Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.143
Filter
1.
Sci Rep ; 14(1): 10309, 2024 05 05.
Article in English | MEDLINE | ID: mdl-38705929

ABSTRACT

Aplacophoran molluscs are shell-less and have a worm-like body which is covered by biomineralized sclerites. We investigated sclerite crystallography and the sclerite mosaic of the Solenogastres species Dorymenia sarsii, Anamenia gorgonophila, and Simrothiella margaritacea with electron-backscattered-diffraction (EBSD), laser-confocal-microscopy and FE-SEM imaging. The soft tissue of the molluscs is covered by spicule-shaped, aragonitic sclerites. These are sub-parallel to the soft body of the organism. We find, for all three species, that individual sclerites are untwinned aragonite single crystals. For individual sclerites, aragonite c-axis is parallel to the morphological, long axis of the sclerite. Aragonite a- and b-axes are perpendicular to sclerite aragonite c-axis. For the scleritomes of the investigated species we find different sclerite and aragonite crystal arrangement patterns. For the A. gorgonophila scleritome, sclerite assembly is disordered such that sclerites with their morphological, long axis (always the aragonite c-axis) are pointing in many different directions, being, more or less, tangential to cuticle surface. For D. sarsii, the sclerite axes (equal to aragonite c-axes) show a stronger tendency to parallel arrangement, while for S. margaritacea, sclerite and aragonite organization is strongly structured into sequential rows of orthogonally alternating sclerite directions. The different arrangements are well reflected in the structured orientational distributions of aragonite a-, b-, c-axes across the EBSD-mapped parts of the scleritomes. We discuss that morphological and crystallographic preferred orientation (texture) is not generated by competitive growth selection (the crystals are not in contact), but is determined by templating on organic matter of the sclerite-secreting epithelial cells and associated papillae.


Subject(s)
Mollusca , Animals , Mollusca/chemistry , Calcium Carbonate/chemistry , Crystallography/methods , Biomineralization , Animal Shells/chemistry , Microscopy, Electron, Scanning
2.
J Hazard Mater ; 471: 134344, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38678706

ABSTRACT

More information is needed to fully comprehend how acid mine drainage (AMD) affects the phototransformation of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in karst water and sewage-irrigated farmland soil with abundant carbonate rocks (CaCO3) due to increasing pollution of AMD formed from pyrite (FeS2). The results showed FeS2 accelerated the inactivation of ARB with an inactivation of 8.7 log. Notably, extracellular and intracellular ARGs and mobile genetic elements (MGEs) also experienced rapid degradation. Additionally, the pH of the solution buffered by CaCO3 significantly influenced the photo-inactivation of ARB. The Fe2+ in neutral solution was present in Fe(II) coordination with strong reducing potential and played a crucial role in generating •OH (7.0 µM), which caused severe damage to ARB, ARGs, and MGEs. The •OH induced by photo-Fenton of FeS2 posed pressure to ARB, promoting oxidative stress response and increasing generation of reactive oxygen species (ROS), ultimately damaging cell membranes, proteins and DNA. Moreover, FeS2 contributed to a decrease in MIC of ARB from 24 mg/L to 4 mg/L. These findings highlight the importance of AMD in influencing karst water and sewage-irrigated farmland soil ecosystems. They are also critical in advancing the utilization of FeS2 to inactivate pathogenic bacteria.


Subject(s)
Calcium Carbonate , Iron , Mining , Sulfides , Calcium Carbonate/chemistry , Iron/chemistry , Sulfides/chemistry , Interspersed Repetitive Sequences , Drug Resistance, Microbial/genetics , Bacteria/genetics , Bacteria/drug effects , Genes, Bacterial , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology
3.
Sci Total Environ ; 929: 172572, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38641113

ABSTRACT

Carbonate bound arsenic act as an important reservoir for arsenic (As) in nature aquifers. Sulfate-reducing bacteria (SRB), one of the dominant bacterial species in reductive groundwater, profoundly affects the biogeochemical cycling of As. However, whether and how SRB act on the migration and transformation of carbonate bound arsenic remains to be elucidated. Batch culture experiment was employed using filed collected arsenic bearing calcite to investigate the release and species transformation of As by SRB. We found that arsenic in the carbonate samples mostly exist as inorganic As(V) (93.92 %) and As(III). The present of SRB significantly facilitated arsenic release from carbonates with a maximum of 22.3 µg/L. The main release mechanisms of As by SRB include 1) calcite dissolution and the liberate of arsenic in calcite lattices, and 2) the break of H-bonds frees arsenic absorbed on carbonate surface. A redistribution of arsenic during culture incubation took place which may due to the precipitation of As2Sx or secondary FeAl minerals. To our best knowledge, it is the first experimental study focusing on the release of carbonate bound arsenic by SRB. This study provides new insights into the fate and transport of arsenic mediated by microorganism within high arsenic groundwater-sediment system.


Subject(s)
Arsenic , Carbonates , Groundwater , Sulfates , Water Pollutants, Chemical , Arsenic/metabolism , Groundwater/chemistry , Groundwater/microbiology , Water Pollutants, Chemical/metabolism , Carbonates/metabolism , Sulfates/metabolism , Bacteria/metabolism , Calcium Carbonate/metabolism , Calcium Carbonate/chemistry
4.
Int J Biol Macromol ; 267(Pt 2): 131554, 2024 May.
Article in English | MEDLINE | ID: mdl-38615864

ABSTRACT

Cuttlefish bone biowaste is a potential source of a composite matrix based on chitin and aragonite. In the present work, we propose for the first time the elaboration of biocomposites based on chitosan and aragonite through the valorization of bone waste. The composition of the ventral and dorsal surfaces of bone is well studied by ICP-OES. An extraction process has been applied to the dorsal surface to extract ß-chitin and chitosan with controlled physico-chemical characteristics. In parallel, aragonite isolation was carried out on the ventral side. The freeze-drying method was used to incorporate aragonite into the chitosan polymer to form CHS/ArgS biocomposites. Physicochemical characterizations were performed by FT-IR, SEM, XRD, 1H NMR, TGA/DSC, potentiometry and viscometry. The ICP-OES method was used to evaluate in vitro the bioactivity level of biocomposite in simulated human plasma (SBF), enabling analysis of the interactions between the material and SBF. The results obtained indicate that the CHS/ArgS biocomposite derived from cuttlefish bone exhibits bioactivity, and that chitosan enhances the bioactivity of aragonite. The CHS/ArgS biocomposite showed excellent ability to form an apatite layer on its surface. After three days' immersion, FTIR and SEM analyses confirmed the formation of this layer.


Subject(s)
Biocompatible Materials , Calcium Carbonate , Chitosan , Decapodiformes , Chitosan/chemistry , Decapodiformes/chemistry , Animals , Calcium Carbonate/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Bone and Bones/chemistry , Spectroscopy, Fourier Transform Infrared , Chemical Phenomena , Humans
5.
J Mater Chem B ; 12(19): 4642-4654, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38592460

ABSTRACT

The therapeutic efficacy of Fenton or Fenton-like nanocatalysts is usually restricted by the inappropriate pH value and limited concentration of hydrogen peroxide (H2O2) at the tumor site. Herein, calcium carbonate (CaCO3)-mineralized cobalt silicate hydroxide hollow nanocatalysts (CSO@CaCO3, CC) were synthesized and loaded with curcumin (CCC). This hybrid system can simultaneously realize nanocatalytic therapy, chemotherapy and calcium overload. With the stabilization of liposomes, CCC is able to reach the tumor site smoothly. The CaCO3 shell first degrades in an acidic tumor environment, releasing Cur and Ca2+, and the pH value of the tumor is increased simultaneously. Then the exposed CSO catalyzes the Fenton-like reaction to convert H2O2 into ˙OH and enhances the cytotoxicity of curcumin (Cur) by catalytically oxidizing it to a ˙Cur radical. Curcumin not only induces the chemotherapy effect but also serves as a nucleophilic ligand and an electron donor in the catalytic system, enhancing the Fenton-like activity of CCC by electron transfer. In addition, calcium overload also amplifies the efficacy of ROS-based therapy. In vitro and in vivo results show that CCC exhibited an excellent synergistic tumor inhibition effect without any clear side effect. This work proposes a novel concept of nanocatalytic therapy/chemotherapy synergistic mechanism by the ligand-induced enhancement of Fenton-like catalytic activity, and inspires the construction of combined therapeutic nanoplatforms and multifunctional nanocarriers for drug and ion delivery in the future.


Subject(s)
Antineoplastic Agents , Calcium , Cobalt , Curcumin , Nanoparticles , Curcumin/chemistry , Curcumin/pharmacology , Cobalt/chemistry , Cobalt/pharmacology , Humans , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Mice , Calcium/chemistry , Calcium/metabolism , Nanoparticles/chemistry , Catalysis , Calcium Carbonate/chemistry , Ligands , Particle Size , Mice, Inbred BALB C , Drug Carriers/chemistry , Drug Screening Assays, Antitumor , Cell Proliferation/drug effects , Female , Cell Survival/drug effects , Cell Line, Tumor
6.
Life Sci Space Res (Amst) ; 41: 146-157, 2024 May.
Article in English | MEDLINE | ID: mdl-38670641

ABSTRACT

Astronauts are exposed to severely stressful physiological conditions due to microgravity and increased space radiation. Space environment affects every organ and cell in the body and the significant adverse effects of long-term weightlessness include muscle atrophy and deterioration of the skeleton (spaceflight osteopenia). Amorphous Calcium Carbonate (ACC) emerges as a promising candidate for prevention of these effects, owing to its unique physicochemical properties and its potential to address the intricately linked nature of bone-muscle crosstalk. Reported here are two studies carried out on the International Space Station (ISS). The first, performed in 2018 as a part of the Ramon-Spacelab project, was a preliminary experiment, in which stromal murine cells were differentiated into osteoblasts when ACC was added to the culture medium. A parallel experiment was done on Earth as a control. The second study was part of Axiom-1's Rakia project mission launched to the ISS on 2022 utilizing organ-on-a-chip methodology with a specially designed autonomous module. In this experiment, human bone-marrow derived mesenchymal stem cells (hBM-MSCs) and human primary muscle cells were cultured in the presence or absence of ACC, in duplicates. The results showed that ACC enhanced differentiation of human primary skeletal muscle cells into myotubes. Similarly, hBM-MSCs were differentiated significantly better into osteocytes in the presence of ACC leading to increased calcium deposits. The results, combined with previous data, support the use of ACC as an advantageous supplement for preventing muscle and bone deterioration in outer space conditions, facilitating extended extraterrestrial voyages and colonization.


Subject(s)
Calcium Carbonate , Cell Differentiation , Mesenchymal Stem Cells , Muscle Fibers, Skeletal , Osteogenesis , Weightlessness , Humans , Mesenchymal Stem Cells/drug effects , Cell Differentiation/drug effects , Osteogenesis/drug effects , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/cytology , Calcium Carbonate/chemistry , Cells, Cultured , Space Flight , Mice
7.
Langmuir ; 40(16): 8373-8392, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38606767

ABSTRACT

Amorphous calcium carbonate (ACC) is an important precursor phase for the formation of aragonite crystals in the shells of Pinctada fucata. To identify the ACC-binding protein in the inner aragonite layer of the shell, extracts from the shell were used in the ACC-binding experiments. Semiquantitative analyses using liquid chromatography-mass spectrometry revealed that paramyosin was strongly associated with ACC in the shell. We discovered that paramyosin, a major component of the adductor muscle, was included in the myostracum, which is the microstructure of the shell attached to the adductor muscle. Purified paramyosin accumulates calcium carbonate and induces the prism structure of aragonite crystals, which is related to the morphology of prism aragonite crystals in the myostracum. Nuclear magnetic resonance measurements revealed that the Glu-rich region was bound to ACC. Activity of the Glu-rich region was stronger than that of the Asp-rich region. These results suggest that paramyosin in the adductor muscle is involved in the formation of aragonite prisms in the myostracum.


Subject(s)
Animal Shells , Calcium Carbonate , Pinctada , Tropomyosin , Animals , Pinctada/chemistry , Pinctada/metabolism , Calcium Carbonate/chemistry , Calcium Carbonate/metabolism , Animal Shells/chemistry , Animal Shells/metabolism , Tropomyosin/chemistry , Tropomyosin/metabolism
8.
J Colloid Interface Sci ; 666: 244-258, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38598997

ABSTRACT

Starvation therapy has shown promise as a cancer treatment, but its efficacy is often limited when used alone. In this work, a multifunctional nanoscale cascade enzyme system, named CaCO3@MnO2-NH2@GOx@PVP (CMGP), was fabricated for enhanced starvation/chemodynamic combination cancer therapy. CMGP is composed of CaCO3 nanoparticles wrapped in a MnO2 shell, with glucose oxidase (GOx) adsorbed and modified with polyvinylpyrrolidone (PVP). MnO2 decomposes H2O2 in cancer cells into O2, which enhances the efficiency of GOx-mediated starvation therapy. CaCO3 can be decomposed in the acidic cancer cell environment, causing Ca2+ overload in cancer cells and inhibiting mitochondrial metabolism. This synergizes with GOx to achieve more efficient starvation therapy. Additionally, the H2O2 and gluconic acid produced during glucose consumption by GOx are utilized by MnO2 with catalase-like activity to enhance O2 production and Mn2+ release. This process accelerates glucose consumption, reactive oxygen species (ROS) generation, and CaCO3 decomposition, promoting the Ca2+ release. CMGP can alleviate tumor hypoxia by cycling the enzymatic cascade reaction, which increases enzyme activity and combines with Ca2+ overload to achieve enhanced combined starvation/chemodynamic therapy. In vitro and in vivo studies demonstrate that CMGP has effective anticancer abilities and good biosafety. It represents a new strategy with great potential for combined cancer therapy.


Subject(s)
Calcium Carbonate , Glucose Oxidase , Manganese Compounds , Oxides , Glucose Oxidase/metabolism , Glucose Oxidase/chemistry , Glucose Oxidase/pharmacology , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Oxides/chemistry , Oxides/pharmacology , Humans , Animals , Calcium Carbonate/chemistry , Calcium Carbonate/pharmacology , Calcium Carbonate/metabolism , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Nanoparticles/chemistry , Povidone/chemistry , Povidone/pharmacology , Tumor Hypoxia/drug effects , Reactive Oxygen Species/metabolism , Cell Survival/drug effects , Particle Size , Cell Line, Tumor , Hydrogen Peroxide/metabolism , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Surface Properties , Mice, Inbred BALB C
9.
Biotechnol J ; 19(4): e2300466, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38581094

ABSTRACT

The bacterium Sporosarcina pasteurii is the most commonly used microorganism for Microbial Induced Calcite Precipitation (MICP) due to its high urease activity. To date, no proper fed-batch cultivation protocol for S. pasteurii has been published, even though this cultivation method has a high potential for reducing costs of producing microbial ureolytic biomass. This study focusses on fed-batch cultivation of S. pasteurii DSM33. The study distinguishes between limited fed-batch cultivation and extended batch cultivation. Simply feeding glucose to a S. pasteurii culture does not seem beneficial. However, it was exploited that S. pasteurii is auxotrophic for two vitamins and amino acids. Limited fed-batch cultivation was accomplished by feeding the necessary vitamins or amino acids to a culture lacking them. Feeding nicotinic acid to a nicotinic acid deprived culture resulted in a 24% increase of the specific urease activity compared to a fed culture without nicotinic acid limitation. Also, extended batch cultivation was explored. Feeding a mixture of glucose and yeast extract results in OD600 of ≈70 at the end of cultivation, which is the highest value published in literature so far. These results have the potential to make MICP applications economically viable.


Subject(s)
Calcium Carbonate , Nicotinic Acids , Sporosarcina , Calcium Carbonate/chemistry , Urease/metabolism , Biomass , Urea/chemistry , Urea/metabolism , Vitamins , Amino Acids , Glucose
10.
Chemosphere ; 357: 142071, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641290

ABSTRACT

To overcome the global water shortage, the treated wastewater is increasingly utilized in agricultural irrigation, and thus reducing freshwater consumption and increasing the water sustainability. Drip irrigation technology is the most appropriate irrigation method to utilize these water sources. However, its operating performance is negatively affected by calcium carbonate (CaCO3) scaling, which is one of the most dominant precipitations and also closely related to dissolved ions and the hydraulic characteristics inside irrigation systems. Thus, the effects of eight common dissolved ions (K+, Mg2+, Mn2+, Zn2+, Fe3+, NO3-, SO42-, and PO43-) in these water sources and four hydraulic shear stresses (0, 0.2, 0.4, and 0.6 Pa) on CaCO3 scaling formation were assessed in this study. Results showed that CaCO3 scaling was primarily formed of calcite and aragonite. Fe3+ would significantly accelerate the CaCO3 scaling accumulation, as it reduced the unit cell volume and chemical bonds of calcite, enhancing calcite adhesion and stability. On the other hand, Mg2+, Mn2+, NO3-, SO42-, and PO43- significantly inhibited CaCO3 scaling. Among them, Mg2+, Mn2+, and PO43- followed the typical water chemical precipitation rule, while NO3- increased water molecule diffusion rate and thus decreased the possibility that Ca2+ and CO32- to precipitate. SO42- grabbed the binding point belonging to CO32- and was adsorbed on the calcite crystal, which inhibited crystal growth. However, those treatments under K+ and Zn2+ did not reach a significant level due to their solubleness. During the precipitation of CaCO3, there were significant (p < 0.01) interactions between dissolved ions and hydraulic shear stresses. When hydraulic shear stresses varied, the effects of Fe3+ and SO42- on the CaCO3 scaling were relatively weakened, while that of Mg2+ was relatively strengthened. In return, dissolved ions affected the effect of hydraulic shear stresses on CaCO3 scaling. Overall, the results obtained could provide theoretical reference for high-efficiency utilization of treated wastewater for agricultural irrigation through the management of CaCO3 scaling.


Subject(s)
Calcium Carbonate , Wastewater , Calcium Carbonate/chemistry , Wastewater/chemistry , Waste Disposal, Fluid/methods , Ions/chemistry , Agricultural Irrigation/methods , Chemical Precipitation
11.
Sci Rep ; 14(1): 8752, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38627410

ABSTRACT

The main challenge in the large-scale application of MICP lies in its low efficiency and promoting biofilm growth can effectively address this problem. In the present study, a prediction model was proposed using the response surface method. With the prediction model, optimum concentrations of nutrients in the medium can be obtained. Moreover, the optimized medium was compared with other media via bio-cementation tests. The results show that this prediction model was accurate and effective, and the predicted results were close to the measured results. By using the prediction model, the optimized culture media was determined (20.0 g/l yeast extract, 10.0 g/l polypeptone, 5.0 g/l ammonium sulfate, and 10.0 g/l NaCl). Furthermore, the optimized medium significantly promoted the growth of biofilm compared to other media. In the medium, the effect of polypeptone on biofilm growth was smaller than the effect of yeast extract and increasing the concentration of polypeptone was not beneficial in promoting biofilm growth. In addition, the sand column solidified with the optimized medium had the highest strength and the largest calcium carbonate contents. The prediction model represents a platform technology that leverages culture medium to impart novel sensing, adjustive, and responsive multifunctionality to structural materials in the civil engineering and material engineering fields.


Subject(s)
Calcium Carbonate , Cementation , Calcium Carbonate/chemistry , Sand , Chemical Precipitation
12.
Chemosphere ; 356: 141913, 2024 May.
Article in English | MEDLINE | ID: mdl-38582164

ABSTRACT

Rubber wastewater contains variable low pH with a high load of nutrients such as nitrogen, phosphorous, suspended solids, high biological oxygen demand (BOD), and chemical oxygen demand (COD). Ureolytic and biofilm-forming bacterial strains Bacillus sp. OS26, Bacillus cereus OS36, Lysinibacillus macroides ST13, and Burkholderia multivorans DF12 were isolated from rubber processing centres showed high urease activity. Microscopic analyses evaluated the structural organization of biofilm. Extracellular polymeric substances (EPS) matrix of the biofilm of the strains showed the higher abundance of polysaccharides and lipids which help in the attachment and absorption of nutrients. The functional groups of polysaccharides, proteins, and lipids present in EPS were revealed by ATR-FTIR and 1H NMR. A consortium composed of B. cereus OS36, L. macroides ST13, and B. multivorans DF12 showed the highest biofilm formation, and efficiently reduced 62% NH3, 72% total nitrogen, and 66% PO43-. This consortium also reduced 76% BOD, 61% COD, and 68% TDS. After bioremediation, the pH of the remediated wastewater increased to 11.19. To reduce the alkalinity of discharged wastewater, CaCl2 and urea were added for calcite reaction. The highest CaCO3 precipitate was obtained at 24.6 mM of CaCl2, 2% urea, and 0.0852 mM of nickel (Ni2+) as a co-factor which reduced the pH to 7.4. The elemental composition of CaCO3 precipitate was analyzed by SEM-EDX. XRD analysis of the bacterially-induced precipitate revealed a crystallinity index of 0.66. The resulting CaCO3 precipitate was used as soil stabilizer. The precipitate filled the void spaces of the treated soil, reduced the permeability by 80 times, and increased the compression by 8.56 times than untreated soil. Thus, CaCO3 precipitated by ureolytic and biofilm-forming bacterial consortium through ureolysis can be considered a promising approach for neutralization of rubber wastewater and soil stabilization.


Subject(s)
Biodegradation, Environmental , Biofilms , Calcium Carbonate , Rubber , Wastewater , Calcium Carbonate/chemistry , Calcium Carbonate/metabolism , Wastewater/chemistry , Hydrogen-Ion Concentration , Soil/chemistry , Bacteria/metabolism , Waste Disposal, Fluid/methods , Nitrogen/metabolism , Urea/metabolism , Urease/metabolism
13.
Int J Biol Macromol ; 266(Pt 2): 131110, 2024 May.
Article in English | MEDLINE | ID: mdl-38522694

ABSTRACT

Chitosan (CS) and sodium alginate (SA)-based biocomposites (CSA) were prepared with the in-situ generation of Calcium Carbonate (CSAX_Ca) through a simple, straightforward, economical, and eco-friendly procedure. Different drying conditions (X) were tested to achieve suitable structural and surface characteristics to enhance adsorption capacity: freeze-dried (L), vacuum-dried with methanol (M), and freeze-dried + vacuum-dried with methanol (LM). Temperature and adsorbent dosage effects on the adsorption capacity of Cu2+ or Pb2+ were examined. Results showed that the higher-yielding biocomposite (CSALM_Ca) exhibited rapid adsorption and good diffusion properties, achieving removal above 90 % within contaminant initial concentration ranges of 10-100 mg/L. At 35 °C, a pseudo-second-order kinetic and the Langmuir model effectively described kinetics and isotherms, revealing maximum adsorption (qe, max) of 429 mgCu2+/L and 1742 mgPb2+/g. Characterization through FTIR, XRD, and SEM of the as-prepared adsorbents confirmed the presence of CaCO3 in vaterite and calcite forms and the influence of drying conditions on the material morphology. Post-adsorption material characterization, in combination with adsorption findings, revealed chemisorption processes involving Ca2+ ion exchange for Cu2+ or Pb2+, resulting in surface-insoluble compounds. The best-performing material showed that after three reuse cycles, the removal of Cu2+ and Pb2+ decreased to 75 % and 62 %, respectively.


Subject(s)
Alginates , Calcium Carbonate , Chitosan , Copper , Lead , Water Pollutants, Chemical , Water Purification , Chitosan/chemistry , Copper/chemistry , Alginates/chemistry , Lead/chemistry , Adsorption , Calcium Carbonate/chemistry , Water Pollutants, Chemical/chemistry , Kinetics , Water Purification/methods , Water/chemistry , Surface Properties , Temperature
14.
Int J Biol Macromol ; 266(Pt 2): 131076, 2024 May.
Article in English | MEDLINE | ID: mdl-38531522

ABSTRACT

Physically crosslinked hydrogels have shown great potential as excellent and eco-friendly matrices for wound management. Herein, we demonstrate the development of a thermosensitive chitosan hydrogel system using CaCO3 as a gelling agent, followed by CaCO3 mineralization to fine-tune its properties. The chitosan hydrogel effectively gelled at 37 °C and above after an incubation period of at least 2 h, facilitated by the CaCO3-mediated slow deprotonation of primary amine groups on chitosan polymers. Through synthesizing and characterizing various chitosan hydrogel compositions, we found that mineralization played a key role in enhancing the hydrogels' mechanical strength, viscosity, and thermal inertia. Moreover, thorough in vitro and in vivo assessments of the chitosan-based hydrogels, whether modified with mineralization or not, demonstrated their outstanding hemostatic activity (reducing coagulation time by >41 %), biocompatibility with minimal inflammation, and biodegradability. Importantly, in vivo evaluations using a rat burn wound model unveiled a clear wound healing promotion property of the chitosan hydrogels, and the mineralized form outperformed its precursor, with a reduction of >7 days in wound closure time. This study presents the first-time utilization of chitosan/CaCO3 as a thermogelation formulation, offering a promising prototype for a new family of thermosensitive hydrogels highly suited for wound care applications.


Subject(s)
Calcium Carbonate , Chitosan , Hydrogels , Wound Healing , Chitosan/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Calcium Carbonate/chemistry , Wound Healing/drug effects , Rats , Temperature , Male , Viscosity , Humans , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Burns/drug therapy , Burns/therapy
15.
Curr Microbiol ; 81(5): 109, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466427

ABSTRACT

Bacteria producing urea amidohydrolases (UA) and carbonic anhydrases (CA) are of great importance in civil engineering as these enzymes are responsible for microbially induced calcium carbonate precipitation (MICCP). In this investigation, genomic insights of Bacillus paranthracis CT5 and the expression of genes underlying in MICCP were studied. B. paranthracis produced a maximum level of UA (669.3 U/ml) and CA (125 U/ml) on 5th day of incubation and precipitated 197 mg/100 ml CaCO3 after 7 days of incubation. After 28 days of curing, compressive strength of bacterial admixed and bacterial cured (B-B) specimens was 13.7% higher compared to water-mixed and water-cured (W-W) specimens. A significant decrease in water absorption was observed in bacterial-cured specimens compared to water-cured specimens after 28 days of curing. For genome analysis, reads were assembled de novo producing 5,402,771 bp assembly with N50 of 273,050 bp. RAST annotation detected six amidohydrolase and three carbonic anhydrase genes. Among 5700 coding sequences found in genome, COG gene annotation grouped 4360 genes into COG categories with highest number of genes to transcription (435 genes), amino acid transport and metabolism (362 genes) along with cell wall/membrane/envelope biogenesis and ion transport and metabolism. KEGG functional classification predicted 223 pathways consisting of 1,960 genes and the highest number of genes belongs to two-component system (101 genes) and ABC transporter pathways (98 genes) enabling bacteria to sense and respond to environmental signals and actively transport various minerals and organic molecules, which facilitate the active transport of molecules required for MICCP.


Subject(s)
Bacillus , Biomineralization , Carbonic Anhydrases , Bacteria/metabolism , Calcium Carbonate/chemistry , Carbonic Anhydrases/genetics , Carbonic Anhydrases/metabolism , Molecular Sequence Annotation , Water/metabolism , Urease
16.
Environ Pollut ; 348: 123880, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38554835

ABSTRACT

The study aimed to evaluate the potential of a novel isolated ureolytic Enterobacter hormaechei IITISM-SA3 in cadmium bioremoval through MICP. The optimization and modelling of the biotic and abiotic factors affecting the process of mineralization were also performed. In addition, the underlying mechanism of MICP-driven Cd mineralization under microbial-inclusive and cell-free conditions was revealed and supported through the characterization of the bio-precipitates obtained using various characterization techniques. The results indicated that the isolate could remove 97.18% Cd2+ of 11.4 ppm under optimized conditions of 36.86 h, pH 7.63, and biomass dose of 1.75 ml. Besides, the presence and absence of bacterial cells were found to influence both the morphologies and crystalline structures of precipitates. The precipitates obtained under microbial-inclusive conditions showed typical rhombohedral crystalline structures of the composition comprising CaCO3, CdCO3, and 0.67Ca0.33CdCO3. However, the crystalline nature of the precipitate reduced to a nano-sized granular structure in cell-free media. Unlike the cadmium mineralization process under microbial-inclusive media, where bacterial cells serve as nucleation sites for crystallization, the carbonate precipitation effectively captures Cd2+ through co-precipitation, chemisorption, or alternative mechanisms involving interactions between metal ions and CaCO3 under cell-free conditions. The findings presented suggest that using cell-free culture supernatant enriched with carbonate ions provides an avenue that could be harnessed for sustainable metal remediation.


Subject(s)
Cadmium , Calcium Carbonate , Enterobacter , Calcium Carbonate/chemistry , Cadmium/chemistry , Chemical Precipitation , Carbonates/chemistry
17.
Acta Biomater ; 178: 221-232, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38428510

ABSTRACT

The SLC20A2 transporter supplies phosphate ions (Pi) for diverse biological functions in vertebrates, yet has not been studied in crustaceans. Unlike vertebrates, whose skeletons are mineralized mainly by calcium phosphate, only minute amounts of Pi are found in the CaCO3-mineralized exoskeletons of invertebrates. In this study, a crustacean SLC20A2 transporter was discovered and Pi transport to exoskeletal elements was studied with respect to the role of Pi in invertebrate exoskeleton biomineralization, revealing an evolutionarily conserved mechanism for Pi transport in both vertebrates and invertebrates. Freshwater crayfish, including the study animal Cherax quadricarinatus, require repeated molt cycles for their growth. During the molt cycle, crayfish form transient exoskeletal mineral storage organs named gastroliths, which mostly contain amorphous calcium carbonate (ACC), an unstable polymorph long-thought to be stabilized by Pi. RNA interference experiments via CqSLC20A2 dsRNA injections reduced Pi content in C. quadricarinatus gastroliths, resulting in increased calcium carbonate (CaCO3) crystallinity and grain size. The discovery of a SLC20A2 transporter in crustaceans and the demonstration that knocking down its mRNA reduced Pi content in exoskeletal elements offers the first direct proof of a long-hypothesized mechanism by which Pi affects CaCO3 biomineralization in the crustacean exoskeleton. This research thus demonstrated the distinct role of Pi as an amorphous mineral polymorph stabilizer in vivo, suggesting further avenues for amorphous biomaterial studies. STATEMENT OF SIGNIFICANCE: • Crustaceans exoskeletons are hardened mainly by CaCO3, with Pi in minute amounts • Pi was hypothesized to stabilize exoskeletal amorphous mineral forms in vivo • For the first time, transport protein for Pi was discovered in crayfish • Transport knock-down resulted in exoskeletal CaCO3 crystallization and reduced Pi.


Subject(s)
Biomineralization , Calcium Carbonate , Animals , Calcium Carbonate/chemistry , Minerals/metabolism , Astacoidea/chemistry , Astacoidea/metabolism , RNA Interference
18.
Biomater Sci ; 12(9): 2434-2443, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38517309

ABSTRACT

In this study, the formation of protein microspheres through lysosomal enzyme-assisted biomineralized crystallization was demonstrated. Spherical micro-sized hybrid CaCO3 constructs were synthesized and characterized using field-emission scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and particle size analysis. Additionally, parameters such as the Brunauer-Emmett-Teller surface area and single-point total pore volume, and adsorption/desorption analysis were used to investigate the mesoporous properties, which are advantageous for lysosomal enzyme (LE) loading. A LE can be used as an organic template, not only as a morphological controller but also for entrapping LE during the crystallization pathway. The hybrid protein microspheres accommodated 2.3 mg of LE with a 57% encapsulation efficiency and 5.1 wt% loading. The peroxidase activity of the microspheres was calculated and found to be approximately 0.0238 mM-1 min-1. pH-responsive release of the LE from CaCO3 was observed, suggesting potential biomedical and cosmetic applications in acidic environments. The hybrid LE microsphere treatment significantly alleviated melanin production in a dose-dependent manner and further downregulated the mRNA expression of MITF, tyrosinase, TYRP-1, and TYRP-2. These results indicate skin-whitening effects by inhibiting melanin without inducing cytotoxicity. The data provide the first evidence of the potential use of a LE for obtaining hybrid minerals and the effectiveness of biomineralization-based sustainable delivery of enzyme-based vehicles based on organelle-extract-assisted biomineralization.


Subject(s)
Calcium Carbonate , Melanins , Microspheres , Melanins/chemistry , Melanins/metabolism , Calcium Carbonate/chemistry , Calcium Carbonate/pharmacology , Lysosomes/metabolism , Animals , Humans , Hydrogen-Ion Concentration
19.
Acta Biomater ; 178: 244-256, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38460930

ABSTRACT

Guinea fowl eggshells have an unusual structural arrangement that is different from that of most birds, consisting of two distinct layers with different microstructures. This bilayered organization, and distinct microstructural characteristics, provides it with exceptional mechanical properties. The inner layer, constituting about one third of the eggshell thickness, contains columnar calcite crystal units arranged vertically as in most bird shells. However, the thicker outer layer has a more complex microstructural arrangement formed by a switch to smaller calcite domains with diffuse/interlocking boundaries, partly resembling the interfaces seen in mollusk shell nacre. The switching process that leads to this remarkable second-layer microstructure is unknown. Our results indicate that the microstructural switching is triggered by changes in the inter- and intracrystalline organic matrix. During production of the outer microcrystalline layer in the later stages of eggshell formation, the interactions of organic matter with mineral induce an accumulation of defects that increase crystal mosaicity, instill anisotropic lattice distortions in the calcite structure, interrupt epitaxial growth, reduce crystallite size, and induce nucleation events which increase crystal misorientation. These structural changes, together with the transition between the layers and each layer having different microstructures, enhance the overall mechanical strength of the Guinea fowl eggshell. Additionally, our findings provide new insights into how biogenic calcite growth may be regulated to impart unique functional properties. STATEMENT OF SIGNIFICANCE: Avian eggshells are mineralized to protect the embryo and to provide calcium for embryonic chick skeletal development. Their thickness, structure and mechanical properties have evolved to resist external forces throughout brooding, yet ultimately allow them to crack open during chick hatching. One particular eggshell, that of the Guinea fowl, has structural features very different from other galliform birds - it is bilayered, with an inner columnar mineral structure (like in most birds), but it also has an outer layer with a complex microstructure which contributes to its superior mechanical properties. This work provides novel and new fundamental information about the processes and mechanisms that control and change crystal growth during the switch to microcrystalline domains when the second outer layer forms.


Subject(s)
Chickens , Egg Shell , Animals , Egg Shell/chemistry , Calcium Carbonate/chemistry , Minerals
20.
J Hazard Mater ; 469: 134049, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38522207

ABSTRACT

A newly isolated ureolytic bacteria, Brucella intermedia TSBOI, exhibited microbially induced calcite precipitation (MICP) which is a promising technique for the remediation of heavy metals in polluted environments. Brucella intermedia TSBOI achieved 90-100% removal of 1 mmol/L Cu2+/Pb2+/Zn2+ within 72 h. A distinctive feature lies in B. intermedia TSBOI's capacity for the transport and hydrolysis of urea, considered to be critical for its strong urease activity. This study explored the mechanisms of this capacity at the genetic, molecular and protein levels through complete genome sequencing, molecular docking and enzymatic reaction kinetics. The results revealed that, for urea hydrolysis, B. intermedia TSBOI exhibited a comprehensive urease gene cluster, with the key gene ureC demonstrating an absolute expression level approximating to 4 × 104 copies/RNA ng under optimal conditions. Results also confirmed the strong spontaneous, energy-independent binding ability of it's urease to urea, with the lowest Gibbs free energy binding site linking to the three amino acids, alanine, asparagine and serine. The urea transport gene yut presented and expressed, with the absolute expression enhanced in response to increasing urea concentrations. The significant positive correlation between ureC/yut expression levels and urease activity provided a theoretical basis for B. intermedia TSBOI's heavy metal bioremediation potential. ENVIRONMENTAL IMPLICATION: Heavy metals (Cu, Pb and Zn) were studied in this study. Heavy metals are hazardous due to their toxicity, persistence, and ability to bioaccumulate in living organisms. They can cause severe health issues, harm ecosystems, and contaminate air, water, and soil. A novel ureolytic bacteria, Brucella intermedia TSBOI, exhibited microbially induced carbonate precipitation capability was isolated which removed 90-100% of 1 mmol/L Cu2+/Pb2+/Zn2+ within 72 h. Its advantages in urea hydrolysis and transport facilitate the remediation of actual heavy metal contaminated environments.


Subject(s)
Ecosystem , Metals, Heavy , Urease/metabolism , Biomineralization , Hydrolysis , Lead/metabolism , Molecular Docking Simulation , Metals, Heavy/metabolism , Calcium Carbonate/chemistry , Bacteria/metabolism , Soil/chemistry , Urea/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...