Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 811
Filter
1.
Sci Rep ; 14(1): 15181, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956295

ABSTRACT

Human norovirus (HuNoV) is an enteric infectious pathogen belonging to the Caliciviridae family that causes occasional epidemics. Circulating alcohol-tolerant viral particles that are readily transmitted via food-borne routes significantly contribute to the global burden of HuNoV-induced gastroenteritis. Moreover, contact with enzymes secreted by other microorganisms in the environment can impact the infectivity of viruses. Hence, understanding the circulation dynamics of Caliciviridae is critical to mitigating epidemics. Accordingly, in this study, we screened whether environmentally abundant secretase components, particularly proteases, affect Caliciviridae infectivity. Results showed that combining Bacillaceae serine proteases with epsilon-poly-L-lysine (EPL) produced by Streptomyces-a natural antimicrobial-elicited anti-Caliciviridae properties, including against the epidemic HuNoV GII.4_Sydney_2012 strain. In vitro and in vivo biochemical and virological analyses revealed that EPL has two unique synergistic viral inactivation functions. First, it maintains an optimal pH to promote viral surface conformational changes to the protease-sensitive structure. Subsequently, it inhibits viral RNA genome release via partial protease digestion at the P2 and S domains in the VP1 capsid. This study provides new insights regarding the high-dimensional environmental interactions between bacteria and Caliciviridae, while promoting the development of protease-based anti-viral disinfectants.


Subject(s)
Bacillaceae , Polylysine , Serine Proteases , Streptomyces , Streptomyces/enzymology , Polylysine/pharmacology , Polylysine/chemistry , Polylysine/metabolism , Serine Proteases/metabolism , Bacillaceae/enzymology , RNA, Viral/genetics , RNA, Viral/metabolism , Humans , Genome, Viral , Animals , Norovirus/drug effects , Norovirus/genetics , Virus Inactivation/drug effects , Caliciviridae/genetics , Antiviral Agents/pharmacology
2.
Viruses ; 16(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38932159

ABSTRACT

In virology, the term reverse genetics refers to a set of methodologies in which changes are introduced into the viral genome and their effects on the generation of infectious viral progeny and their phenotypic features are assessed. Reverse genetics emerged thanks to advances in recombinant DNA technology, which made the isolation, cloning, and modification of genes through mutagenesis possible. Most virus reverse genetics studies depend on our capacity to rescue an infectious wild-type virus progeny from cell cultures transfected with an "infectious clone". This infectious clone generally consists of a circular DNA plasmid containing a functional copy of the full-length viral genome, under the control of an appropriate polymerase promoter. For most DNA viruses, reverse genetics systems are very straightforward since DNA virus genomes are relatively easy to handle and modify and are also (with few notable exceptions) infectious per se. This is not true for RNA viruses, whose genomes need to be reverse-transcribed into cDNA before any modification can be performed. Establishing reverse genetics systems for members of the Caliciviridae has proven exceptionally challenging due to the low number of members of this family that propagate in cell culture. Despite the early successful rescue of calicivirus from a genome-length cDNA more than two decades ago, reverse genetics methods are not routine procedures that can be easily extrapolated to other members of the family. Reports of calicivirus reverse genetics systems have been few and far between. In this review, we discuss the main pitfalls, failures, and delays behind the generation of several successful calicivirus infectious clones.


Subject(s)
Caliciviridae , Reverse Genetics , Reverse Genetics/methods , Caliciviridae/genetics , Genome, Viral , Animals , Humans , Virus Replication
3.
Virus Res ; 346: 199403, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38776984

ABSTRACT

The gut of healthy neonates is devoid of viruses at birth, but rapidly becomes colonised by normal viral commensals that aid in important physiological functions like metabolism but can, in some instances, result in gastrointestinal illnesses. However, little is known about how this colonisation begins, its variability and factors shaping the gut virome composition. Thus, understanding the development, assembly, and progression of enteric viral communities over time is key. To explore early-life virome development, metagenomic sequencing was employed in faecal samples collected longitudinally from a cohort of 17 infants during their first six months of life. The gut virome analysis revealed a diverse and dynamic viral community, formed by a richness of different viruses infecting humans, non-human mammals, bacteria, and plants. Eukaryotic viruses were detected as early as one week of life, increasing in abundance and diversity over time. Most of the viruses detected are commonly associated with gastroenteritis and include members of the Caliciviridae, Picornaviridae, Astroviridae, Adenoviridae, and Sedoreoviridae families. The most common co-occurrences involved asymptomatic norovirus-parechovirus, norovirus-sapovirus, sapovirus-parechovirus, observed in at least 40 % of the samples. Majority of the plant-derived viruses detected in the infants' gut were from the Virgaviridae family. This study demonstrates the first longitudinal characterisation of the gastrointestinal virome in infants, from birth up to 6 months of age, in sub-Saharan Africa. Overall, the findings from this study delineate the composition and variability of the healthy infants' gut virome over time, which is a significant step towards understanding the dynamics and biogeography of viral communities in the infant gut.


Subject(s)
Feces , Virome , Humans , South Africa , Infant , Longitudinal Studies , Feces/virology , Infant, Newborn , Gastrointestinal Microbiome , Male , Female , Viruses/classification , Viruses/isolation & purification , Viruses/genetics , Metagenomics , Gastrointestinal Tract/virology , Gastroenteritis/virology , Sapovirus/genetics , Sapovirus/isolation & purification , Sapovirus/classification , Norovirus/genetics , Norovirus/isolation & purification , Norovirus/classification , Picornaviridae/genetics , Picornaviridae/classification , Picornaviridae/isolation & purification , Caliciviridae/genetics , Caliciviridae/isolation & purification , Caliciviridae/classification , Metagenome
4.
Infect Genet Evol ; 122: 105607, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38806078

ABSTRACT

Caliciviruses (Caliciviridae) and astroviruses (Astroviridae) are among the leading cause of non-bacterial foodborne disease and gastroenteritis in human. These non-enveloped RNA viruses infect a wide range of vertebrate species including rodents. Rodents are among the most important hosts of infectious diseases globally and are responsible for over 80 zoonotic pathogens that affect humans. Therefore, screening pathogens in rodents will be is necessary to prevent cross-species transmission to prevent zoonotic outbreaks. In the present study, we screened caliciviruses and astroviruses in order to describe their diversity and whether they harbor strains that can infect humans. RNA was then extracted from intestine samples of 245 rodents and retrotranscribed in cDNA to screen caliciviruses and astroviruses by PCRs. All the samples tested negative for caliciviruses and while astroviruses were detected in 18 (7.3%) samples of Rattus rattus species. Phylogenetic analyses based on the RdRp gene showed that all the sequences belonged to Mamastrovirus genus in which they were genetically related to R. rattus related AstVs previously detected in Gabon or in Rattus spp. AstV from Kenya and Asia. These findings suggested that transportation such as land and railway, as well national and international trade, are likely to facilitate spread of AstVs by the dissemination of rodents.


Subject(s)
Astroviridae Infections , Astroviridae , Caliciviridae Infections , Caliciviridae , Phylogeny , Animals , Astroviridae/genetics , Astroviridae/classification , Astroviridae/isolation & purification , Caliciviridae Infections/virology , Caliciviridae Infections/epidemiology , Caliciviridae Infections/transmission , Astroviridae Infections/virology , Astroviridae Infections/veterinary , Astroviridae Infections/epidemiology , Astroviridae Infections/transmission , Caliciviridae/genetics , Caliciviridae/isolation & purification , Caliciviridae/classification , Rodentia/virology , Commerce , Rats , Humans
5.
Arch Virol ; 169(5): 102, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630315

ABSTRACT

A highly divergent bovine calicivirus was identified in an Indian calf with enteritis. The whole genome of this virus was sequenced, revealing distinct amino acid motifs in the polyprotein encoded by open reading frame 1 (ORF1) that are unique to caliciviruses. Phylogenetic analysis showed that it was related to members of the genus Nebovirus of the family Caliciviridae. Although it showed only 33.7-34.2% sequence identity in the VP1 protein to the nebovirus prototype strains, it showed 90.6% identity in VP1 to Kirklareli virus, a nebovirus detected in calves with enteritis in Turkey in 2012. An in-house-designed and optimized reverse transcription polymerase chain reaction (RT-PCR) assay was used to screen 120 archived bovine diarrhoeic fecal samples, 40 each from the Indian states of Uttar Pradesh, Haryana, and Himachal Pradesh, revealing frequent circulation of these divergent caliciviruses in the bovine population, with an overall positivity rate of 64.17% (77/120). This underscores the importance of conducting a comprehensive investigation of the prevalence of these divergent caliciviruses and assessing their associations with other pathogens responsible for enteritis in India.


Subject(s)
Caliciviridae , Enteritis , RNA Viruses , Cattle , Animals , Phylogeny , Caliciviridae/genetics , India/epidemiology
6.
Arch Virol ; 169(5): 100, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630394

ABSTRACT

In this study, a novel genotype of genogroup X (GX) sapovirus (family Caliciviridae) was detected in the small intestinal contents of a golden jackal (Canis aureus) in Hungary and characterised by viral metagenomics and next-generation sequencing techniques. The complete genome of the detected strain, GX/Dömsöd/DOCA-11/2020/HUN (PP105600), is 7,128 nt in length. The ORF1- and ORF2-encoded viral proteins (NSP, VP1, and VP2) have 98%, 95%, and 88% amino acid sequence identity to the corresponding proteins of genogroup GX sapoviruses from domestic pigs, but the nucleic acid sequence identity values for their genes are significantly lower (83%, 77%, and 68%). During an RT-PCR-based epidemiological investigation of additional jackal and swine samples, no other GX strains were detected, but a GXI sapovirus strain, GXI/Tótfalu/WBTF-10/2012/HUN (PP105601), was identified in a faecal sample from a wild boar (Sus scrofa). We report the detection of members of two likely underdiagnosed groups of sapoviruses (GX and GXI) in a golden jackal and, serendipitously, in a wild boar in Europe.


Subject(s)
Caliciviridae , Canidae , Sapovirus , Animals , Swine , Sapovirus/genetics , Jackals , Hungary/epidemiology , Genotype , Sus scrofa
7.
J Virol Methods ; 327: 114919, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38531509

ABSTRACT

Human norovirus (HuNoV) is regularly involved in food-borne infections. To detect infectious HuNoV in food, RT-qPCR remains state of the art but also amplifies non-infectious virus. The present study combines pre-treatments, RNase and propidium monoazide, with three molecular analyses, including long-range PCR, to predominantly detect infectious Tulane virus (TuV), a culturable HuNoV surrogate. TuV was exposed to inactivating conditions to assess which molecular method most closely approximates the reduction in infectious virus determined by cell culture (TCID50). After thermal treatments (56 °C/5 min, 70 °C/5 min, 72 °C/20 min), TCID50 reductions of 0.3, 4.4 and 5.9 log10 were observed. UV exposure (40/100/1000 mJ/cm2) resulted in 1.1, 2.5 and 5.9 log10 reductions. Chlorine (45/100 mg/L for 1 h) reduced infectious TuV by 2.0 and 3.0 log10. After thermal inactivation standard RT-qPCR, especially with pre-treatments, showed the smallest deviation from TCID50. On average, RT-qPCR with pre-treatments deviated by 1.1-1.3 log10 from TCID50. For UV light, long-range PCR was closest to TCID50 results. Long-range reductions deviated from TCID50 by ≤0.1 log10 for mild and medium UV-conditions. However, long-range analyses often resulted in qPCR non-detects. At higher UV doses, RT-qPCR with pre-treatments differed by ≤1.0 log10 from TCID50. After chlorination the molecular methods repeatedly deviated from TCID50 by >1.0 log10, Overall, each method needs to be further optimized for the individual types of inactivation treatment.


Subject(s)
Azides , Propidium , Ultraviolet Rays , Virus Inactivation , Azides/pharmacology , Propidium/analogs & derivatives , Propidium/pharmacology , Virus Inactivation/radiation effects , Microbial Viability/radiation effects , Microbial Viability/drug effects , Humans , Caliciviridae/genetics , Caliciviridae/drug effects , Real-Time Polymerase Chain Reaction/methods , Chlorine/pharmacology , Ribonucleases , Hot Temperature
8.
Food Environ Virol ; 16(2): 261-268, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38413543

ABSTRACT

Controlled environment agriculture (CEA), or indoor agriculture, encompasses non-traditional farming methods that occur inside climate-controlled structures (e.g., greenhouses, warehouses, high tunnels) allowing for year-round production of fresh produce such as leaf lettuce. However, recent outbreaks and recalls associated with hydroponically grown lettuce contaminated with human pathogens have raised concerns. Few studies exist on the food safety risks during hydroponic cultivation of leaf lettuce; thus, it is important to identify contributing risk factors and potential mitigation strategies to prevent foodborne transmission via hydroponically grown produce. In this study, the concentration of infectious Tulane virus (TV), a human norovirus surrogate, in hydroponic nutrient solution at 15 °C, 25 °C, 30 °C, and 37 °C was determined over a duration of 21 days to mimic the time from seedling to mature lettuce. The mean log PFU reduction for TV was 0.86, 1.80, 2.87, and ≥ 3.77 log10 at 15 °C, 25 °C, 30 °C, and 37 °C, respectively, at the end of the 21-day period. Similarly, average decimal reduction values (D-values) of TV at 15 °C, 25 °C, 30 °C, and 37 °C were 48.0, 11.3, 8.57, and 7.02 days, respectively. This study aids in the (i) identification of possible food safety risks associated with hydroponic systems specifically related to nutrient solution temperature and (ii) generation of data to perform risk assessments within CEA leaf lettuce operations to inform risk management strategies for the reduction of foodborne outbreaks, fresh produce recalls, and economic losses.


Subject(s)
Hydroponics , Lactuca , Temperature , Lactuca/virology , Lactuca/growth & development , Caliciviridae/growth & development , Caliciviridae/physiology , Food Contamination/analysis , Nutrients/metabolism , Humans , Food Safety
9.
J Virol ; 98(3): e0185123, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38353537

ABSTRACT

Recently, we identified the coxsackie and adenovirus receptor (CAR) as the entry receptor for rhesus enteric calicivirus (ReCV) isolate FT285 and demonstrated that co-expression of the CAR and the type B histo-blood group antigen (HBGA) is required to convert the resistant CHO cell line susceptible to infection. To address whether the CAR is also the functional entry receptor for other ReCV isolates and the requirement for specific HBGAs or other glycans, here we used a panel of recombinant CHO cell lines expressing the CAR and the type A, B, or H HBGAs alone or in combination. Infection studies with three diverse ReCV strains, the prototype GI.1 Tulane virus (TV), GI.2 ReCV-FT285, and GI.3 ReCV-FT7, identified that cell surface expression of the CAR is an absolute requirement for all three strains to promote susceptibility to infection, while the requirement for HBGAs varies among the strains. In addition to the CAR, ReCV-FT285 and TV require type A or B HBGAs for infection. In the absence of HBGAs, TV, but not Re-CV FT285, can also utilize sialic acids, while ReCV-FT7 infection is HBGA-independent and relies on CAR and sialic acid expression. In summary, we demonstrated strain-specific diversity of susceptibility requirements for ReCV infections and that CAR, type A and B HBGA, and sialic acid expression control susceptibility to infection with the three ReCV isolates studied. Our study also indicates that the correlation between in vitro HBGA binding and HBGAs required for infection is relatively high, but not absolute. This has direct implications for human noroviruses.IMPORTANCEHuman noroviruses (HuNoVs) are important enteric pathogens. The lack of a robust HuNoV cell culture system is a bottleneck for HuNoV cell culture-based studies. Often, cell culture-adapted caliciviruses that rapidly replicate in conventional cell lines and recapitulate biological features of HuNoVs are utilized as surrogates. Particularly, rhesus enteric caliciviruses (ReCVs) display remarkable similarities, including the primate host, clinical manifestation of gastroenteritis, genetic/antigenic diversity, and reliance on histo-blood group antigens (HBGAs) for attachment. While the HuNoV entry receptor(s) is unknown, the coxsackie and adenovirus receptor (CAR) has recently been identified as the ReCV entry receptor. Here, we identified the CAR, the type A and B HBGAs, and sialic acids as critical cell surface molecules controlling susceptibility to ReCV infections. The CAR is required for all ReCV isolates studied. However, the requirement for the different carbohydrate molecules varies among different ReCV strains. Our findings have direct implications for HuNoVs.


Subject(s)
Caliciviridae Infections , Caliciviridae , Coxsackie and Adenovirus Receptor-Like Membrane Protein , Animals , Cricetinae , Humans , Blood Group Antigens/metabolism , Caliciviridae/physiology , Caliciviridae Infections/virology , CHO Cells , Coxsackie and Adenovirus Receptor-Like Membrane Protein/metabolism , Intestine, Small/virology , N-Acetylneuraminic Acid/metabolism , Norovirus/physiology
10.
Viruses ; 15(9)2023 09 15.
Article in English | MEDLINE | ID: mdl-37766335

ABSTRACT

Sapoviruses, like noroviruses, are single-stranded positive-sense RNA viruses classified in the family Caliciviridae and are recognized as a causative pathogen of diarrhea in infants and the elderly. Like human norovirus, human sapovirus (HuSaV) has long been difficult to replicate in vitro. Recently, it has been reported that HuSaV can be replicated in vitro by using intestinal epithelial cells (IECs) derived from human tissues and cell lines derived from testicular and duodenal cancers. In this study, we report that multiple genotypes of HuSaV can sufficiently infect and replicate in human-induced pluripotent stem cell-derived IECs. We also show that this HuSaV replication system can be used to investigate the conditions for inactivation of HuSaV by heat and alcohol, and the effects of virus neutralization of antisera obtained by immunization with vaccine antigens, under conditions closer to the living environment. The results of this study confirm that HuSaV can also infect and replicate in human normal IECs regardless of their origin and are expected to contribute to future virological studies.


Subject(s)
Caliciviridae , Induced Pluripotent Stem Cells , Norovirus , Sapovirus , Aged , Infant , Humans , Sapovirus/genetics , Intestines , Epithelial Cells
11.
BMJ Open Ophthalmol ; 8(Suppl 2): A18-A19, 2023 08.
Article in English | MEDLINE | ID: mdl-37604530

ABSTRACT

Multiple research groups now theorize that tissue engineering will provide novel therapies for treating corneal endothelial cell (CEC) decompensation. In 2013, we initiated first-in-man clinical research (not an Investigational New Drug [IND] clinical trial) of a CEC injection therapy at the Kyoto Prefectural University of Medicine in Japan. In a clinical trial, cultured CECs (CECs) supplemented with a rho-associated protein kinase (ROCK) inhibitor were injected into the anterior chamber. In all of our first 11 cases, the corneal transparency was restored with the regeneration of a monolayer sheet structure of corneal endothelium. As proof of concept of CEC injection therapy was obtained, we are currently developing a cellular product to deliver this therapy to all patients. To that end, we have established an efficient cell culture protocol and 'ready-to-use' frozen cells. In this presentation, I will introduce the current status of our developments to provide a platform for discussing future therapies for treating corneal endothelial decompensation.


Subject(s)
Caliciviridae , Endothelium, Corneal , Humans , Endothelial Cells , Cornea , Anterior Chamber , Cell Culture Techniques
12.
BMJ Open Ophthalmol ; 8(Suppl 2): A7, 2023 08.
Article in English | MEDLINE | ID: mdl-37604570

ABSTRACT

PURPOSE: The shortage of donor corneas represents a worldwide problem, and corneal endothelial cell (CEC) therapy might be a promising alternative approach. CEC can be implanted alone, which has shown limited efficacy, or with a scaffold that holds the cells together as a monolayer tissue, thus imitating Descemet membrane endothelial keratoplasty. We believe that endothelial cell density (ECD) >2000 cells/mm2, a cut-off value that eye banks use to provide quality tissues for transplantation to surgeons, should also be adopted as a parameter to define the quality of CECs as a new Advanced Therapy Medicinal Product for clinical applications in patients with endothelial dystrophies. METHODS: We isolated and cultured CECs from one or more corneas of elderly age donors with ECDs higher than or below 2000 cells/mm2. CEC cultures were carried out on coated plates and on hydrogels with a preformed basement membrane (from TissueGUARD, Germany). Immunofluorescence with antibodies against ZO-1 was performed to evaluate the ECDs of the CEC graft obtained. RESULTS: Our results suggest that primary cultures with ECDs>2000 cells/mm2 can be obtained on coated plated only when (1) CECs are isolated from one or more corneas of young donors; (2) CECs are isolated and pooled together from at least 2 elderly age donor corneas (if ECD>2000 cells/mm2) or 3 elderly age donor corneas (if ECD<2000 cells/mm2). Secondary cultures are all characterized by low ECDs. Hydrogels have been shown to be able to lead to increased ECDs after their release. CONCLUSION: Our protocol highlights the difficulties in obtaining cultures with ECDs>2000 cells/mm2. Despite being achievable with corneas from young donors, this becomes challenging when corneas from elderly donors are used, i.e., the overall majority of those collected by eye banks, particularly when corneas from elderly age donors with ECD<2000 cells/mm2 are considered as a source. One alternative would be to isolate CECs from more corneas, but this might raise the issue of antigenic stimulation, which could eventually lead to transplantation failure. Our strategy to overcome these challenges is the use of a preformed basement membrane as a scaffold for CECs. However, this challenging approach should be investigated more before proceeding to clinical application.


Subject(s)
Caliciviridae , Epithelial Cells , Aged , Humans , Tissue Donors , Cornea/surgery , Hydrogels , Endothelial Cells
13.
Curr Protoc ; 3(7): e828, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37478303

ABSTRACT

Murine norovirus (MNV) is a positive-sense, plus-stranded RNA virus in the Caliciviridae family. Viruses in this family replicate in the intestine and are transmitted by the fecal-oral route. MNV is related to the human noroviruses, which cause the majority of nonbacterial gastroenteritis worldwide. Given the technical challenges in studying human norovirus, MNV is often used to study mechanisms in norovirus biology since it combines the availability of a cell culture and reverse genetics system with the ability to study infection in the native host. Adding to our previous protocol collection, here we describe additional techniques that have since been developed to study MNV biology. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Indirect method for measuring cell cytotoxicity and antiviral activity Basic Protocol 2: Measuring murine norovirus genome titers by RT-qPCR Support Protocol 1: Preparation of standard Basic Protocol 3: Generation of recombinant murine norovirus with minimal passaging Basic Protocol 4: Generation of recombinant murine norovirus via circular polymerase extension reaction (CPER) Basic Protocol 5: Expression of norovirus NS1-2 in insect cell suspension cultures using a recombinant baculovirus Support Protocol 2: Isotope labelling of norovirus NS1-2 in insect cells Support Protocol 3: Purification of the norovirus NS1-2 protein Support Protocol 4: Expression of norovirus NS1-2 in mammalian cells by transduction with a recombinant baculovirus Basic Protocol 6: Infection of enteroids in transwell inserts with murine norovirus Support Protocol 5: Preparation of conditioned medium for enteroids culture Support Protocol 6: Isolation of crypts for enteroids generation Support Protocol 7: Enteroid culture passaging and maintenance Basic Protocol 7: Quantification of murine norovirus-induced diarrhea using neonatal mouse infections Alternate Protocol 1: Intragastric inoculation of neonatal mice Alternate Protocol 2: Scoring colon contents.


Subject(s)
Caliciviridae , Norovirus , Mice , Humans , Animals , Norovirus/genetics , Antiviral Agents/pharmacology , Caliciviridae/genetics , Genome , Mammals/genetics
14.
Vopr Virusol ; 68(2): 132-141, 2023 05 18.
Article in Russian | MEDLINE | ID: mdl-37264848

ABSTRACT

INTRODUCTION: Rabbit hemorrhagic disease is an acute highly contagious infection associated with two genotypes of pathogenic Lagovirus. Antibodies to major capsid protein (Vp60) are protective. The aim of the work ‒ is an evaluation of antigenic and immunogenic activity of virus-like particles (VLPs) based on recombinant major capsid proteins of both genotypes of rabbit hemorrhagic disease virus (RHDV) (recVP60-GI1 and recVP60-GI2). MATERIALS AND METHODS: Baculovirus-expressed VLPs were evaluated using electron microscopy and administered to clinically healthy 1.53 month old rabbits in a dose of 50 g. Rabbits were challenged with 103 LD50 of virulent strains Voronezhsky-87 and Tula 21 days post immunization. Serum samples were tested for the presence of RHDV-specific antibodies. RESULTS: VLPs with hemagglutination activity forming VLP 3040 nm in size were obtained in Hi-5 cell culture. Specific antibody titers in rabbits measured by ELISA were 1 : 200 to 1 : 800 on 21th day post immunization with VLPs. Immunogenic activity of recVP60-GI1 VLPs was 90 and 40%, while it was 30 and 100% for recVP60-GI2 VLPs after the challenge with RHDV genotypes 1 and 2 respectively. The immunogenicity of two VLPs in mixture reached 100%. DISCUSSION: VLPs possess hemagglutinating, antigenic and immunogenic activity, suggesting their use as components in substances designed for RHDV specific prophylaxis in rabbits. Results of the control challenge experiment demonstrated the need to include the antigens from both RHDV genotypes in the vaccine. CONCLUSION: Recombinant proteins recVP60-GI1 and recVP60-GI2 form VLPs that possess hemagglutinating an antigenic activity, and provide 90100% level of protection for animals challenged with RHDV GI1 and GI2 virulent strains.


Subject(s)
Caliciviridae , Hemorrhagic Disease Virus, Rabbit , Lagovirus , Animals , Rabbits , Hemorrhagic Disease Virus, Rabbit/genetics , Capsid Proteins/genetics , Recombinant Proteins/genetics
15.
Virology ; 582: 83-89, 2023 05.
Article in English | MEDLINE | ID: mdl-37031656

ABSTRACT

Recoviruses (rhesus enteric caliciviruses) are members of the Caliciviridae family. They are a valuable model for studying human caliciviruses such as noroviruses. It has been suggested that some recoviruses may infect humans, which necessitates detailed studies on the cell type tropism of recoviruses. For the recoviruses that have been cultured to date, successful growth has only been reported in monkey kidney cell lines, precluding their use to study virus interactions with human cells. We isolated and characterized a new recovirus, Recovirus Mo/TG30/2012, from monkey stool which grew efficiently in the monkey kidney cell line LLC-MK2. Notably, the virus can infect and replicate in several human cell lines derived from different organs. The ability to infect a human cell culture system with a recovirus expands our understanding of the potential for spillover to humans as well as increases the value of recoviruses as a model of human caliciviruses.


Subject(s)
Caliciviridae Infections , Caliciviridae , Norovirus , RNA Viruses , Humans , Caliciviridae/genetics , Caliciviridae/metabolism , Norovirus/genetics , Cell Line , Intestine, Small
16.
Microbiol Spectr ; 10(4): e0062422, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35924844

ABSTRACT

An emerging disease in farmed yellow catfish (Pelteobagrus fulvidraco) causing massive mortality broke out in 2020 in Hubei, China. Histopathological examination indicated significant changes in kidneys and spleens of diseased fish. Electron microscopy revealed large numbers of viral particles in the kidneys and spleens. These particles were spherical with a diameter of approximately 35 nm. By using RNA sequencing and rapid identification of cDNA ends, the full nucleotide sequence of the virus was identified. The viral genome comprises 7,432 bp and contains three open reading frames sharing no nucleotide sequence similarity with other viruses; however, the amino acid sequence partially matched that of the nonstructural (NS) proteins from viruses in the order Picornavirales. Combined with the phylogenetic analysis, the conserved amino acid motifs and the domains of the viral genome predict a genome order typical of a calicivirus. Therefore, this virus was tentatively named yellow catfish calicivirus (YcCV). Cell culture showed that YcCV could cause a cytopathic effect in the channel catfish kidney cell line (CCK) at early passages. In artificial infection, this virus could infect healthy yellow catfish and led to clinical symptoms similar to those that occurred naturally. In situ hybridization analysis detected positive signals of the virus in kidney, spleen, liver, heart, and gill tissues of diseased fish. This study represents the first report of calicivirus infection in yellow catfish and provides a solid basis for future studies on the control of this viral disease. IMPORTANCE Caliciviruses are rapidly evolving viruses that cause pandemic outbreaks associated with significant morbidity and mortality globally. A novel calicivirus identified from yellow catfish also causes substantial mortality. Using an RNA sequencing (RNA-seq) and rapid amplification of cDNA ends (RACE) method, the full nucleotide sequence was identified and characterized, and this virus was tentatively named yellow catfish calicivirus (YcCV). A nucleotide sequence similarity search found no match with other viruses, and an amino acid sequence comparison indicated approximately 23.3% amino acid homology with the viruses in the order Picornavirales. These findings may represent a new avenue to explain virus evolution and suggest a need to further study the pathogenesis of calicivirus and characterize possible interactions among interspecific viruses in the aquaculture environment.


Subject(s)
Caliciviridae , Catfishes , Amino Acid Sequence , Animals , Caliciviridae/genetics , Catfishes/genetics , Catfishes/metabolism , DNA, Complementary/metabolism , Phylogeny
17.
Virus Res ; 318: 198848, 2022 09.
Article in English | MEDLINE | ID: mdl-35691421

ABSTRACT

Feline calicivirus (FCV) causes upper respiratory tract diseases in cats and has highly variable antigenicity for neutralization of each strain. Neutralizing epitopes of FCV are currently found in the hypervariable region (HVR) in the P2 domain of the major capsid protein VP1. Due to its unique ability to neutralize various FCV strains, 1D7 is a monoclonal antibody that may recognize a novel neutralizing epitope. While other neutralizing epitopes were characterized by producing neutralization-resistant variants, only 1D7-resistant variants could not be obtained, and its epitope has not been identified in the previous studies. In this study, we successfully generated these variants by multiple passaging of the FCV F4 strain in the presence of 1D7 and discovered that several amino acid substitutions (K638N, R662G, and T666I in the P1 domain of VP1) are involved in the decreased binding of 1D7. These substitution sites are also highly conserved among FCV strains compared with the substitution sites of other neutralization-resistant variants found in the HVR. Our results indicate that amino acid substitutions in the P1 domain, which are not responsible for direct interaction with the FCV receptor, are associated with neutralization escape. Since FCV can be conveniently cultured in vitro and the receptor required for infection is known, a detailed analysis of the 1D7 epitope could shed more light on the neutralization mechanism of the epitopes of viruses belonging to the Caliciviridae.


Subject(s)
Caliciviridae Infections , Caliciviridae , Calicivirus, Feline , Cat Diseases , Amino Acid Substitution , Animals , Antibodies, Monoclonal , Caliciviridae Infections/veterinary , Calicivirus, Feline/genetics , Cats , Epitopes/genetics
18.
J Virol Methods ; 307: 114572, 2022 09.
Article in English | MEDLINE | ID: mdl-35760209

ABSTRACT

Rabbit hemorrhagic disease virus (RHDV) is a major member of the Caliciviridae. which is fatal to wild and domestic European rabbit. Because RHDV does not reproduce stably in vitro, molecular studies on this pathogen have been limited. Feline calicivirus (FCV), also a member of the Caliciviridae, reproduces well in vitro and is a good viral vector. As these viruses share similar genomic structures, we hypothesized that a chimeric infectious clone could be constructed by replacing the corresponding regions of the FCV genome with the structural proteins VP60 and VP10 and the 3' non-translated region of the RHDV genome. Transfection of the infectious clone into RK13 cells made it possible to rescue the chimeric virus, named pseudoRHDV, which reproduced in an RK13 cell line with high titer. An infectious pseudoRHDV was produced, which proliferated in RK13 cells to at least 15 generations. PseudoRHDV caused significant cytopathic changes in the RK13 cells, with a viral titer was 9.74 log10 TCID50 / mL. The pseudoRHDV constructed in this study will be helpful for investigating the molecular biology of RHDV, especially its interaction with the host. The model can also be used to explore some common laws between FCV and RHDV.


Subject(s)
Caliciviridae Infections , Caliciviridae , Calicivirus, Feline , Hemorrhagic Disease Virus, Rabbit , Animals , Caliciviridae/genetics , Caliciviridae Infections/veterinary , Calicivirus, Feline/genetics , Cats , Cell Line , Cell Proliferation , Hemorrhagic Disease Virus, Rabbit/genetics , Rabbits
19.
J Gen Virol ; 103(5)2022 05.
Article in English | MEDLINE | ID: mdl-35579608

ABSTRACT

The purification of virus particles is an essential process for the manufacture of vaccines. However, the application of different purification processes may affect the quality of the virus particles, such as structural integrity and homogeneity, which may further influence the infectivity and immunogenicity of the purified virus. In this study, we took Feline calicivirus (FCV), a common natural pathogen in cats belonging to Caliciviridae, as a research model. By using cryo-electron microscopy (cryo-EM), we incorporated the 3D classification process as a virus flexibility evaluation system. Cryo-EM images of virus particles resulting from different purification processes were compared at near-atomic resolution. The results indicated that molecular sieving purification will impact the stability of P-domains through increasing flexibility as determined by the evaluation system, which can be extended to assess the purification effect on the entire particle. This evaluation process can be further applied to all non-enveloped viruses.


Subject(s)
Caliciviridae Infections , Caliciviridae , Calicivirus, Feline , Cat Diseases , Viruses , Animals , Caliciviridae Infections/veterinary , Cats , Cryoelectron Microscopy/methods , Virion/chemistry
20.
Microbiol Spectr ; 10(1): e0185321, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35196791

ABSTRACT

We recently carried out a metagenomic study to determine the fecal virome of infants during their first year of life in a semirural community in Mexico. A total of 97 stool samples from nine children were collected starting 2 weeks after birth and monthly thereafter until 12 months of age. In this work, we describe the prevalence and incidence of caliciviruses in this birth cohort. We found that 54 (56%) and 24 (25%) of the samples were positive for norovirus and sapovirus sequence reads detected by next-generation sequencing, respectively. Potential infections were arbitrarily considered when at least 20% of the complete virus genome was determined. Considering only these samples, there were 3 cases per child/year for norovirus and 0.33 cases per child/year for sapovirus. All nine children had sequence reads related to norovirus in at least 2 and up to 10 samples, and 8 children excreted sapovirus sequence reads in 1 and up to 5 samples during the study. The virus in 35 samples could be genotyped. The results showed a high diversity of both norovirus (GI.3[P13], GI.5, GII.4, GII.4[P16], GII.7[P7], and GII.17[P17]) and sapovirus (GI.1, GI.7, and GII.4) in the community. Of interest, despite the frequent detection of caliciviruses in the stools, all children remained asymptomatic during the study. Our results clearly show that metagenomic studies in stools may reveal a detailed picture of the prevalence and diversity of gastrointestinal viruses in the human gut during the first year of life. IMPORTANCE Human caliciviruses are important etiological agents of acute gastroenteritis in children under 5 years of age. Several studies have characterized their association with childhood diarrhea and their presence in nondiarrheal stool samples. In this work, we used a next-generation sequencing approach to determine, in a longitudinal study, the fecal virome of infants during their first year of life. Using this method, we found that caliciviruses can be detected significantly more frequently than previously reported, providing a more detailed picture of the prevalence and genetic diversity of these viruses in the human gut during early life.


Subject(s)
Caliciviridae Infections/epidemiology , Caliciviridae/genetics , Caliciviridae/metabolism , Metagenomics , Caliciviridae/classification , Feces , Female , Gastroenteritis , Genotype , High-Throughput Nucleotide Sequencing , Humans , Incidence , Infant , Longitudinal Studies , Male , Metagenome , Molecular Epidemiology , Norovirus/genetics , Prevalence , Sapovirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...