Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Biol Int ; 48(5): 695-711, 2024 May.
Article in English | MEDLINE | ID: mdl-38389270

ABSTRACT

Although radiotherapy is the most effective treatment modality for brain tumors, it always injures the central nervous system, leading to potential sequelae such as cognitive dysfunction. Radiation induces molecular, cellular, and functional changes in neuronal and glial cells. The hippocampus plays a critical role in learning and memory; therefore, concerns about radiation-induced injury are widespread. Multiple studies have focused on this complex problem, but the results have not been fully elucidated. Naked mole rat brains were irradiated with 60Co at a dose of 10 Gy. On 7 days, 14 days, and 28 days after irradiation, hippocampi in the control groups were obtained for next-generation sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were subsequently performed. Venn diagrams revealed 580 differentially expressed genes (DEGs) that were common at different times after irradiation. GO and KEGG analyses revealed that the 580 common DEGs were enriched in molecular transducer activity. In particular, CACNA1B mediated regulatory effects after irradiation. CACNA1B expression increased significantly after irradiation. Downregulation of CACNA1B led to a reduction in apoptosis and reactive oxygen species levels in hippocampal neurons. This was due to the interaction between CACNA1B and Nrf2, which disturbed the normal nuclear localization of Nrf2. In addition, CACNA1B downregulation led to a decrease in the cognitive functions of naked mole rats. These findings reveal the pivotal role of CACNA1B in regulating radiation-induced brain injury and will lead to the development of a novel strategy to prevent brain injury after irradiation.


Subject(s)
Brain Injuries , NF-E2-Related Factor 2 , Apoptosis , Brain Injuries/metabolism , Calcium Channels, N-Type/metabolism , Calcium Channels, N-Type/pharmacology , Hippocampus/metabolism , Neurons/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism
2.
Pharmacol Rev ; 67(4): 821-70, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26362469

ABSTRACT

Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential for future drug development. Current therapeutic agents include drugs targeting L-type Ca(V)1.2 calcium channels, particularly 1,4-dihydropyridines, which are widely used in the treatment of hypertension. T-type (Ca(V)3) channels are a target of ethosuximide, widely used in absence epilepsy. The auxiliary subunit α2δ-1 is the therapeutic target of the gabapentinoid drugs, which are of value in certain epilepsies and chronic neuropathic pain. The limited use of intrathecal ziconotide, a peptide blocker of N-type (Ca(V)2.2) calcium channels, as a treatment of intractable pain, gives an indication that these channels represent excellent drug targets for various pain conditions. We describe how selectivity for different subtypes of calcium channels (e.g., Ca(V)1.2 and Ca(V)1.3 L-type channels) may be achieved in the future by exploiting differences between channel isoforms in terms of sequence and biophysical properties, variation in splicing in different target tissues, and differences in the properties of the target tissues themselves in terms of membrane potential or firing frequency. Thus, use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits. Of important future potential are selective Ca(V)1.3 blockers for neuropsychiatric diseases, neuroprotection in Parkinson's disease, and resistant hypertension. In addition, selective or nonselective T-type channel blockers are considered potential therapeutic targets in epilepsy, pain, obesity, sleep, and anxiety. Use-dependent N-type calcium channel blockers are likely to be of therapeutic use in chronic pain conditions. Thus, more selective calcium channel blockers hold promise for therapeutic intervention.


Subject(s)
Calcium Channel Blockers/pharmacology , Calcium Channels/pharmacology , Calcium Channels/physiology , Calcium Channels/classification , Calcium Channels/genetics , Calcium Channels, L-Type/pharmacology , Calcium Channels, L-Type/physiology , Calcium Channels, N-Type/pharmacology , Calcium Channels, N-Type/physiology , Calcium Channels, T-Type/pharmacology , Calcium Channels, T-Type/physiology , Cardiovascular Diseases/physiopathology , Cyclic AMP-Dependent Protein Kinases/metabolism , GTP-Binding Proteins/metabolism , Hearing Disorders/physiopathology , Humans , Metabolic Diseases/physiopathology , Nervous System Diseases/physiopathology , Night Blindness/physiopathology , Phospholipids/metabolism , Receptor Protein-Tyrosine Kinases/metabolism
3.
J Biol Chem ; 287(42): 35065-35077, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-22891239

ABSTRACT

N-type Ca(2+) channels (CaV2.2) are a nidus for neurotransmitter release and nociceptive transmission. However, the use of CaV2.2 blockers in pain therapeutics is limited by side effects resulting from inhibition of the physiological functions of CaV2.2 within the CNS. We identified an anti-nociceptive peptide (Brittain, J. M., Duarte, D. B., Wilson, S. M., Zhu, W., Ballard, C., Johnson, P. L., Liu, N., Xiong, W., Ripsch, M. S., Wang, Y., Fehrenbacher, J. C., Fitz, S. D., Khanna, M., Park, C. K., Schmutzler, B. S., Cheon, B. M., Due, M. R., Brustovetsky, T., Ashpole, N. M., Hudmon, A., Meroueh, S. O., Hingtgen, C. M., Brustovetsky, N., Ji, R. R., Hurley, J. H., Jin, X., Shekhar, A., Xu, X. M., Oxford, G. S., Vasko, M. R., White, F. A., and Khanna, R. (2011) Suppression of inflammatory and neuropathic pain by uncoupling CRMP2 from the presynaptic Ca(2+) channel complex. Nat. Med. 17, 822-829) derived from the axonal collapsin response mediator protein 2 (CRMP2), a protein known to bind and enhance CaV2.2 activity. Using a peptide tiling array, we identified novel peptides within the first intracellular loop (CaV2.2(388-402), "L1") and the distal C terminus (CaV1.2(2014-2028) "Ct-dis") that bound CRMP2. Microscale thermophoresis demonstrated micromolar and nanomolar binding affinities between recombinant CRMP2 and synthetic L1 and Ct-dis peptides, respectively. Co-immunoprecipitation experiments showed that CRMP2 association with CaV2.2 was inhibited by L1 and Ct-dis peptides. L1 and Ct-dis, rendered cell-penetrant by fusion with the protein transduction domain of the human immunodeficiency virus TAT protein, were tested in in vitro and in vivo experiments. Depolarization-induced calcium influx in dorsal root ganglion (DRG) neurons was inhibited by both peptides. Ct-dis, but not L1, peptide inhibited depolarization-stimulated release of the neuropeptide transmitter calcitonin gene-related peptide in mouse DRG neurons. Similar results were obtained in DRGs from mice with a heterozygous mutation of Nf1 linked to neurofibromatosis type 1. Ct-dis peptide, administered intraperitoneally, exhibited antinociception in a zalcitabine (2'-3'-dideoxycytidine) model of AIDS therapy-induced and tibial nerve injury-related peripheral neuropathy. This study suggests that CaV peptides, by perturbing interactions with the neuromodulator CRMP2, contribute to suppression of neuronal hypersensitivity and nociception.


Subject(s)
AIDS-Associated Nephropathy/drug therapy , Calcium Channels, N-Type/pharmacology , Ganglia, Spinal/metabolism , Neurotransmitter Agents/metabolism , Peptides/pharmacology , Tibial Neuropathy/drug therapy , AIDS-Associated Nephropathy/genetics , AIDS-Associated Nephropathy/metabolism , AIDS-Associated Nephropathy/pathology , Animals , Calcitonin Gene-Related Peptide/genetics , Calcitonin Gene-Related Peptide/metabolism , Calcium/metabolism , Calcium Channels, N-Type/genetics , Calcium Channels, N-Type/metabolism , Ganglia, Spinal/pathology , Humans , Mice , Mice, Knockout , Mice, Mutant Strains , Neurofibromatosis 1/drug therapy , Neurofibromatosis 1/genetics , Neurofibromatosis 1/metabolism , Neurofibromatosis 1/pathology , Neurofibromin 1/genetics , Neurofibromin 1/metabolism , Neurons/metabolism , Neurons/pathology , Neurotransmitter Agents/genetics , Nociception/drug effects , Peptides/genetics , Protein Structure, Tertiary , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , Tibial Neuropathy/genetics , Tibial Neuropathy/metabolism , Tibial Neuropathy/pathology , tat Gene Products, Human Immunodeficiency Virus/genetics , tat Gene Products, Human Immunodeficiency Virus/pharmacology
4.
Inflamm Res ; 60(7): 683-93, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21394563

ABSTRACT

OBJECTIVE: The aim of this study was to compare a diverse set of peptide and small-molecule calcium channel blockers for inactivated-state block of native and recombinant N-type calcium channels using fluorescence-based and automated patch-clamp electrophysiology assays. METHODS: The pharmacology of calcium channel blockers was determined at N-type channels in IMR-32 cells and in HEK cells overexpressing the inward rectifying K(+) channel Kir2.1. N-type channels were opened by increasing extracellular KCl. In the Kir2.1/N-type cell line the membrane potential could be modulated by adjusting the extracellular KCl, allowing determination of resting and inactivated-state block of N-type calcium channels. The potency and degree of state-dependent inhibition of these blockers were also determined by automated patch-clamp electrophysiology. RESULTS: N-type-mediated calcium influx in IMR-32 cells was determined for a panel of blockers with IC(50) values of 0.001-7 µM and this positively correlated with inactivated-state block of recombinant channels measured using electrophysiology. The potency of several compounds was markedly weaker in the state-dependent fluorescence-based assay compared to the electrophysiology assay, although the degree of state-dependent blockade was comparable. CONCLUSIONS: The present data demonstrate that fluorescence-based assays are suitable for assessing the ability of blockers to selectively interact with the inactivated state of the N-type channel.


Subject(s)
Calcium Channel Blockers/metabolism , Calcium Channels, N-Type/metabolism , Animals , Calcium/metabolism , Calcium Channels, N-Type/pharmacology , Cell Line , Humans , Ion Channel Gating/drug effects , Membrane Potentials/drug effects , Membrane Potentials/physiology , Patch-Clamp Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...