen/analysis , Acetaminophen/chemistry , Reproducibility of Results , Linear Models , Green Chemistry Technology/methods , Tablets
17.
Mol Pharm ; 21(6): 2828-2837, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38723178

ABSTRACT

Nefecon, a targeted-release capsule formulation of budesonide approved for the reduction of proteinuria in adults with primary immunoglobulin A nephropathy, targets overproduction of galactose-deficient immunoglobulin A type 1 in the Peyer's patches at the gut mucosal level. To investigate whether the commercial formulation of Nefecon capsules reliably releases budesonide to the distal ileum, a human study was conducted with test capsules reproducing the delayed-release function of Nefecon capsules. Caffeine was included in the test capsules as a marker for capsule opening in the gut since it appears rapidly in saliva after release from orally administered dosage forms. Magnetic resonance imaging with black iron oxide was used to determine the capsule's position in the gut at the time caffeine was first measured in saliva and additionally to directly visualize dispersion of the capsule contents in the gut. In vitro dissolution results confirmed that the test capsules had the same delayed-release characteristics as Nefecon capsules. In 10 of 12 human volunteers, the capsule was demonstrated to open in the distal ileum; in the other two subjects, it opened just past the ileocecal junction. These results compared favorably with the high degree of variability seen in other published imaging studies of delayed-release formulations targeting the gut. The test capsules were shown to reliably deliver their contents to the distal ileum, the region with the highest concentration of Peyer's patches.


Subject(s)
Budesonide , Capsules , Drug Delivery Systems , Ileum , Humans , Ileum/metabolism , Ileum/drug effects , Adult , Drug Delivery Systems/methods , Male , Budesonide/administration & dosage , Budesonide/pharmacokinetics , Budesonide/chemistry , Female , Capsules/chemistry , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/pharmacokinetics , Magnetic Resonance Imaging/methods , Administration, Oral , Middle Aged , Caffeine/chemistry , Caffeine/administration & dosage , Peyer's Patches/metabolism , Peyer's Patches/drug effects , Young Adult
18.
Chemosphere ; 358: 142222, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714249

ABSTRACT

In this study, neural networks and support vector regression (SVR) were employed to predict the degradation over three pharmaceutically active compounds (PhACs): Ibuprofen (IBP), diclofenac (DCF), and caffeine (CAF) within a stirred reactor featuring a flotation cell with two non-concentric ultraviolet lamps. A total of 438 datapoints were collected from published works and distributed into 70% training and 30% test datasets while cross-validation was utilized to assess the training reliability. The models incorporated 15 input variables concerning reaction kinetics, molecular properties, hydrodynamic information, presence of radiation, and catalytic properties. It was observed that the Support Vector Regression (SVR) presented a poor performance as the ε hyperparameter ignored large error over low concentration levels. Meanwhile, the Artificial Neural Networks (ANN) model was able to provide rough estimations on the expected degradation of the pollutants without requiring information regarding reaction rate constants. The multi-objective optimization analysis suggested a leading role due to ozone kinetic for a rapid degradation of the contaminants and most of the results required intensification with hydrogen peroxide and Fenton process. Although both models were affected by accuracy limitations, this work provided a lightweight model to evaluate different Advanced Oxidation Processes (AOPs) by providing general information regarding the process operational conditions as well as know molecular and catalytic properties.


Subject(s)
Diclofenac , Hydrogen Peroxide , Ibuprofen , Machine Learning , Neural Networks, Computer , Diclofenac/chemistry , Hydrogen Peroxide/chemistry , Ibuprofen/chemistry , Kinetics , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Caffeine/chemistry , Oxidation-Reduction , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/analysis , Ozone/chemistry , Support Vector Machine , Cost-Benefit Analysis , Ultraviolet Rays , Catalysis , Photolysis
19.
Article in English | MEDLINE | ID: mdl-38781815

ABSTRACT

In this work, a new ultra-performance liquid chromatography method based on photodiode array detection (UPLC-PDA) was first developed for the quantitative analysis of the quaternary mixture of ascorbic acid (AA), paracetamol (PAR), caffeine (CAF) and chlorpheniramine maleate (CPA) in a commercial dosage form. The developed UPLC-PDA method offered a new possibility for the co-determination of four active ingredients in a drug combination with short run time and simple sample preparation. The successful chromatographic separation of the four drugs was performed using a Waters Acquity UPLC BEH C18 column (1.7 µm 2.1 × 100 mm) (Mildford, USA) and a mobile phase consisting of water (12 %), acetonitrile (13 %) and 0.1 M H3PO4 (75 %) at a flow rate of 0.25 mL/min. The validation of the proposed UPLC-PDA approach was verified by analyzing synthetic mixtures, inter- and intra-day experiments, and commercial powder samples and provided satisfactory results.


Subject(s)
Acetaminophen , Caffeine , Chlorpheniramine , Chromatography, High Pressure Liquid/methods , Reproducibility of Results , Caffeine/analysis , Caffeine/chemistry , Acetaminophen/analysis , Acetaminophen/chemistry , Linear Models , Chlorpheniramine/analysis , Chlorpheniramine/chemistry , Limit of Detection , Ascorbic Acid/analysis , Ascorbic Acid/chemistry , Drug Combinations
20.
Eur J Pharm Sci ; 198: 106788, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38705421

ABSTRACT

Physiologically based pharmacokinetic (PBPK) models can help to understand the effects of gastric emptying on pharmacokinetics and in particular also provide a platform for understanding mechanisms of food effects, as well as extrapolation between different postprandial conditions, whether standardized clinical or patient-oriented, non-clinical conditions. By integrating biorelevant dissolution data from the GastroDuo dissolution model into a previously described mechanistic model of fed-state gastric emptying, we simulated the effects of a high-calorie high-fat meal on the pharmacokinetics of sildenafil, febuxostat, acetylsalicylic acid, theobromine and caffeine. The model was able to simulate the variability in Cmax and tmax caused by the presence of the stomach road. The main influences investigated to affect the gastric emptying process were drug solubility (theobromine and caffeine), tablet dissolution rate (acetylsalicylic acid) and sensitivity to gastric motility (sildenafil and febuxostat). Finally, we showed how PBPK models can be used to extrapolate pharmacokinetics between different prandial states using theobromine as an example with results from a clinical study being presented.


Subject(s)
Computer Simulation , Gastric Emptying , Models, Biological , Postprandial Period , Solubility , Gastric Emptying/physiology , Postprandial Period/physiology , Humans , Febuxostat/pharmacokinetics , Febuxostat/chemistry , Theobromine/pharmacokinetics , Theobromine/chemistry , Caffeine/pharmacokinetics , Caffeine/chemistry , Caffeine/administration & dosage , Sildenafil Citrate/pharmacokinetics , Sildenafil Citrate/chemistry , Drug Liberation , Aspirin/pharmacokinetics , Aspirin/chemistry , Aspirin/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL