Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.479
Filter
1.
J Immunol ; 212(10): 1523-1529, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38709994

ABSTRACT

The study of S100A9 in viral infections has seen increased interest since the COVID-19 pandemic. S100A8/A9 levels were found to be correlated with the severity of COVID-19 disease, cytokine storm, and changes in myeloid cell subsets. These data led to the hypothesis that S100A8/A9 proteins might play an active role in COVID-19 pathogenesis. This review explores the structures and functions of S100A8/9 and the current knowledge on the involvement of S100A8/A9 and its constituents in viral infections. The potential roles of S100A9 in SARS-CoV-2 infections are also discussed.


Subject(s)
COVID-19 , Calgranulin A , Calgranulin B , Inflammation , SARS-CoV-2 , Humans , COVID-19/immunology , SARS-CoV-2/immunology , Inflammation/immunology , Cytokine Release Syndrome/immunology , Virus Diseases/immunology
2.
Cancer Lett ; 593: 216928, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38714290

ABSTRACT

High-grade serous carcinoma (HGSC) is characterized by early abdominal metastasis, leading to a dismal prognosis. In this study, we conducted single-cell RNA sequencing on 109,573 cells from 34 tumor samples of 18 HGSC patients, including both primary tumors and their metastatic sites. Our analysis revealed a distinct S100A9+ tumor cell subtype present in both primary and metastatic sites, strongly associated with poor overall survival. This subtype exhibited high expression of S100A8, S100A9, ADGRF1, CEACAM6, CST6, NDRG2, MUC4, PI3, SDC1, and C15orf48. Individual knockdown of these ten marker genes, validated through in vitro and in vivo models, significantly inhibited ovarian cancer growth and invasion. Around S100A9+ tumor cells, a population of HK2+_CAF was identified, characterized by activated glycolysis metabolism, correlating with shorter overall survival in patients. Notably, similar to CAFs, immunosuppressive tumor-associated macrophage (TAM) subtypes underwent glycolipid metabolism reprogramming via PPARgamma regulation, promoting tumor metastasis. These findings shed light on the mechanisms driving the aggressiveness of HGSC, offering crucial insights for the development of novel therapeutic targets against this formidable cancer.


Subject(s)
Cystadenocarcinoma, Serous , Ovarian Neoplasms , Single-Cell Analysis , Tumor Microenvironment , Humans , Female , Tumor Microenvironment/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/pathology , Cystadenocarcinoma, Serous/metabolism , Transcriptome , Animals , Gene Expression Regulation, Neoplastic , Mice , Tumor-Associated Macrophages/metabolism , Cell Line, Tumor , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prognosis , Calgranulin B/genetics , Calgranulin B/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Glycolysis/genetics , Neoplasm Grading
3.
Cell Signal ; 120: 111199, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38697446

ABSTRACT

Thromboangiitis obliterans (TAO) is characterized by inflammation and obstruction of small-and medium-sized distal arteries, with limited pharmacotherapies and surgical interventions. The precise pathogenesis of TAO remains elusive. By utilizing the technology of tandem mass tags (TMT) for quantitative proteomics and leveraging bioinformatics tools, a comparative analysis of protein profiles was conducted between normal and TAO rats to identify key proteins driving TAO development. The results unveiled 1385 differentially expressed proteins (DEPs) in the TAO compared with the normal group-comprising 365 proteins with upregulated expression and 1020 proteins with downregulated expression. Function annotation through gene ontology indicated these DEPs mainly involved in cell adhesion, positive regulation of cell migration, and cytosol. The principal signaling pathways involved regulation of the actin cytoskeleton, vascular smooth contraction, and focal adhesion. The roles of these DEPs and associated signaling pathways serve as a fundamental framework for comprehending the mechanisms underpinning the onset and progression of TAO. Furthermore, we conducted a comprehensive evaluation of the effects of S100A8/A9 and its inhibitor, paquinimod, on smooth muscle cells (SMCs) and in TAO rats. We observed that paquinimod reduces SMCs proliferation and migration, promotes phenotype switching and alleviates vascular stenosis in TAO rats. In conclusion, our study revealed that the early activation of S100A8/A9 in the femoral artery is implicated in TAO development, targeting S100A8/A9 signaling may provide a novel approach for TAO prevention and treatment.


Subject(s)
Calgranulin A , Calgranulin B , Proteomics , Thromboangiitis Obliterans , Animals , Thromboangiitis Obliterans/metabolism , Thromboangiitis Obliterans/pathology , Calgranulin A/metabolism , Calgranulin A/genetics , Calgranulin B/metabolism , Rats , Male , Myocytes, Smooth Muscle/metabolism , Cell Movement , Tandem Mass Spectrometry , Cell Proliferation/drug effects , Rats, Sprague-Dawley , Signal Transduction
4.
Int Immunopharmacol ; 136: 112296, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38810310

ABSTRACT

Acetaminophen (APAP) is a widely used antipyretic and analgesic medication, but its overdose can induce acute liver failure with lack of effective therapies. Icariin is a bioactive compound derived from the herb Epimedium that displays hepatoprotective activities. Here, we explored the protective effects and mechanism of icariin on APAP-induced hepatotoxicity. Icariin (25/50 mg/kg) or N-Acetylcysteine (NAC, 300 mg/kg) were orally administered in wild-type C57BL/6 mice for 7 consecutive days before the APAP administration. Icariin attenuated APAP-induced acute liver injury in mice, as measured by alleviated serum enzymes activities and hepatic apoptosis. In vitro, icariin pretreatment significantly inhibited hepatocellular damage and apoptosis by reducing the BAX/Bcl-2 ratio as well as the expression of cleaved-caspase 3 and cleaved-PARP depended on the p53 pathway. Moreover, icariin attenuated APAP-mediated inflammatory response and oxidative stress via the Nrf2 and NF-κB pathways. Importantly, icariin reduced the expression of S100A9, icariin interacts with S100A9 as a direct cellular target, which was supported by molecular dynamics simulation and surface plasmon resonance assay (equilibrium dissociation constant, KD = 1.14 µM). In addition, the genetic deletion and inhibition of S100A9 not only alleviated APAP-induced injury but also reduced the icariin's protective activity in APAP-mediated liver injury. These data indicated that icariin targeted S100A9 to alleviate APAP-induced liver damage via the following signaling pathways NF-κB, p53, and Nrf2.


Subject(s)
Acetaminophen , Calgranulin B , Chemical and Drug Induced Liver Injury , Flavonoids , Mice, Inbred C57BL , Animals , Flavonoids/pharmacology , Flavonoids/therapeutic use , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Male , Mice , Calgranulin B/metabolism , Calgranulin B/genetics , Apoptosis/drug effects , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , Liver/drug effects , Liver/pathology , Liver/metabolism , Humans , Signal Transduction/drug effects , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics
5.
Cancer Immunol Immunother ; 73(7): 117, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713229

ABSTRACT

BACKGROUND: Estrogen receptor (ER) positive human epidermal growth factor receptor 2 (HER2) negative breast cancer (ER+/HER2-BC) and triple-negative breast cancer (TNBC) are two distinct breast cancer molecular subtypes, especially in tumor immune microenvironment (TIME). The TIME of TNBC is considered to be more inflammatory than that of ER+/HER2-BC. Natural killer (NK) cells are innate lymphocytes that play an important role of tumor eradication in TME. However, studies focusing on the different cell states of NK cells in breast cancer subtypes are still inadequate. METHODS: In this study, single-cell mRNA sequencing (scRNA-seq) and bulk mRNA sequencing data from ER+/HER2-BC and TNBC were analyzed. Key regulator of NK cell suppression in ER+/HER2-BC, S100A9, was quantified by qPCR and ELISA in MCF-7, T47D, MDA-MB-468 and MDA-MB-231 cell lines. The prognosis predictability of S100A9 and NK activation markers was evaluated by Kaplan-Meier analyses using TCGA-BRAC data. The phenotype changes of NK cells in ER+/HER2-BC after overexpressing S100A9 in cancer cells were evaluated by the production levels of IFN-gamma, perforin and granzyme B and cytotoxicity assay. RESULTS: By analyzing scRNA-seq data, we found that multiple genes involved in cellular stress response were upregulated in ER+/HER2-BC compared with TNBC. Moreover, TLR regulation pathway was significantly enriched using differentially expressed genes (DEGs) from comparing the transcriptome data of ER+/HER2-BC and TNBC cancer cells, and NK cell infiltration high/low groups. Among the DEGs, S100A9 was identified as a key regulator. Patients with higher expression levels of S100A9 and NK cell activation markers had better overall survival. Furthermore, we proved that overexpression of S100A9 in ER+/HER2-cells could improve cocultured NK cell function. CONCLUSION: In conclusion, the study we presented demonstrated that NK cells in ER+/HER2-BC were hypofunctional, and S100A9 was an important regulator of NK cell function in ER+BC. Our work contributes to elucidate the regulatory networks between cancer cells and NK cells and may provide theoretical basis for novel drug development.


Subject(s)
Breast Neoplasms , Calgranulin B , Killer Cells, Natural , Receptors, Estrogen , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Female , Calgranulin B/genetics , Calgranulin B/metabolism , Receptors, Estrogen/metabolism , Breast Neoplasms/immunology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Tumor Microenvironment/immunology , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Prognosis , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
6.
Aging (Albany NY) ; 16(10): 9127-9146, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38787365

ABSTRACT

BACKGROUND: Acute myocardial infarction (AMI) is associated with high morbidity and mortality, and is associated with abnormal lipid metabolism. We identified lipid metabolism related genes as biomarkers of AMI, and explored their mechanisms of action. METHODS: Microarray datasets were downloaded from the GEO database and lipid metabolism related genes were obtained from Molecular Signatures Database. WGCNA was performed to identify key genes. We evaluated differential expression and performed ROC and ELISA analyses. We also explored the mechanism of AMI mediated by key genes using gene enrichment analysis. Finally, immune infiltration and pan-cancer analyses were performed for the identified key genes. RESULTS: TRL2, S100A9, and HCK were identified as key genes related to lipid metabolism in AMI. Internal and external validation (including ELISA) showed that these were good biomarkers of AMI. In addition, the results of gene enrichment analysis showed that the key genes were enriched in inflammatory response, immune system process, and tumor-related pathways. Finally, the results of immune infiltration showed that key genes were concentrated in neutrophils and macrophages, and pan-cancer analysis showed that the key genes were highly expressed in most tumors and were associated with poor prognosis. CONCLUSIONS: TLR2, S100A9, and HCK were identified as lipid metabolism related novel diagnostic biomarkers of AMI. In addition, AMI and tumors may be related through the inflammatory immune response.


Subject(s)
Lipid Metabolism , Myocardial Infarction , Humans , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Lipid Metabolism/genetics , Neoplasms/genetics , Neoplasms/metabolism , Calgranulin B/genetics , Calgranulin B/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Biomarkers/metabolism , Gene Expression Profiling , Databases, Genetic
7.
J Am Heart Assoc ; 13(10): e028006, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38726894

ABSTRACT

BACKGROUND: S100a8/9 (S100 calcium binding protein a8/9) belongs to the S100 family and has gained a lot of interest as a critical regulator of inflammatory response. Our previous study found that S100a8/9 homolog promoted aortic valve sclerosis in mice with chronic kidney disease. However, the role of S100a8/9 in pressure overload-induced cardiac hypertrophy remains unclear. The present study was to explore the role of S100a8/9 in cardiac hypertrophy. METHODS AND RESULTS: Cardiomyocyte-specific S100a9 loss or gain of function was achieved using an adeno-associated virus system, and the model of cardiac hypertrophy was established by aortic banding-induced pressure overload. The results indicate that S100a8/9 expression was increased in response to pressure overload. S100a9 deficiency alleviated pressure overload-induced hypertrophic response, whereas S100a9 overexpression accelerated cardiac hypertrophy. S100a9-overexpressed mice showed increased FGF23 (fibroblast growth factor 23) expression in the hearts after exposure to pressure overload, which activated calcineurin/NFAT (nuclear factor of activated T cells) signaling in cardiac myocytes and thus promoted hypertrophic response. A specific antibody that blocks FGFR4 (FGF receptor 4) largely abolished the prohypertrophic response of S100a9 in mice. CONCLUSIONS: In conclusion, S100a8/9 promoted the development of cardiac hypertrophy in mice. Targeting S100a8/9 may be a promising therapeutic approach to treat cardiac hypertrophy.


Subject(s)
Calgranulin A , Calgranulin B , Disease Models, Animal , Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Myocytes, Cardiac , NFATC Transcription Factors , Up-Regulation , Animals , Calgranulin A/metabolism , Calgranulin A/genetics , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Calgranulin B/metabolism , Calgranulin B/genetics , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/genetics , Fibroblast Growth Factor-23/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Signal Transduction , Cardiomegaly/metabolism , Cardiomegaly/pathology , Mice, Inbred C57BL , Male , Mice, Knockout , Calcineurin/metabolism , Mice , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/pathology , Ventricular Remodeling
8.
Cell Mol Life Sci ; 81(1): 232, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780644

ABSTRACT

Ubiquitin-proteasome system dysfunction triggers α-synuclein aggregation, a hallmark of neurodegenerative diseases, such as Parkinson's disease (PD). However, the crosstalk between deubiquitinating enzyme (DUBs) and α-synuclein pathology remains unclear. In this study, we observed a decrease in the level of ubiquitin-specific protease 14 (USP14), a DUB, in the cerebrospinal fluid (CSF) of PD patients, particularly females. Moreover, CSF USP14 exhibited a dual correlation with α-synuclein in male and female PD patients. To investigate the impact of USP14 deficiency, we crossed USP14 heterozygous mouse (USP14+/-) with transgenic A53T PD mouse (A53T-Tg) or injected adeno-associated virus (AAV) carrying human α-synuclein (AAV-hα-Syn) in USP14+/- mice. We found that Usp14 deficiency improved the behavioral abnormities and pathological α-synuclein deposition in female A53T-Tg or AAV-hα-Syn mice. Additionally, Usp14 inactivation attenuates the pro-inflammatory response in female AAV-hα-Syn mice, whereas Usp14 inactivation demonstrated opposite effects in male AAV-hα-Syn mice. Mechanistically, the heterodimeric protein S100A8/A9 may be the downstream target of Usp14 deficiency in female mouse models of α-synucleinopathies. Furthermore, upregulated S100A8/A9 was responsible for α-synuclein degradation by autophagy and the suppression of the pro-inflammatory response in microglia after Usp14 knockdown. Consequently, our study suggests that USP14 could serve as a novel therapeutic target in PD.


Subject(s)
Calgranulin A , Calgranulin B , Mice, Transgenic , Parkinson Disease , Ubiquitin Thiolesterase , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Animals , Parkinson Disease/metabolism , Parkinson Disease/genetics , Parkinson Disease/pathology , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/deficiency , Humans , Mice , Female , Male , Calgranulin B/metabolism , Calgranulin B/genetics , Calgranulin A/metabolism , Calgranulin A/genetics , Disease Models, Animal , Mice, Inbred C57BL
9.
Medicine (Baltimore) ; 103(19): e38076, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728481

ABSTRACT

BACKGROUND: nonalcoholic fatty liver disease (NAFLD) is a common liver disease affecting the global population and its impact on human health will continue to increase. Genetic susceptibility is an important factor influencing its onset and progression, and there is a lack of reliable methods to predict the susceptibility of normal populations to NAFLD using appropriate genes. METHODS: RNA sequencing data relating to nonalcoholic fatty liver disease was analyzed using the "limma" package within the R software. Differentially expressed genes were obtained through preliminary intersection screening. Core genes were analyzed and obtained by establishing and comparing 4 machine learning models, then a prediction model for NAFLD was constructed. The effectiveness of the model was then evaluated, and its applicability and reliability verified. Finally, we conducted further gene correlation analysis, analysis of biological function and analysis of immune infiltration. RESULTS: By comparing 4 machine learning algorithms, we identified SVM as the optimal model, with the first 6 genes (CD247, S100A9, CSF3R, DIP2C, OXCT 2 and PRAMEF16) as predictive genes. The nomogram was found to have good reliability and effectiveness. Six genes' receiver operating characteristic curves (ROC) suggest an essential role in NAFLD pathogenesis, and they exhibit a high predictive value. Further analysis of immunology demonstrated that these 6 genes were closely connected to various immune cells and pathways. CONCLUSION: This study has successfully constructed an advanced and reliable prediction model based on 6 diagnostic gene markers to predict the susceptibility of normal populations to NAFLD, while also providing insights for potential targeted therapies.


Subject(s)
Genetic Predisposition to Disease , Machine Learning , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/diagnosis , Prognosis , ROC Curve , Reproducibility of Results , Calgranulin B/genetics , Nomograms , Female , Male
10.
ACS Chem Neurosci ; 15(9): 1915-1925, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38634811

ABSTRACT

Calcium-binding S100A8 and S100A9 proteins play a significant role in various disorders due to their pro-inflammatory functions. Substantially, they are also relevant in neurodegenerative disorders via the delivery of signals for the immune response. However, at the same time, they can aggregate and accelerate the progression of diseases. Natively, S100A8 and S100A9 exist as homo- and heterodimers, but upon aggregation, they form amyloid-like oligomers, fibrils, or amorphous aggregates. In this study, we aimed to elucidate the aggregation propensities of S100A8, S100A9, and their heterodimer calprotectin by investigating aggregation kinetics, secondary structures, and morphologies of the aggregates. For the first time, we followed the in vitro aggregation of S100A8, which formed spherical aggregates, unlike the fibrillar structures of S100A9 under the same conditions. The aggregates were sensitive to amyloid-specific ThT and ThS dyes and had a secondary structure composed of ß-sheets. Similarly to S100A9, S100A8 protein was stabilized by calcium ions, resulting in aggregation inhibition. Finally, the formation of S100A8 and S100A9 heterodimers stabilized the proteins in the absence of calcium ions and prevented their aggregation.


Subject(s)
Amyloid , Calgranulin A , Calgranulin B , Leukocyte L1 Antigen Complex , Calgranulin B/metabolism , Calgranulin A/metabolism , Leukocyte L1 Antigen Complex/metabolism , Amyloid/metabolism , Humans , Protein Aggregates/physiology , Protein Aggregates/drug effects , Calcium/metabolism , Protein Structure, Secondary
11.
Sci Rep ; 14(1): 9722, 2024 04 27.
Article in English | MEDLINE | ID: mdl-38678138

ABSTRACT

Chronic rhinosinusitis with nasal polyp (CRSwNP) is a highly prevalent disorder characterized by persistent nasal and sinus mucosa inflammation. Despite significant morbidity and decreased quality of life, there are limited effective treatment options for such a disease. Therefore, identifying causal genes and dysregulated pathways paves the way for novel therapeutic interventions. In the current study, a three-way interaction approach was used to detect dynamic co-expression interactions involved in CRSwNP. In this approach, the internal evolution of the co-expression relation between a pair of genes (X, Y) was captured under a change in the expression profile of a third gene (Z), named the switch gene. Subsequently, the biological relevancy of the statistically significant triplets was confirmed using both gene set enrichment analysis and gene regulatory network reconstruction. Finally, the importance of identified switch genes was confirmed using a random forest model. The results suggested four dysregulated pathways in CRSwNP, including "positive regulation of intracellular signal transduction", "arachidonic acid metabolic process", "spermatogenesis" and "negative regulation of cellular protein metabolic process". Additionally, the S100a9 as a switch gene together with the gene pair {Cd14, Tpd52l1} form a biologically relevant triplet. More specifically, we suggested that S100a9 might act as a potential upstream modulator in toll-like receptor 4 transduction pathway in the major CRSwNP pathologies.


Subject(s)
Calgranulin B , Nasal Polyps , Rhinitis , Signal Transduction , Sinusitis , Toll-Like Receptor 4 , Nasal Polyps/metabolism , Nasal Polyps/genetics , Humans , Sinusitis/metabolism , Sinusitis/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Rhinitis/metabolism , Rhinitis/genetics , Chronic Disease , Calgranulin B/genetics , Calgranulin B/metabolism , Gene Regulatory Networks , Gene Expression Regulation , Gene Expression Profiling , Rhinosinusitis
12.
Biochem Biophys Res Commun ; 710: 149832, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38588614

ABSTRACT

BACKGROUND: Sepsis-induced acute lung injury (ALI) is associated with considerable morbidity and mortality in critically ill patients. S100A9, a key endothelial injury factor, is markedly upregulated in sepsis-induced ALI; however, its specific mechanism of action has not been fully elucidated. METHODS: The Gene Expression Omnibus database transcriptome data for sepsis-induced ALI were used to screen for key differentially expressed genes (DEGs). Using bioinformatics analysis methods such as Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and protein-protein interaction network analyses, the pathogenesis of sepsis-induced ALI was revealed. Intratracheal infusion of lipopolysaccharide (LPS, 10 mg/kg) induced ALI in wild-type (WT) and S100A9 knockout mice. Multiomics analyses (transcriptomics and proteomics) were performed to investigate the potential mechanisms by which S100A9 exacerbates acute lung damage. Hematoxylin-eosin, Giemsa, and TUNEL staining were used to evaluate lung injury and cell apoptosis. LPS (10 µg/mL)-induced murine lung epithelial MLE-12 cells were utilized to mimic ALI and were modulated by S100A9 lentiviral transfection. The impact of S100A9 on cell apoptosis and inflammatory responses were identified using flow cytometry and PCR. The expression of interleukin (IL)-17-nuclear factor kappa B (NFκB)-caspase-3 signaling components was identified using western blotting. RESULTS: Six common DEGs (S100A9, S100A8, IFITM6, SAA3, CD177, and MMP9) were identified in the six datasets related to ALI in sepsis. Compared to WT sepsis mice, S100A9 knockout significantly alleviated LPS-induced ALI in mice, with reduced lung structural damage and inflammatory exudation, decreased exfoliated cell and protein content in the lung lavage fluid, and reduced apoptosis and necrosis of pulmonary epithelial cells. Transcriptomic analysis revealed that knocking out S100A9 significantly affected 123 DEGs, which were enriched in immune responses, defense responses against bacteria or lipopolysaccharides, cytokine-cytokine receptor interactions, and the IL-17 signaling pathway. Proteomic analysis revealed that S100A9 knockout alleviated muscle contraction dysfunction and structural remodeling in sepsis-induced ALI. Multiomics analysis revealed that S100A9 may be closely related to interferon-induced proteins with tetratricopeptide repeats and oligoadenylate synthase-like proteins. LPS decreased MLE12 cell activity, accompanied by high expression of S100A9. The expression of IL-17RA, pNFκB, and cleaved-caspase-3 were increased by S100A9 overexpression and reduced by S100A9 knockdown in LPS-stimulated MLE12 cells. S100A9 knockdown decreases transcription of apoptosis-related markers Bax, Bcl and caspase-3, alleviating LPS-induced apoptosis. CONCLUSIONS: S100A9 as a key biomarker of sepsis-induced acute lung injury, and exacerbates lung damage and epithelial cell apoptosis induced by LPS via the IL-17-NFκB-caspase-3 signaling pathway.


Subject(s)
Acute Lung Injury , Sepsis , Humans , Mice , Animals , NF-kappa B/metabolism , Interleukin-17/metabolism , Caspase 3/metabolism , Lipopolysaccharides/pharmacology , Proteomics , Acute Lung Injury/chemically induced , Lung/pathology , Signal Transduction , Mice, Knockout , Sepsis/pathology , Calgranulin B/genetics , Calgranulin B/metabolism
13.
PeerJ ; 12: e17106, 2024.
Article in English | MEDLINE | ID: mdl-38646478

ABSTRACT

Background: Allergic asthma is the most prevalent asthma phenotype and is associated with the disorders of immune cells and glycolysis. Macrophages are the most common type of immune cells in the lungs. Calprotectin (S100A8 and S100A9) are two pro-inflammatory molecules that target the Toll-like receptor 4 (TLR4) and are substantially increased in the serum of patients with severe asthma. This study aimed to determine the effects of S100A8/A9 on macrophage polarization and glycolysis associated with allergic asthma. Methods: To better understand the roles of S100A8 and S100A9 in the pathogenesis of allergic asthma, we used ovalbumin (OVA)-induced MH-S cells, and OVA-sensitized and challenged mouse models (wild-type male BALB/c mice). Enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, flow cytometry, hematoxylin-eosin staining, and western blotting were performed. The glycolysis inhibitor 3-bromopyruvate (3-BP) was used to observe changes in glycolysis in mice. Results: We found knockdown of S100A8 or S100A9 in OVA-induced MH-S cells inhibited inflammatory cytokines, macrophage polarization biomarker expression, and pyroptosis cell proportion, but increased anti-inflammatory cytokine interleukin (IL)-10 mRNA; also, glycolysis was inhibited, as evidenced by decreased lactate and key enzyme expression; especially, knockdown of S100A8 or S100A9 inhibited the activity of TLR4/myeloid differentiation primary response gene 88 (MyD88)/Nuclear factor kappa-B (NF-κB) signaling pathway. Intervention with lipopolysaccharides (LPS) abolished the beneficial effects of S100A8 and S100A9 knockdown. The observation of OVA-sensitized and challenged mice showed that S100A8 or S100A9 knockdown promoted respiratory function, improved lung injury, and inhibited inflammation; knockdown of S100A8 or S100A9 also suppressed macrophage polarization, glycolysis levels, and activation of the TLR4/MyD88/NF-κB signaling pathway in the lung. Conversely, S100A9 overexpression exacerbated lung injury and inflammation, promoting macrophage polarization and glycolysis, which were antagonized by the glycolysis inhibitor 3-BP. Conclusion: S100A8 and S100A9 play critical roles in allergic asthma pathogenesis by promoting macrophage perturbation and glycolysis through the TLR4/MyD88/NF-κB signaling pathway. Inhibition of S100A8 and S100A9 may be a potential therapeutic strategy for allergic asthma.


Subject(s)
Asthma , Calgranulin A , Calgranulin B , Disease Models, Animal , Glycolysis , Macrophages , Mice, Inbred BALB C , Animals , Male , Mice , Asthma/genetics , Asthma/immunology , Asthma/pathology , Calgranulin A/metabolism , Calgranulin A/genetics , Calgranulin B/genetics , Calgranulin B/metabolism , Cytokines/metabolism , Glycolysis/drug effects , Glycolysis/genetics , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , NF-kappa B/metabolism , Ovalbumin , Signal Transduction/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics
14.
Inflammation ; 47(2): 789-806, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38446361

ABSTRACT

Altered cardiac innate immunity is highly associated with the progression of cardiac disease states and heart failure. S100A8/A9 is an important component of damage-associated molecular patterns (DAMPs) that is critically involved in the pathogenesis of heart failure, thus considered a promising target for pharmacological intervention. In the current study, initially, we validated the role of S100A8/A9 in contributing to cardiac injury and heart failure via the overactivation of the ß-adrenergic pathway and tested the potential use of paquinimod as a pharmacological intervention of S100A8/A9 activation in preventing cardiac dysfunction, collagen deposition, inflammation, and immune cell infiltration in ß-adrenergic overactivation-mediated heart failure. This finding was further confirmed by the cardiomyocyte-specific silencing of S100A9 via the use of the adeno-associated virus (AAV) 9-mediated short hairpin RNA (shRNA) gene silencing system. Most importantly, in the assessment of the underlying cellular mechanism by which activated S100A8/A9 cause aggravated progression of cardiac fibrosis and heart failure, we discovered that the activated S100A8/A9 can promote fibroblast-macrophage interaction, independent of inflammation, which is likely a key mechanism leading to the enhanced collagen production. Our results revealed that targeting S100A9 provides dual beneficial effects, which is not only a strategy to counteract cardiac inflammation but also preclude cardiac fibroblast-macrophage interactions. The findings of this study also indicate that targeting S100A9 could be a promising strategy for addressing cardiac fibrosis, potentially leading to future drug development.


Subject(s)
Calgranulin B , Myocytes, Cardiac , Animals , Mice , Adrenergic beta-Agonists/pharmacology , Calgranulin A/metabolism , Calgranulin B/metabolism , Calgranulin B/genetics , Fibroblasts/metabolism , Fibroblasts/drug effects , Fibrosis , Heart Failure/metabolism , Heart Failure/prevention & control , Inflammation/metabolism , Macrophages/metabolism , Macrophages/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology
15.
Blood Adv ; 8(11): 2777-2789, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38522092

ABSTRACT

ABSTRACT: Megakaryocytes (MKs), integral to platelet production, predominantly reside in the bone marrow (BM) and undergo regulated fragmentation within sinusoid vessels to release platelets into the bloodstream. Inflammatory states and infections influence MK transcription, potentially affecting platelet functionality. Notably, COVID-19 has been associated with altered platelet transcriptomes. In this study, we investigated the hypothesis that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection could affect the transcriptome of BM MKs. Using spatial transcriptomics to discriminate subpopulations of MKs based on proximity to BM sinusoids, we identified ∼19 000 genes in MKs. Machine learning techniques revealed that the transcriptome of healthy murine BM MKs exhibited minimal differences based on proximity to sinusoid vessels. Furthermore, at peak SARS-CoV-2 viremia, when the disease primarily affected the lungs, MKs were not significantly different from those from healthy mice. Conversely, a significant divergence in the MK transcriptome was observed during systemic inflammation, although SARS-CoV-2 RNA was never detected in the BM, and it was no longer detectable in the lungs. Under these conditions, the MK transcriptional landscape was enriched in pathways associated with histone modifications, MK differentiation, NETosis, and autoimmunity, which could not be explained by cell proximity to sinusoid vessels. Notably, the type I interferon signature and calprotectin (S100A8/A9) were not induced in MKs under any condition. However, inflammatory cytokines induced in the blood and lungs of COVID-19 mice were different from those found in the BM, suggesting a discriminating impact of inflammation on this specific subset of cells. Collectively, our data indicate that a new population of BM MKs may emerge through COVID-19-related pathogenesis.


Subject(s)
Bone Marrow , COVID-19 , Megakaryocytes , SARS-CoV-2 , Transcriptome , COVID-19/pathology , COVID-19/virology , COVID-19/genetics , COVID-19/metabolism , Megakaryocytes/metabolism , Megakaryocytes/virology , Animals , SARS-CoV-2/physiology , SARS-CoV-2/genetics , Mice , Bone Marrow/metabolism , Bone Marrow/pathology , Calgranulin B/metabolism , Calgranulin B/genetics , Humans , Calgranulin A/metabolism , Calgranulin A/genetics , Disease Models, Animal
16.
J Exp Clin Cancer Res ; 43(1): 72, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38454445

ABSTRACT

BACKGROUND: The paucity of reliable biomarkers for predicting immunotherapy efficacy in patients with advanced hepatocellular carcinoma (HCC) has emerged as a burgeoning concern with the expanding use of immunotherapy. This study endeavors to delve into the potential peripheral biomarkers capable of prognosticating efficacy in HCC patients who are poised to receive anti-PD-1 monotherapy within the phase III clinical trial, KEYNOTE394. Additionally, we sought to elucidate the underlying molecular mechanisms for resistance to immune checkpoint blockade (ICB) and propose innovative combination immunotherapy strategies for future clinical application. METHODS: Patient blood samples were collected for single-cell RNA sequencing to evaluate the immune cell signature before receiving ICB therapy. Subsequently, in vitro assays and in vivo murine model experiments were conducted to validate the mechanism that S100A9+CD14+ monocytes play a role in ICB resistance. RESULTS: Our study demonstrates a notable enrichment of S100A9+CD14+ monocytes in the peripheral blood of patients exhibiting suboptimal responses to anti-PD-1 therapy. Moreover, we identified the Mono_S100A9 signature as a predictive biomarker, indicative of reduced efficacy in immunotherapy and decreased survival benefits across various tumor types. Mechanistically, S100A9 activates PD-L1 transcription by directly binding to the CD274 (PD-L1) gene promoter, thereby suppressing T-cell proliferation and cytotoxicity via the PD-1/PD-L1 axis, consequently diminishing the therapeutic effectiveness of subsequent anti-PD-1 treatments. Furthermore, our in vivo studies revealed that inhibiting S100A9 can synergistically enhance the efficacy of anti-PD-1 drugs in the eradication of hepatocellular carcinoma. CONCLUSIONS: Our study underscores the significance of S100A9+CD14+ monocytes in predicting inadequate response to ICB treatment and provides insights into the monocyte cell-intrinsic mechanisms of resistance to ICB therapy. We also propose a combined therapeutic approach to enhance ICB efficacy by targeting S100A9.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Animals , Mice , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Monocytes/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , B7-H1 Antigen/metabolism , T-Lymphocytes/metabolism , Immunotherapy , Tumor Microenvironment , Calgranulin B/metabolism
17.
Cell Mol Life Sci ; 81(1): 110, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429401

ABSTRACT

Toll-like receptors (TLRs), especially TLR7, play an important role in systemic lupus erythematosus (SLE) pathogenesis. However, the regulatory mechanism underlying the abnormal activation of TLR pathways in patients with SLE has not been elucidated. Notably, accumulating evidence indicates that myeloid-derived suppressor cells (MDSCs) are important regulators of inflammation and autoimmune diseases. Compared with healthy control subjects, patients with SLE have a greater proportion of MDSCs among peripheral blood mononuclear cells (PBMCs); however, the effect of MDSCs on TLR7 pathway activation has not been determined. In the present study, lupus MDSCs significantly promoted TLR7 pathway activation in macrophages and dendritic cells (DCs), exacerbating the imiquimod-induced lupus model. RNA-sequencing analysis revealed significant overexpression of S100 calcium-binding protein A8 (S100A8) and S100A9 in MDSCs from diseased MRL/lpr mice. In vitro and in vivo studies demonstrated that S100A8/9 effectively promoted TLR7 pathway activation and that S100A8/9 deficiency reversed the promoting effect of MDSCs on TLR7 pathway activation in lupus. Mechanistically, MDSC-derived S100A8/9 upregulated interferon gamma (IFN-γ) secretion by macrophages and IFN-γ subsequently promoted TLR7 pathway activation in an autocrine manner. Taken together, these findings suggest that lupus MDSCs promote TLR7 pathway activation and lupus pathogenesis through the S100A8/9-IFN-γ axis. Our study identified an important target for SLE therapy.


Subject(s)
Calgranulin A , Calgranulin B , Lupus Erythematosus, Systemic , Myeloid-Derived Suppressor Cells , Animals , Mice , Dendritic Cells/metabolism , Leukocytes, Mononuclear/metabolism , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/pathology , Macrophages/metabolism , Mice, Inbred MRL lpr , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Calgranulin A/metabolism , Calgranulin B/metabolism
18.
Nat Commun ; 15(1): 2701, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538601

ABSTRACT

Heart failure is the prevalent complication of acute myocardial infarction. We aim to identify a biomarker for heart failure post-acute myocardial infarction. This observational study includes 1062 and 1043 patients with acute myocardial infarction in the discovery and validation cohorts, respectively. The outcomes are in-hospital and long-term heart failure events. S100A8/A9 is screened out through proteomic analysis, and elevated circulating S100A8/A9 is independently associated with heart failure in discovery and validation cohorts. Furthermore, the predictive value of S100A8/A9 is superior to the traditional biomarkers, and the addition of S100A8/A9 improves the risk estimation using traditional risk factors. We finally report causal effect of S100A8/A9 on heart failure in three independent cohorts using Mendelian randomization approach. Here, we show that S100A8/A9 is a predictor and potentially causal medicator for heart failure post-acute myocardial infarction.


Subject(s)
Heart Failure , Myocardial Infarction , Humans , Calgranulin B , Prognosis , Proteomics , Calgranulin A/genetics , Myocardial Infarction/complications , Heart Failure/etiology , Biomarkers , Syndrome
19.
Sci Rep ; 14(1): 5517, 2024 03 06.
Article in English | MEDLINE | ID: mdl-38448514

ABSTRACT

Ulcerative colitis (UC) is a chronic, recurrent inflammatory bowel disease. UC confronts with severe challenges including the unclear pathogenesis and lack of specific diagnostic markers, demanding for identifying predictive biomarkers for UC diagnosis and treatment. We perform immune infiltration and weighted gene co-expression network analysis on gene expression profiles of active UC, inactive UC, and normal controls to identify UC related immune cell and hub genes. Neutrophils, M1 macrophages, activated dendritic cells, and activated mast cells are significantly enriched in active UC. MMP-9, CHI3L1, CXCL9, CXCL10, CXCR2 and S100A9 are identified as hub genes in active UC. Specifically, S100A9 is significantly overexpressed in mice with colitis. The receiver operating characteristic curve demonstrates the excellent performance of S100A9 expression in diagnosing active UC. Inhibition of S100A9 expression reduces DSS-induced colonic inflammation. These identified biomarkers associated with activity in UC patients enlighten the new insights of UC diagnosis and treatment.


Subject(s)
Colitis, Ulcerative , Colitis , Inflammatory Bowel Diseases , Humans , Animals , Mice , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/genetics , Colitis, Ulcerative/therapy , Calgranulin B/genetics , Computational Biology , Biomarkers
20.
Biomed Pharmacother ; 173: 116416, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38471272

ABSTRACT

Colorectal cancer (CRC) is the second most cancer-related death worldwide. In recent years, probiotics have been used to reduce the potential risks of CRC and tumors with various mechanisms. Different bacteria have been suggested to play different roles in the progression, prevention, or treatment of CRC. Akkermansia muciniphila is considered a next-generation probiotic for preventing and treating some diseases. Therefore, in this review article, we aimed to describe and discuss different mechanisms of A. muciniphila as an intestinal microbiota or probiotic in CRC. Some studies suggested that the abundance of A. muciniphila was higher or increased in CRC patients compared to healthy individuals. However, the decreased abundance of A. muciniphila was associated with severe symptoms of CRC, indicating that A. muciniphila did not play a role in the development of CRC. In addition, A. muciniphila administration elevates gene expression of proliferation-associated molecules such as S100A9, Dbf4, and Snrpd1, or markers for cell proliferation. Some other studies suggested that inflammation and tumorigenesis in the intestine might promoted by A. muciniphila. Overall, the role of A. muciniphila in CRC development or inhibition is still unclear and controversial. Various methods of bacterial supplementation, such as viability, bacterial number, and abundance, could all influence the colonization effect of A. muciniphila administration and CRC progression. Overall, A. mucinipila has been revealed to modulate the therapeutic potential of immune checkpoint inhibitors. Preliminary human data propose that oral consumption of A. muciniphila is safe, but its efficacy needs to be confirmed in more human clinical studies.


Subject(s)
Akkermansia , Colorectal Neoplasms , Humans , Calgranulin B , Disease Progression , Colorectal Neoplasms/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...