Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42.036
Filter
1.
PLoS One ; 19(5): e0301689, 2024.
Article in English | MEDLINE | ID: mdl-38728315

ABSTRACT

Acoustic methods are often used for fisheries resource surveys to investigate fish stocks in a wide area. Commercial fisheries echo sounders, which are installed on most small fishing vessels, are used to record a large amount of data during fishing trips. Therefore, it can be used to collect the basic information necessary for stock assessment for a wide area and frequently. To carry out the quantification for the fisheries echo sounder, we devised a simple method using the backscattering strength of the seabed to perform calibration periodically and easily. In this study, seabed secondary reflections were used instead of primary reflection because the fisheries echo sounders were not equipped with a time-varied gain (TVG) function, and the primary backscattering strength of the seabed was saturated. It was also necessary to use standard values of seabed backscattering strength averaged over a certain area for calibration to eliminate some of the effects of differences in seabed sediment and vessel motions. By using standard values of the seabed secondary reflections, the fisheries echo sounder was calibrated accurately. Our study can provide a reliable framework to calibrate commercial fisheries echo sounders, to improve the estimation and management of fishery resources.


Subject(s)
Fisheries , Calibration , Animals , Acoustics/instrumentation , Fishes/physiology , Conservation of Natural Resources/methods
2.
Biomed Phys Eng Express ; 10(4)2024 May 14.
Article in English | MEDLINE | ID: mdl-38697045

ABSTRACT

Whole-body counters (WBC) are used in internal dosimetry forin vivomonitoring in radiation protection. The calibration processes of a WBC set-up include the measurement of a physical phantom filled with a certificate radioactive source that usually is referred to a standard set of individuals determined by the International Commission on Radiological Protection (ICRP). The aim of this study was to develop an anthropomorphic and anthropometric female physical phantom for the calibration of the WBC systems. The reference female computational phantom of the ICRP, now called RFPID (Reference Female Phantom for Internal Dosimetry) was printed using PLA filament and with an empty interior. The goal is to use the RFPID to reduce the uncertainties associated within vivomonitoring system. The images which generated the phantom were manipulated using ImageJ®, Amide®, GIMP®and the 3D Slicer®software. RFPID was split into several parts and printed using a 3D printer in order to print the whole-body phantom. The newly printed physical phantom RFPID was successfully fabricated, and it is suitable to mimic human tissue, anatomically similar to a human body i.e., size, shape, material composition, and density.


Subject(s)
Phantoms, Imaging , Printing, Three-Dimensional , Whole-Body Counting , Humans , Female , Whole-Body Counting/methods , Calibration , Radiation Protection/methods , Radiation Protection/instrumentation , Radiometry/methods , Radiometry/instrumentation , Anthropometry
3.
Radiat Environ Biophys ; 63(2): 195-202, 2024 May.
Article in English | MEDLINE | ID: mdl-38709277

ABSTRACT

This study investigated natural sand thermoluminescence (TL) response as a possible option for retrospective high-dose gamma dosimetry. The natural sand under investigation was collected from six locations with selection criteria for sampling sites covering the highest probability of exposure to unexpected radiation on the Egyptian coast. Dose-response, glow curve, chemical composition, linearity, and fading rate for different sand samples were studied. Energy Dispersive X-ray Spectroscopy (EDX) analysis revealed differences in chemical composition among the various geological sites, leading to variations in TL glow curve intensity. Sand samples collected from Ras Sedr, Taba, Suez, and Enshas showed similar TL patterns, although with different TL intensities. Beach sands of Matrouh and North Coastal with a high calcite content did not show a clear linear response to the TL technique, in the dose range of 10 Gy up to 30 kGy. The results show that most sand samples are suitable as a radiation dosimeter at accidental levels of exposure. It is proposed here that for high-dose gamma dosimetry with doses ranging from 3 to 10 kGy, a single calibration factor might be enough for TL measurements using sand samples. However, proper calibration might allow dose assessment for doses even up to 30 kGy. Most of the investigated sand samples had nearly stable fading rates after seven days of storage. The Ras Sedr sands sample was the most reliable for retrospective dose reconstruction.


Subject(s)
Sand , Thermoluminescent Dosimetry , Gamma Rays , Radiation Dosage , Calibration
4.
J Transl Med ; 22(1): 455, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741163

ABSTRACT

BACKGROUND: Patients with alpha-fetoprotein (AFP)-positive hepatocellular carcinoma (HCC) have aggressive biological behavior and poor prognosis. Therefore, survival time is one of the greatest concerns for patients with AFP-positive HCC. This study aimed to demonstrate the utilization of six machine learning (ML)-based prognostic models to predict overall survival of patients with AFP-positive HCC. METHODS: Data on patients with AFP-positive HCC were extracted from the Surveillance, Epidemiology, and End Results database. Six ML algorithms (extreme gradient boosting [XGBoost], logistic regression [LR], support vector machine [SVM], random forest [RF], K-nearest neighbor [KNN], and decision tree [ID3]) were used to develop the prognostic models of patients with AFP-positive HCC at one year, three years, and five years. Area under the receiver operating characteristic curve (AUC), confusion matrix, calibration curves, and decision curve analysis (DCA) were used to evaluate the model. RESULTS: A total of 2,038 patients with AFP-positive HCC were included for analysis. The 1-, 3-, and 5-year overall survival rates were 60.7%, 28.9%, and 14.3%, respectively. Seventeen features regarding demographics and clinicopathology were included in six ML algorithms to generate a prognostic model. The XGBoost model showed the best performance in predicting survival at 1-year (train set: AUC = 0.771; test set: AUC = 0.782), 3-year (train set: AUC = 0.763; test set: AUC = 0.749) and 5-year (train set: AUC = 0.807; test set: AUC = 0.740). Furthermore, for 1-, 3-, and 5-year survival prediction, the accuracy in the training and test sets was 0.709 and 0.726, 0.721 and 0.726, and 0.778 and 0.784 for the XGBoost model, respectively. Calibration curves and DCA exhibited good predictive performance as well. CONCLUSIONS: The XGBoost model exhibited good predictive performance, which may provide physicians with an effective tool for early medical intervention and improve the survival of patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Machine Learning , alpha-Fetoproteins , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/mortality , Humans , alpha-Fetoproteins/metabolism , Liver Neoplasms/blood , Liver Neoplasms/diagnosis , Liver Neoplasms/pathology , Liver Neoplasms/mortality , Female , Prognosis , Male , Middle Aged , ROC Curve , Aged , Area Under Curve , Calibration , Algorithms
5.
Sensors (Basel) ; 24(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732969

ABSTRACT

The recent scientific literature abounds in proposals of seizure forecasting methods that exploit machine learning to automatically analyze electroencephalogram (EEG) signals. Deep learning algorithms seem to achieve a particularly remarkable performance, suggesting that the implementation of clinical devices for seizure prediction might be within reach. However, most of the research evaluated the robustness of automatic forecasting methods through randomized cross-validation techniques, while clinical applications require much more stringent validation based on patient-independent testing. In this study, we show that automatic seizure forecasting can be performed, to some extent, even on independent patients who have never been seen during the training phase, thanks to the implementation of a simple calibration pipeline that can fine-tune deep learning models, even on a single epileptic event recorded from a new patient. We evaluate our calibration procedure using two datasets containing EEG signals recorded from a large cohort of epileptic subjects, demonstrating that the forecast accuracy of deep learning methods can increase on average by more than 20%, and that performance improves systematically in all independent patients. We further show that our calibration procedure works best for deep learning models, but can also be successfully applied to machine learning algorithms based on engineered signal features. Although our method still requires at least one epileptic event per patient to calibrate the forecasting model, we conclude that focusing on realistic validation methods allows to more reliably compare different machine learning approaches for seizure prediction, enabling the implementation of robust and effective forecasting systems that can be used in daily healthcare practice.


Subject(s)
Algorithms , Deep Learning , Electroencephalography , Seizures , Humans , Electroencephalography/methods , Seizures/diagnosis , Seizures/physiopathology , Calibration , Signal Processing, Computer-Assisted , Epilepsy/diagnosis , Epilepsy/physiopathology , Machine Learning
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124287, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38701573

ABSTRACT

The application of Near Infrared (NIR) spectroscopy for analyzing wet feed directly on farms is increasingly recognized for its role in supporting harvest-time decisions and refining the precision of animal feeding practices. This study aims to evaluate the accuracy of NIR spectroscopy calibrations for both undried, unprocessed samples and dried, ground samples. Additionally, it investigates the influence of the bases of reference data (wet vs. dry basis) on the predictive capabilities of the NIR analysis. The study utilized 492 Corn Whole Plant (CWP) and 405 High Moisture Corn (HMC) samples, sourced from various farms across Italy. Spectral data were acquired from both undried, unground and dried, ground samples using laboratory bench NIR instruments, covering a spectral range of 1100 to 2498 nm. The reference chemical composition of these samples was analyzed and presented in two formats: on a wet matter basis and on a dry matter basis. The study revealed that calibrations based on undried samples generally exhibited lower predictive accuracy for most traits, with the exception of Dry Matter (DM). Notably, the decline in predictive performance was more pronounced in highly moist products like CWP, where the average error increased by 60-70%. Conversely, this reduction in accuracy was relatively contained (10-15%) in drier samples such as HMC. The Standard Error of Cross-Validation (SECV) values for DMres, Ash, CP, and EE were notably low, at 0.39, 0.30, 0.29, 0.21% for CWP and 0.49, 0.14, 0.25, 0.14% for HMC, respectively. These results align with previous studies, indicating the reliability of NIR spectroscopy in diverse moisture contexts. The study attributes this variance to the interference caused by water in 'as is' samples, where the spectral features predominantly reflect water content, thereby obscuring the spectral signatures of other nutrients. In terms of calibration development strategies, the study concludes that there is no significant difference in predictive performance between undried calibrations based on either 'dry matter' or 'as is' basis. This finding emphasizes the potential of NIR spectroscopy in diverse moisture contexts, although with varying degrees of accuracy contingent upon the moisture content of the analyzed samples. Overall, this research provides valuable insights into the calibration strategies of NIR spectroscopy and its practical applications in agricultural settings, particularly for on-farm forage analysis.


Subject(s)
Animal Feed , Spectroscopy, Near-Infrared , Zea mays , Spectroscopy, Near-Infrared/methods , Calibration , Zea mays/chemistry , Animal Feed/analysis , Water/analysis , Water/chemistry , Desiccation
7.
Sci Rep ; 14(1): 9008, 2024 04 19.
Article in English | MEDLINE | ID: mdl-38637579

ABSTRACT

This investigation aimed to explore the prognostic factors in elderly patients with unresected gastric cancer (GC) who have received chemotherapy and to develop a nomogram for predicting their cancer-specific survival (CSS). Elderly gastric cancer patients who have received chemotherapy but no surgery in the Surveillance, Epidemiology, and End Results Database between 2004 and 2015 were included in this study. Cox analyses were conducted to identify prognostic factors, leading to the formulation of a nomogram. The nomogram was validated using receiver operating characteristic (ROC) and calibration curves. The findings elucidated six prognostic factors encompassing grade, histology, M stage, radiotherapy, tumor size, and T stage, culminating in the development of a nomogram. The ROC curve indicated that the area under curve of the nomogram used to predict CSS for 3, 4, and 5 years in the training queue as 0.689, 0.708, and 0.731, and in the validation queue, as 0.666, 0.693, and 0.708. The calibration curve indicated a high degree of consistency between actual and predicted CSS for 3, 4, and 5 years. This nomogram created to predict the CSS of elderly patients with unresected GC who have received chemotherapy could significantly enhance treatment accuracy.


Subject(s)
Nomograms , Stomach Neoplasms , Aged , Humans , Stomach Neoplasms/drug therapy , Calibration , Cell Division , Databases, Factual , SEER Program
8.
Methods Mol Biol ; 2788: 49-66, 2024.
Article in English | MEDLINE | ID: mdl-38656508

ABSTRACT

Calibrated size exclusion chromatography (SEC) is a useful tool for the analysis of molecular dimensions of polysaccharides. The calibration takes place with a set of narrow distributed dextran standards and peak position technique. Adapted columns systems and dissolving processes enable for the adequate separation of carbohydrate polymers. Plant-extracted fructan (a homopolymer with low molar mass and excellent water solubility) and mucilage (differently structured, high molar mass heteropolysaccarides that include existing supramolecular structures, and require a long dissolving time) are presented as examples of the versatility of this technique. Since narrow standards similar to the samples (chemically and structurally) are often unavailable, it must be noted that the obtained molar mass values and distributions by this method are only apparent (relative) values, expressed as dextran equivalents.


Subject(s)
Chromatography, Gel , Molecular Weight , Polysaccharides , Chromatography, Gel/methods , Polysaccharides/chemistry , Polysaccharides/analysis , Dextrans/chemistry , Fructans/chemistry , Fructans/analysis , Calibration
9.
Sensors (Basel) ; 24(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38676155

ABSTRACT

This study aims to enhance diagnostic capabilities for optimising the performance of the anaerobic sewage treatment lagoon at Melbourne Water's Western Treatment Plant (WTP) through a novel machine learning (ML)-based monitoring strategy. This strategy employs ML to make accurate probabilistic predictions of biogas performance by leveraging diverse real-life operational and inspection sensor and other measurement data for asset management, decision making, and structural health monitoring (SHM). The paper commences with data analysis and preprocessing of complex irregular datasets to facilitate efficient learning in an artificial neural network. Subsequently, a Bayesian mixture density neural network model incorporating an attention-based mechanism in bidirectional long short-term memory (BiLSTM) was developed. This probabilistic approach uses a distribution output layer based on the Gaussian mixture model and Monte Carlo (MC) dropout technique in estimating data and model uncertainties, respectively. Furthermore, systematic hyperparameter optimisation revealed that the optimised model achieved a negative log-likelihood (NLL) of 0.074, significantly outperforming other configurations. It achieved an accuracy approximately 9 times greater than the average model performance (NLL = 0.753) and 22 times greater than the worst performing model (NLL = 1.677). Key factors influencing the model's accuracy, such as the input window size and the number of hidden units in the BiLSTM layer, were identified, while the number of neurons in the fully connected layer was found to have no significant impact on accuracy. Moreover, model calibration using the expected calibration error was performed to correct the model's predictive uncertainty. The findings suggest that the inherent data significantly contribute to the overall uncertainty of the model, highlighting the need for more high-quality data to enhance learning. This study lays the groundwork for applying ML in transforming high-value assets into intelligent structures and has broader implications for ML in asset management, SHM applications, and renewable energy sectors.


Subject(s)
Bayes Theorem , Biofuels , Neural Networks, Computer , Anaerobiosis , Calibration , Monte Carlo Method , Sewage , Machine Learning
10.
Med Phys ; 51(5): 3245-3264, 2024 May.
Article in English | MEDLINE | ID: mdl-38573172

ABSTRACT

BACKGROUND: Cone-beam CT (CBCT) with non-circular scanning orbits can improve image quality for 3D intraoperative image guidance. However, geometric calibration of such scans can be challenging. Existing methods typically require a prior image, specialized phantoms, presumed repeatable orbits, or long computation time. PURPOSE: We propose a novel fully automatic online geometric calibration algorithm that does not require prior knowledge of fiducial configuration. The algorithm is fast, accurate, and can accommodate arbitrary scanning orbits and fiducial configurations. METHODS: The algorithm uses an automatic initialization process to eliminate human intervention in fiducial localization and an iterative refinement process to ensure robustness and accuracy. We provide a detailed explanation and implementation of the proposed algorithm. Physical experiments on a lab test bench and a clinical robotic C-arm scanner were conducted to evaluate spatial resolution performance and robustness under realistic constraints. RESULTS: Qualitative and quantitative results from the physical experiments demonstrate high accuracy, efficiency, and robustness of the proposed method. The spatial resolution performance matched that of our existing benchmark method, which used a 3D-2D registration-based geometric calibration algorithm. CONCLUSIONS: We have demonstrated an automatic online geometric calibration method that delivers high spatial resolution and robustness performance. This methodology enables arbitrary scan trajectories and should facilitate translation of such acquisition methods in a clinical setting.


Subject(s)
Algorithms , Cone-Beam Computed Tomography , Cone-Beam Computed Tomography/instrumentation , Cone-Beam Computed Tomography/methods , Calibration , Phantoms, Imaging , Automation , Humans , Fiducial Markers , Imaging, Three-Dimensional/methods
11.
J Int Med Res ; 52(4): 3000605241240993, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38606733

ABSTRACT

OBJECTIVE: We developed a simple, rapid predictive model to evaluate the prognosis of older patients with lung adenocarcinoma. METHODS: Demographic characteristics and clinical information of patients with lung adenocarcinoma aged ≥60 years were retrospectively analyzed using Surveillance, Epidemiology, and End Results (SEER) data. We built nomograms of overall survival and cancer-specific survival using Cox single-factor and multi-factor regression. We used the C-index, calibration curve, receiver operating characteristic (ROC) curves, and decision curve analysis (DCA) to evaluate performance of the nomograms. RESULTS: We included 14,117 patients, divided into a training set and validation set. We used the chi-square test to compare baseline data between groups and found no significant differences. We used Cox regression analysis to screen out independent prognostic factors affecting survival time and used these factors to construct the nomogram. The ROC curve, calibration curve, C-index, and DCA curve were used to verify the model. The final results showed that our predictive model had good predictive ability, and showed better predictive ability compared with tumor-node-metastasis (TNM) staging. We also achieved good results using data of our center for external verification. CONCLUSION: The present nomogram could accurately predict prognosis in older patients with lung adenocarcinoma.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Aged , Retrospective Studies , Nomograms , Calibration , Prognosis , Neoplasm Staging
12.
Sensors (Basel) ; 24(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38610306

ABSTRACT

Frontal and axial knee motion can affect the accuracy of the knee extension/flexion motion measurement using a wearable goniometer. The purpose of this study was to test the hypothesis that calibrating the goniometer on an individual's body would reduce errors in knee flexion angle during gait, compared to bench calibration. Ten young adults (23.2 ± 1.3 years) were enrolled. Knee flexion angles during gait were simultaneously assessed using a wearable goniometer sensor and an optical three-dimensional motion analysis system, and the absolute error (AE) between the two methods was calculated. The mean AE across a gait cycle was 2.4° (0.5°) for the on-body calibration, and the AE was acceptable (<5°) throughout a gait cycle (range: 1.5-3.8°). The mean AE for the on-bench calibration was 4.9° (3.4°) (range: 1.9-13.6°). Statistical parametric mapping (SPM) analysis revealed that the AE of the on-body calibration was significantly smaller than that of the on-bench calibration during 67-82% of the gait cycle. The results indicated that the on-body calibration of a goniometer sensor had acceptable and better validity compared to the on-bench calibration, especially for the swing phase of gait.


Subject(s)
Optical Devices , Wearable Electronic Devices , Young Adult , Humans , Calibration , Knee Joint , Gait
13.
Sensors (Basel) ; 24(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38610464

ABSTRACT

Alcohol acts as a central nervous system depressant and falls under the category of psychoactive drugs. It has the potential to impair vital bodily functions, including cognitive alertness, muscle coordination, and induce fatigue. Taking the wheel after consuming alcohol can lead to delayed responses in emergency situations and increases the likelihood of collisions with obstacles or suddenly appearing objects. Statistically, drivers under the influence of alcohol are seven times more likely to cause accidents compared to sober individuals. Various techniques and methods for alcohol measurement have been developed. The widely used breathalyzer, which requires direct contact with the mouth, raises concerns about hygiene. Methods like chromatography require skilled examiners, while semiconductor sensors exhibit instability in sensitivity over measurement time and has a short lifespan, posing structural challenges. Non-dispersive infrared analyzers face structural limitations, and in-vehicle air detection methods are susceptible to external influences, necessitating periodic calibration. Despite existing research and technologies, there remain several limitations, including sensitivity to external factors such as temperature, humidity, hygiene consideration, and the requirement for periodic calibration. Hence, there is a demand for a novel technology that can address these shortcomings. This study delved into the near-infrared wavelength range to investigate optimal wavelengths for non-invasively measuring blood alcohol concentration. Furthermore, we conducted an analysis of the optical characteristics of biological substances, integrated these data into a mathematical model, and demonstrated that alcohol concentration can be accurately sensed using the first-order modeling equation at the optimal wavelength. The goal is to minimize user infection and hygiene issues through a non-destructive and non-invasive method, while applying a compact spectrometer sensor suitable for button-type ignition devices in vehicles. Anticipated applications of this study encompass diverse industrial sectors, including the development of non-invasive ignition button-based alcohol prevention systems, surgeon's alcohol consumption status in the operating room, screening heavy equipment operators for alcohol use, and detecting alcohol use in close proximity to hazardous machinery within factories.


Subject(s)
Blood Alcohol Content , Driving Under the Influence , Humans , Ethanol , Spectrum Analysis , Calibration
14.
Molecules ; 29(7)2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38611733

ABSTRACT

The process of blood coagulation, wherein circulating blood transforms into a clot in response to an internal or external injury, is a critical physiological mechanism. Monitoring this coagulation process is vital to ensure that blood clotting neither occurs too rapidly nor too slowly. Anticoagulants, a category of medications designed to prevent and treat blood clots, require meticulous monitoring to optimise dosage, enhance clinical outcomes, and minimise adverse effects. This review article delves into the various stages of blood coagulation, explores commonly used anticoagulants and their targets within the coagulation enzyme system, and emphasises the electrochemical methods employed in anticoagulant testing. Electrochemical sensors for anticoagulant monitoring are categorised into two types. The first type focuses on assays measuring thrombin activity via electrochemical techniques. The second type involves modified electrode surfaces that either directly measure the redox behaviours of anticoagulants or monitor the responses of standard redox probes in the presence of these drugs. This review comprehensively lists different electrode compositions and their detection and quantification limits. Additionally, it discusses the potential of employing a universal calibration plot to replace individual drug-specific calibrations. The presented insights are anticipated to significantly contribute to the sensor community's efforts in this field.


Subject(s)
Anticoagulants , Blood Coagulation , Anticoagulants/therapeutic use , Biological Assay , Calibration , Thrombin
15.
Vasc Health Risk Manag ; 20: 195-205, 2024.
Article in English | MEDLINE | ID: mdl-38633724

ABSTRACT

Purpose: The aim of this study was to identify independent risk factors for carotid atherosclerosis (CAS) in a population with hyperuricemia (HUA) and develop a CAS risk prediction model. Patients and Methods: This retrospective study included 3579 HUA individuals who underwent health examinations, including carotid ultrasonography, at the Zhenhai Lianhua Hospital in Ningbo, China, in 2020. All participants were randomly assigned to the training and internal validation sets in a 7:3 ratio. Multivariable logistic regression analysis was used to identify independent risk factors associated with CAS. The characteristic variables were screened using the least absolute shrinkage and selection operator combined with 10-fold cross-validation, and the resulting model was visualized by a nomogram. The discriminative ability, calibration, and clinical utility of the risk model were validated using the receiver operating characteristic curve, calibration curve, and decision curve analysis. Results: Sex, age, mean red blood cell volume, and fasting blood glucose were identified as independent risk factors for CAS in the HUA population. Age, gamma-glutamyl transpeptidase, serum creatinine, fasting blood glucose, total triiodothyronine, and direct bilirubin, were screened to construct a CAS risk prediction model. In the training and internal validation sets, the risk prediction model showed an excellent discriminative ability with the area under the curve of 0.891 and 0.901, respectively, and a high level of fit. Decision curve analysis results demonstrated that the risk prediction model could be beneficial when the threshold probabilities were 1-87% and 1-100% in the training and internal validation sets, respectively. Conclusion: We developed and internally validated a risk prediction model for CAS in a population with HUA, thereby contributing to the CAS early identification.


Subject(s)
Carotid Artery Diseases , Hyperuricemia , Humans , Blood Glucose , Retrospective Studies , Calibration
16.
Methods Mol Biol ; 2790: 333-353, 2024.
Article in English | MEDLINE | ID: mdl-38649579

ABSTRACT

This chapter provides a methodology for evaluating plant health and leaf characteristics using spectral reflectance. It provides a step-by-step guide to using spectrometers for high-resolution point measurements of leaf spectral reflectance and multispectral imaging for capturing spatial data, emphasizing the importance of consistent measurement conditions. The chapter further explores the intricacies of multispectral imaging, including calibration, data collection, and image processing. Finally, this chapter delves into the application of various spectral indices for the quantification of key traits such as pigment content, the status of the xanthophyll cycle, water content, and how to identify spectral regions of interest for further research and development. Serving as a guide for researchers and practitioners in plant science, this chapter provides a straightforward framework for plant health assessment using spectral reflectance.


Subject(s)
Plant Leaves , Spectrum Analysis , Plant Leaves/chemistry , Spectrum Analysis/methods , Image Processing, Computer-Assisted/methods , Water/chemistry , Calibration , Plants , Xanthophylls
17.
Physiol Meas ; 45(4)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38569522

ABSTRACT

Objective. The continuous delivery of oxygen is critical to sustain brain function, and therefore, measuring brain oxygen consumption can provide vital physiological insight. In this work, we examine the impact of calibration and cerebral blood flow (CBF) measurements on the computation of the relative changes in the cerebral metabolic rate of oxygen consumption (rCMRO2) from hemoglobin-sensitive intrinsic optical imaging data. Using these data, we calculate rCMRO2, and calibrate the model using an isometabolic stimulus.Approach. We used awake head-fixed rodents to obtain hemoglobin-sensitive optical imaging data to test different calibrated and uncalibrated rCMRO2models. Hypercapnia was used for calibration and whisker stimulation was used to test the impact of calibration.Main results. We found that typical uncalibrated models can provide reasonable estimates of rCMRO2with differences as small as 7%-9% compared to their calibrated models. However, calibrated models showed lower variability and less dependence on baseline hemoglobin concentrations. Lastly, we found that supplying the model with measurements of CBF significantly reduced error and variability in rCMRO2change calculations.Significance. The effect of calibration on rCMRO2calculations remains understudied, and we systematically evaluated different rCMRO2calculation scenarios that consider including different measurement combinations. This study provides a quantitative comparison of these scenarios to evaluate trade-offs that can be vital to the design of blood oxygenation sensitive imaging experiments for rCMRO2calculation.


Subject(s)
Brain , Optical Imaging , Oxygen Consumption , Oxygen , Wakefulness , Animals , Calibration , Mice , Brain/metabolism , Brain/diagnostic imaging , Brain/blood supply , Oxygen/metabolism , Wakefulness/physiology , Oxygen Consumption/physiology , Cerebrovascular Circulation/physiology , Hemoglobins/metabolism , Hemoglobins/analysis , Male , Mice, Inbred C57BL , Hypercapnia/metabolism , Hypercapnia/diagnostic imaging
18.
Sci Rep ; 14(1): 8302, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38594313

ABSTRACT

We aim to develop machine learning (ML) models for predicting the complexity and mortality of polytrauma patients using clinical features, including physician diagnoses and physiological data. We conducted a retrospective analysis of a cohort comprising 756 polytrauma patients admitted to the intensive care unit (ICU) at Pizhou People's Hospital Trauma Center, Jiangsu, China between 2020 and 2022. Clinical parameters encompassed demographics, vital signs, laboratory values, clinical scores and physician diagnoses. The two primary outcomes considered were mortality and complexity. We developed ML models to predict polytrauma mortality or complexity using four ML algorithms, including Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN) and eXtreme Gradient Boosting (XGBoost). We assessed the models' performance and compared the optimal ML model against three existing trauma evaluation scores, including Injury Severity Score (ISS), Trauma Index (TI) and Glasgow Coma Scale (GCS). In addition, we identified several important clinical predictors that made contributions to the prognostic models. The XGBoost-based polytrauma mortality prediction model demonstrated a predictive ability with an accuracy of 90% and an F-score of 88%, outperforming SVM, RF and ANN models. In comparison to conventional scoring systems, the XGBoost model had substantial improvements in predicting the mortality of polytrauma patients. External validation yielded strong stability and generalization with an accuracy of up to 91% and an AUC of 82%. To predict polytrauma complexity, the XGBoost model maintained its performance over other models and scoring systems with good calibration and discrimination abilities. Feature importance analysis highlighted several clinical predictors of polytrauma complexity and mortality, such as Intracranial hematoma (ICH). Leveraging ML algorithms in polytrauma care can enhance the prognostic estimation of polytrauma patients. This approach may have potential value in the management of polytrauma patients.


Subject(s)
Algorithms , Multiple Trauma , Humans , Retrospective Studies , Calibration , Machine Learning , Multiple Trauma/diagnosis
19.
Epidemiology ; 35(3): 320-328, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38630507

ABSTRACT

Regression calibration as developed by Rosner, Spiegelman, and Willett is used to adjust the bias in effect estimates due to measurement error in continuous exposures. The method involves two models: a measurement error model relating the mismeasured exposure to the true (or gold-standard) exposure and an outcome model relating the mismeasured exposure to the outcome. However, no comprehensive guidance exists for determining which covariates should be included in each model. In this article, we investigate the selection of the minimal and most efficient covariate adjustment sets under a causal inference framework. We show that to address the measurement error, researchers must adjust for, in both measurement error and outcome models, any common causes (1) of true exposure and the outcome and (2) of measurement error and the outcome. We also show that adjusting for so-called prognostic variables that are independent of true exposure and measurement error in the outcome model, may increase efficiency, while adjusting for any covariates that are associated only with true exposure generally results in efficiency loss in realistic settings. We apply the proposed covariate selection approach to the Health Professional Follow-up Study dataset to study the effect of fiber intake on cardiovascular disease. Finally, we extend the originally proposed estimators to a nonparametric setting where effect modification by covariates is allowed.


Subject(s)
Cardiovascular Diseases , Humans , Calibration , Follow-Up Studies , Causality , Health Personnel
20.
PLoS One ; 19(4): e0302032, 2024.
Article in English | MEDLINE | ID: mdl-38630787

ABSTRACT

An increasing number of measurement electrodes have been designed to satisfy the demand for high-resolution detection using galvanic logging technology in complex formations. The forward modeling response analysis of logging tools has important guiding significance in the design of galvanic logging tools. Based on a three-dimensional finite element numerical simulation method, we established a forward model of galvanic multi-electrodes in a complex formation. We also designed a symmetrical resistance network model of the formation with equivalent resistance between two electrodes. A symmetrical resistance network was derived using the balanced bridge method. The asymmetrical admittance matrix was extended to a symmetrical extended admittance matrix to realize a convenient calculation of the equivalent symmetrical resistance network in complex formations. Verification of the microcolumn-focused logging tool, with nine electrodes in a simulated standard well, and an evaluation of the degree of invasion in an actual oil well indicate that this calibration method can improve the measurement accuracy of galvanic logging instruments.


Subject(s)
Calibration , Computer Simulation , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...