Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.055
Filter
1.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673845

ABSTRACT

Ca2+ binding to the ubiquitous Ca2+ sensing protein calmodulin (CaM) activates the intermediate conductance Ca2+-activated SK4 channel. Potential hydrophilic pockets for CaM binding have been identified at the intracellular HA and HB helices in the C-terminal of SK4 from the three published cryo-EM structures of SK4. Single charge reversal substitutions at either site, significantly weakened the pull-down of SK4 by CaM wild-type (CaM), and decreased the TRAM-34 sensitive outward K+ current densities in native HEK293T cells when compared with SK4 WT measured under the same conditions. Only the doubly substituted SK4 R352D/R355D (HB helix) obliterated the CaM-mediated pull-down and thwarted outward K+ currents. However, overexpression of CaM E84K/E87K, which had been predicted to face the arginine doublet, restored the CaM-mediated pull-down of SK4 R352D/R355D and normalized its whole-cell current density. Virtual analysis of the putative salt bridges supports a unique role for the positively charged arginine doublet at the HB helix into anchoring the interaction with the negatively charged CaM glutamate 84 and 87 CaM. Our findings underscore the unique contribution of electrostatic interactions in carrying CaM binding onto SK4 and support the role of the C-terminal HB helix to the Ca2+-dependent gating process.


Subject(s)
Calcium , Calmodulin , Intermediate-Conductance Calcium-Activated Potassium Channels , Protein Binding , Static Electricity , Calmodulin/metabolism , Calmodulin/chemistry , Humans , Calcium/metabolism , HEK293 Cells , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Intermediate-Conductance Calcium-Activated Potassium Channels/chemistry , Ion Channel Gating , Models, Molecular , Binding Sites
2.
Protein Sci ; 33(5): e4982, 2024 May.
Article in English | MEDLINE | ID: mdl-38591710

ABSTRACT

KSR1, a key scaffold protein for the MAPK pathway, facilitates ERK activation upon growth factor stimulation. We recently demonstrated that KSR1 binds the Ca2+-binding protein calmodulin (CaM), thereby providing an intersection between KSR1-mediated and Ca2+ signaling. In this study, we set out to generate a KSR1 point mutant with reduced Ca2+/CaM binding in order to unravel the functional implications of their interaction. To do so, we solved the structural determinants of complex formation. Using purified fragments of KSR1, we showed that Ca2+/CaM binds to the CA3 domain of KSR1. We then used in silico molecular modeling to predict contact residues for binding. This approach identified two possible modes of interaction: (1) binding of extended Ca2+/CaM to a globular conformation of KSR1-CA3 via electrostatic interactions or (2) binding of collapsed Ca2+/CaM to α-helical KSR1-CA3 via hydrophobic interactions. Experimentally, site-directed mutagenesis of the predicted contact residues for the two binding models favored that where collapsed Ca2+/CaM binds to the α-helical conformation of KSR1-CA3. Importantly, replacing KSR1-Phe355 with Asp reduces Ca2+/CaM binding by 76%. The KSR1-F355D mutation also significantly impairs the ability of EGF to activate ERK, which reveals that Ca2+/CaM binding promotes KSR1-mediated MAPK signaling. This work, by uncovering structural insight into the binding of KSR1 to Ca2+/CaM, identifies a KSR1 single-point mutant as a bioreagent to selectively study the crosstalk between Ca2+ and KSR1-mediated signaling.


Subject(s)
Calcium Signaling , Calmodulin , Calmodulin/chemistry , Protein Binding , Mutation , Mutagenesis, Site-Directed , Calcium/metabolism
3.
J Biol Inorg Chem ; 29(2): 243-250, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38580821

ABSTRACT

Calmodulin (CaM) binds to a linker between the oxygenase and reductase domains of nitric oxide synthase (NOS) to regulate the functional conformational dynamics. Specific residues on the interdomain interface guide the domain-domain docking to facilitate the electron transfer in NOS. Notably, the docking interface between CaM and the heme-containing oxygenase domain of NOS is isoform specific, which is only beginning to be investigated. Toward advancing understanding of the distinct CaM-NOS docking interactions by infrared spectroscopy, we introduced a cyano-group as frequency-resolved vibrational probe into CaM individually and when associated with full-length and a bi-domain oxygenase/FMN construct of the inducible NOS isoform (iNOS). Site-specific, selective labeling with p-cyano-L-phenylalanine (CNF) by amber suppression of CaM bound to the iNOS has been accomplished by protein coexpression due to the instability of recombinant iNOS protein alone. We introduced CNF at residue 108, which is at the putative CaM-heme (NOS) docking interface. CNF was also introduced at residue 29, which is distant from the docking interface. FT IR data show that the 108 site is sensitive to CaM-NOS complex formation, while insensitivity to its association with the iNOS protein or peptide was observed for the 29 site. Moreover, narrowing of the IR bands at residue 108 suggests the C≡N probe experiences a more limited distribution of environments, indicating side chain restriction apparent for the complex with iNOS. This initial work sets the stage for residue-specific characterizations of structural dynamics of the docked states of NOS proteins.


Subject(s)
Calmodulin , Spectrophotometry, Infrared , Calmodulin/chemistry , Calmodulin/metabolism , Nitric Oxide Synthase Type II/chemistry , Nitric Oxide Synthase Type II/metabolism , Protein Binding , Molecular Docking Simulation
4.
Proteins ; 92(3): 384-394, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37915244

ABSTRACT

Calmodulin (CaM) is a key signaling protein that triggers several cellular and physiological processes inside the cell. Upon binding with calcium ion, CaM undergoes large scale conformational transition from a closed state to an open state that facilitates its interaction with various target protein and regulates their activity. This work explores the origin of the energetic and structural variation of the wild type and mutated CaM and explores the molecular origin for the structural differences between them. We first calculated the sequential calcium binding energy to CaM using the PDLD/S-LRA/ß approach. This study  shows a very good correlation with experimental calcium binding energies. Next we calculated the calcium binding energies to the wild type CaM and several mutated CaM systems which were reported experimentally. On the structural aspect, it has been reported experimentally that certain mutation (Q41L-K75I) in calcium bound CaM leads to complete conformational transition from an open to a closed state. By using equilibrium molecular dynamics simulation, free energy calculation and contact frequency map analysis, we have shown that the formation of a cluster of long-range hydrophobic contacts, initiated by the Q41L-K75I CaM variant is the driving force behind its closing motion. This study unravels the energetics and structural aspects behind calcium ion induced conformational changes in wild type CaM and its variant.


Subject(s)
Calcium , Calmodulin , Calcium/metabolism , Calmodulin/chemistry , Protein Binding , Protein Conformation , Molecular Dynamics Simulation
5.
Trends Biochem Sci ; 49(2): 169-182, 2024 02.
Article in English | MEDLINE | ID: mdl-38103971

ABSTRACT

The α-kinase eukaryotic elongation factor 2 kinase (eEF-2K) regulates translational elongation by phosphorylating its ribosome-associated substrate, the GTPase eEF-2. eEF-2K is activated by calmodulin (CaM) through a distinctive mechanism unlike that in other CaM-dependent kinases (CAMK). We describe recent structural insights into this unique activation process and examine the effects of specific regulatory signals on this mechanism. We also highlight key unanswered questions to guide future structure-function studies. These include structural mechanisms which enable eEF-2K to interact with upstream/downstream partners and facilitate its integration of diverse inputs, including Ca2+ transients, phosphorylation mediated by energy/nutrient-sensing pathways, pH changes, and metabolites. Answering these questions is key to establishing how eEF-2K harmonizes translation with cellular requirements within the boundaries of its molecular landscape.


Subject(s)
Elongation Factor 2 Kinase , Protein Biosynthesis , Elongation Factor 2 Kinase/chemistry , Elongation Factor 2 Kinase/genetics , Elongation Factor 2 Kinase/metabolism , Phosphorylation , Calmodulin/chemistry , Calmodulin/genetics , Calmodulin/metabolism
6.
Protein Sci ; 32(11): e4798, 2023 11.
Article in English | MEDLINE | ID: mdl-37784242

ABSTRACT

Using unnatural amino acid mutagenesis, we made a mutant of CaMKII that forms a covalent linkage to Calmodulin upon illumination by UV light. Like wild-type CaMKII, the L308BzF mutant stoichiometrically binds to Calmodulin, in a calcium-dependent manner. Using this construct, we demonstrate that Calmodulin binding to CaMKII, even under these stochiometric conditions, does not perturb the CaMKII oligomeric state. Furthermore, we were able to achieve activation of CaMKII L308BzF by UV-induced binding of Calmodulin, which, once established, is further insensitive to calcium depletion. In addition to the canonical auto-inhibitory role of the regulatory segment, inter-subunit crosslinking in the absence of CaM indicates that kinase domains and regulatory segments are substantially mobile in basal conditions. Characterization of CaMKIIL308BzF in vitro, and its expression in mammalian cells, suggests it could be a promising candidate for control of CaMKII activity in mammalian cells with light.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Calmodulin , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/chemistry , Calmodulin/chemistry , Amino Acids/metabolism , Calcium/metabolism , Protein Binding , Phosphorylation , Mammals
7.
J Nat Prod ; 86(11): 2562-2570, 2023 11 24.
Article in English | MEDLINE | ID: mdl-37906816

ABSTRACT

Four new natural chemical entities, including 2-hydroxy-α-truxillic acid (2), (3R,4S)-2,2-dimethyl-3-hydroxy-4-(1-angeloyloxy)-6-acetyl-7-methoxychromane (3), N-tricosanoyltyramine (4), and grandifolamide (5), were isolated along with 11 known compounds (1, 6-15) from the aerial parts of Ageratina grandifolia. The chemical structures were elucidated using chemical derivatization and HR-MS, NMR, and DFT-calculated chemical shifts, combined with DP4+ statistical analysis. It was found that 2 decomposed into its biogenetic precursor, o-coumaric acid, upon standing at room temperature for a few weeks. 3,5-Diprenyl-4-hydroxyacetophenone (8), O-methylencecalinol (10), encecalin (11), and encecalinol (12) bound to calmodulin (CaM) with higher affinity than chlorpromazine, a well-known CaM inhibitor. Molecular dynamics studies revealed that the complexes of these compounds with CaM remained stable during the simulation. Altogether these results revealed the therapeutic and research tool potential of compounds 8, 10, 11, and 12.


Subject(s)
Ageratina , Ageratina/chemistry , Calmodulin/chemistry , Calmodulin/metabolism , Calmodulin/pharmacology , Molecular Dynamics Simulation , Magnetic Resonance Spectroscopy , Molecular Structure
8.
J Biol Chem ; 299(6): 104813, 2023 06.
Article in English | MEDLINE | ID: mdl-37172726

ABSTRACT

The calmodulin-activated α-kinase, eukaryotic elongation factor 2 kinase (eEF-2K), serves as a master regulator of translational elongation by specifically phosphorylating and reducing the ribosome affinity of the guanosine triphosphatase, eukaryotic elongation factor 2 (eEF-2). Given its critical role in a fundamental cellular process, dysregulation of eEF-2K has been implicated in several human diseases, including those of the cardiovascular system, chronic neuropathies, and many cancers, making it a critical pharmacological target. In the absence of high-resolution structural information, high-throughput screening efforts have yielded small-molecule candidates that show promise as eEF-2K antagonists. Principal among these is the ATP-competitive pyrido-pyrimidinedione inhibitor, A-484954, which shows high specificity toward eEF-2K relative to a panel of "typical" protein kinases. A-484954 has been shown to have some degree of efficacy in animal models of several disease states. It has also been widely deployed as a reagent in eEF-2K-specific biochemical and cell-biological studies. However, given the absence of structural information, the precise mechanism of the A-484954-mediated inhibition of eEF-2K has remained obscure. Leveraging our identification of the calmodulin-activatable catalytic core of eEF-2K, and our recent determination of its long-elusive structure, here we present the structural basis for its specific inhibition by A-484954. This structure, which represents the first for an inhibitor-bound catalytic domain of a member of the α-kinase family, enables rationalization of the existing structure-activity relationship data for A-484954 variants and lays the groundwork for further optimization of this scaffold to attain enhanced specificity/potency against eEF-2K.


Subject(s)
Adenosine Triphosphate , Calmodulin , Elongation Factor 2 Kinase , Animals , Humans , Adenosine Triphosphate/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Calmodulin/chemistry , Calmodulin/metabolism , Elongation Factor 2 Kinase/antagonists & inhibitors , Elongation Factor 2 Kinase/chemistry , Elongation Factor 2 Kinase/genetics , Elongation Factor 2 Kinase/metabolism , Peptide Elongation Factor 2/chemistry , Peptide Elongation Factor 2/metabolism , Phosphorylation , Catalytic Domain , Structure-Activity Relationship , Peptide Chain Elongation, Translational
9.
Int J Biol Macromol ; 242(Pt 1): 124733, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37148925

ABSTRACT

Calcium signalling, including pulse, amplitude, and duration, is essential for plant development and response to various stimuli. However, the calcium signalling should be decoded and translated by calcium sensors. In plants, three classes of calcium-binding proteins have been identified as calcium sensors, including calcium-dependent protein kinase (CDPK), calcineurin B-like protein (CBL), and calmodulin (CaM). Calmodulin-like proteins (CMLs), which have several EF-hands, also serve as specific calcium sensors and can sense, bind, and interpret the calcium signal during the plant's growth and defense decision-making processes. In recent decades, the function of CMLs in plant development and response to various stimuli has been systematically reviewed, shedding light on the molecular mechanism of plant CML-mediated networks in calcium signal transduction. Here, by providing an overview of CML expression and biological function in plants, we demonstrate that growth-defense trade-offs occur during calcium sensing, an aspect that has not been well studied in recent years.


Subject(s)
Calcium , Calmodulin , Calmodulin/chemistry , Calcium/metabolism , Plants/metabolism , Calcium-Binding Proteins/metabolism , Calcium Signaling
10.
J Phys Chem B ; 127(13): 2900-2908, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36977372

ABSTRACT

We aim to elucidate the molecular mechanism of the reciprocal relation of calmodulin's (CaM) target binding and its affinity for calcium ions (Ca2+), which is central to decoding CaM-dependent Ca2+ signaling in a cell. We employed stopped-flow experiments and coarse-grained molecular simulations that learn the coordination chemistry of Ca2+ in CaM from first-principle calculations. The associative memories as part of the coarse-grained force fields built on known protein structures further influence CaM's selection of its polymorphic target peptides in the simulations. We modeled the peptides from the Ca2+/CaM-binding domain of Ca2+/CaM-dependent kinase II (CaMKII), CaMKIIp (293-310) and selected distinctive mutations at the N-terminus. Our stopped-flow experiments have shown that the CaM's affinity for Ca2+ in the bound complex of Ca2+/CaM/CaMKIIp decreased significantly when Ca2+/CaM bound to the mutant peptide (296-AAA-298) compared to that bound to the wild-type peptide (296-RRK-298). The coarse-grained molecular simulations revealed that the 296-AAA-298 mutant peptide destabilized the structures of Ca2+-binding loops at the C-domain of CaM (c-CaM) due to both loss of electrostatic interactions and differences in polymorphic structures. We have leveraged a powerful coarse-grained approach to advance a residue-level understanding of the reciprocal relation in CaM, that could not be possibly achieved by other computational approaches.


Subject(s)
Calcium , Calmodulin , Calmodulin/chemistry , Amino Acid Sequence , Calcium/chemistry , Protein Binding , Computer Simulation , Binding Sites
11.
J Biol Chem ; 299(4): 104596, 2023 04.
Article in English | MEDLINE | ID: mdl-36906144

ABSTRACT

Calmodulin (CaM) is a Ca2+ sensor protein found in all eukaryotic cells that regulates a large number of target proteins in a Ca2+ concentration-dependent manner. As a transient-type hub protein, it recognizes linear motifs of its targets, though for the Ca2+-dependent binding, no consensus sequence was identified. Its complex with melittin, a major component of bee venom, is often used as a model system of protein-protein complexes. Yet, the structural aspects of the binding are not well understood, as only diverse, low-resolution data are available concerning the association. We present the crystal structure of melittin in complex with Ca2+-saturated CaMs from two, evolutionarily distant species, Homo sapiens and Plasmodium falciparum, representing three binding modes of the peptide. Results-augmented by molecular dynamics simulations-indicate that multiple binding modes can exist for CaM-melittin complexes, as an intrinsic characteristic of the binding. While the helical structure of melittin remains, swapping of its salt bridges and partial unfolding of its C-terminal segment can occur. In contrast to the classical way of target recognition by CaM, we found that different sets of residues can anchor at the hydrophobic pockets of CaM, which were considered as main recognition sites. Finally, the nanomolar binding affinity of the CaM-melittin complex is created by an ensemble of arrangements of similar stability-tight binding is achieved not by optimized specific interactions but by simultaneously satisfying less optimal interaction patterns in co-existing different conformers.


Subject(s)
Calmodulin , Melitten , Models, Molecular , Amino Acid Sequence , Binding Sites , Calcium/metabolism , Calmodulin/chemistry , Calmodulin/metabolism , Melitten/chemistry , Melitten/metabolism , Protein Binding , Humans , Plasmodium falciparum , Protein Structure, Quaternary , Molecular Docking Simulation
12.
Protein Sci ; 32(4): e4606, 2023 04.
Article in English | MEDLINE | ID: mdl-36810829

ABSTRACT

Human pre-mRNA processing protein 40 homolog A (hPrp40A) is a splicing factor that interacts with the Huntington's disease protein huntingtin (Htt). Evidence has accumulated that both Htt and hPrp40A are modulated by the intracellular Ca2+ sensor calmodulin (CaM). Here we report characterization of the interaction of human CM with the third FF domain (FF3 ) of hPrp40A using calorimetric, fluorescence and structural approaches. Homology modeling, differential scanning calorimetry and small angle X-ray scattering (SAXS) data show FF3 forms a folded globular domain. CaM was found to bind FF3 in a Ca2+ -dependent manner with a 1:1 stoichiometry and a dissociation constant (Kd ) of 25 ± 3 µM at 25°C. NMR studies showed that both domains of CaM are engaged in binding and SAXS analysis of the FF3 -CaM complex revealed CaM occupies an extended configuration. Analysis of the FF3 sequence showed that the anchors for CaM binding must be buried in its hydrophobic core, suggesting that binding to CaM requires unfolding of FF3 . Trp anchors were proposed based on sequence analysis and confirmed by intrinsic Trp fluorescence of FF3 upon binding of CaM and substantial reductions in affinity for Trp-Ala FF3 mutants. The consensus model of the complex showed that binding to CaM binding occurs to an extended, non-globular state of the FF3 , consistent with coupling to transient unfolding of the domain. The implications of these results are discussed in the context of the complex interplay of Ca2+ signaling and Ca2+ sensor proteins in modulating Prp40A-Htt function.


Subject(s)
Calmodulin , Molecular Dynamics Simulation , Humans , Calmodulin/chemistry , Scattering, Small Angle , X-Ray Diffraction , Protein Binding , Calcium/metabolism , Binding Sites
13.
Biochim Biophys Acta Gen Subj ; 1867(4): 130313, 2023 04.
Article in English | MEDLINE | ID: mdl-36693454

ABSTRACT

Calmodulin (CaM) modulates the activity of several proteins that play a key role in excitation-contraction coupling (ECC). In cardiac muscle, the major binding partner of CaM is the type-2 ryanodine receptor (RyR2) and altered CaM binding contributes to defects in sarcoplasmic reticulum (SR) calcium (Ca2+) release. Many genetic studies have reported a series of CaM missense mutations in patients with a history of severe arrhythmogenic cardiac disorders. In the present study, we generated four missense CaM mutants (CaMN98I, CaMD132E, CaMD134H and CaMQ136P) and we used a CaM-RyR2 co-immunoprecipitation and a [3H]ryanodine binding assay to directly compare the relative RyR2-binding of wild type and mutant CaM proteins and to investigate the functional effects of these CaM mutations on RyR2 activity. Furthermore, isothermal titration calorimetry (ITC) experiments were performed to investigate and compare the interactions of the wild-type and mutant CaM proteins with various synthetic peptides located in the well-established RyR2 CaM-binding region (3584-3602aa), as well as another CaM-binding region (4255-4271aa) of human RyR2. Our data revealed that all four CaM mutants displayed dramatically reduced RyR2 interaction and defective modulation of [3H]ryanodine binding to RyR2, regardless of LQTS or CPVT association. Moreover, our isothermal titration calorimetry ITC data suggest that RyR2 3584-3602aa and 4255-4271aa regions interact with significant affinity with wild-type CaM, in the presence and absence of Ca2+, two regions that might contribute to a putative intra-subunit CaM-binding pocket. In contrast, screening the interaction of the four arrhythmogenic CaM mutants with two synthetic peptides that correspond to these RyR2 regions, revealed disparate binding properties and signifying differential mechanisms that contribute to reduced RyR2 association.


Subject(s)
Calmodulin , Ryanodine Receptor Calcium Release Channel , Humans , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Calcium Signaling , Calmodulin/chemistry , Mutation , Ryanodine , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism
14.
Cell Calcium ; 109: 102684, 2023 01.
Article in English | MEDLINE | ID: mdl-36495796

ABSTRACT

Recent structural studies have shown that the carboxyl-terminus of many TRP channels, including TRPC3, are folded into a horizontal rib helix that is connected to the vertical pole helix, which play roles in inter-structural interactions and multimerization. In a previous work we identified I807 located in the pole helix with a role in regulation of TRPC3 by STIM1 (Lee et al., 2014, Liu et al., 2022). To further determine the role of the pole helix in TRPC3 function, here we identified key hydrophobic residues in the pole helix that form tight tunnel-like structure and used mutations to probe their role in TRPC3 regulation by Ca2+ and Calmodulin. Our findings suggest that the hydrophobic starch formed by the I807-L818 residues has several roles, it modulates gating of TRPC3 by Ca2+, affects channel selectivity and the channel Ca2+ permeability. Mutations of I807, I811, L814 and L818 all attenuated the Ca2+-dependent inactivation (CDI) of TRPC3, with I807 having the most prominent effect. The extent of modulation of the CDI depended on the degree of hydrophobicity of I807. Moreover, the TRPC3(I807S) mutant showed altered channel monovalent ion selectivity and increased Ca2+ permeability, without affecting the channel permeability to Mg2+ and Ba2+ and without changing the pore diameter. The CDI of TRPC3 was reduced by an inactive calmodulin mutant and by a pharmacological inhibitor of calmodulin, which was eliminated by the I807S mutation. Notably, deletion of STIM1 caused similar alteration of TRPC3 properties. Taken together, these findings reveal a role of the pole helix in CDI, in addition to its potential role in channel multimerization that required gating of TRPC3 by STIM1. Since all TRPC and most TRP channels have pole helix structures, our findings raise the possibility that the pole helix may have similar roles in all the TRP family.


Subject(s)
Calcium Channels , Calcium , Calmodulin , TRPC Cation Channels , Calcium/metabolism , Calcium Channels/chemistry , Calcium Channels/genetics , Calmodulin/chemistry , Hydrophobic and Hydrophilic Interactions , Mutation , TRPC Cation Channels/genetics , TRPC Cation Channels/chemistry , Humans
15.
J Membr Biol ; 256(2): 159-174, 2023 04.
Article in English | MEDLINE | ID: mdl-36454258

ABSTRACT

The plasma membrane and autoinhibited Ca2+-ATPases contribute to the Ca2+ homeostasis in a wide variety of organisms. The enzymatic activity of these pumps is stimulated by calmodulin, which interacts with the target protein through the calmodulin-binding domain (CaMBD). Most information about this region is related to all calmodulin modulated proteins, which indicates general chemical properties and there is no established relation between Ca2+ pump sequences and taxonomic classification. Thus, the aim of this study was to perform an in silico analysis of the CaMBD from several Ca2+-ATPases, in order to determine their diversity and to detect specific patterns and amino acid selection in different species. Patterns related to potential and confirmed CaMBD were detected using sequences retrieved from the literature. The occurrence of these patterns was determined across 120 sequences from 17 taxonomical classes, which were analyzed by a phylogenetic tree to establish phylogenetic groups. Predicted physicochemical characteristics including hydropathy and net charge were calculated for each group of sequences. 22 Ca2+-ATPases sequences from animals, unicellular eukaryotes, and plants were retrieved from bioinformatic databases. These sequences allow us to establish the Patterns 1(GQILWVRGLTRLQTQ), 3(KNPSLEALQRW), and 4(SRWRRLQAEHVKK), which are present at the beginning of putative CaMBD of metazoan, parasites, and land plants. A pattern 2 (IRVVNAFR) was consistently found at the end of most analyzed sequences. The amino acid preference in the CaMBDs changed depending on the phylogenetic groups, with predominance of several aliphatic and charged residues, to confer amphiphilic properties. The results here displayed show a conserved mechanism to contribute to the Ca2+ homeostasis across evolution and may help to detect putative CaMBDs.


Subject(s)
Adenosine Triphosphatases , Calmodulin , Animals , Calmodulin/genetics , Calmodulin/chemistry , Calmodulin/metabolism , Adenosine Triphosphatases/metabolism , Phylogeny , Cell Membrane/metabolism , Amino Acids/metabolism
16.
J Agric Food Chem ; 70(51): 16156-16163, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36524829

ABSTRACT

Ryanodine receptor (RyR) is a giant calcium release channel located on the membrane of the endoplasmic reticulum (ER). Here, we report the regulation of RyRs from two major agricultural pests, diamondback moth and fall armyworm, by insect calmodulin (CaM). The recombinantly expressed full-length insect RyR could be pulled down by insect CaM in the presence of Ca2+, but the efficiency is lower compared to rabbit RyR1 and insect RyR with the CaM-binding domain (CaMBD) replaced by rabbit RyR1 sequence. Interestingly, the enhanced binding of CaM in the mutant insect RyR resulted in an increased sensitivity to the diamide insecticide chlorantraniliprole (CHL), suggesting that this CaM-CaMBD interface could be targeted by potential synergists acting as molecular glue. The thermodynamics of the binding between insect CaM and CaMBD was characterized by isothermal titration calorimetry, and the key residues responsible for the insect-specific regulation were identified through mutagenesis studies.


Subject(s)
Calmodulin , Moths , Animals , Rabbits , Calmodulin/genetics , Calmodulin/chemistry , Calmodulin/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Moths/genetics , Moths/metabolism , Calcium Signaling , Protein Binding , Calcium/metabolism
17.
Inorg Chem ; 61(50): 20480-20492, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36469451

ABSTRACT

As an alpha emitter and chemical toxicant, uranium toxicity in living organisms is driven by its molecular interactions. It is therefore essential to identify main determinants of uranium affinity for proteins. Others and we showed that introducing a phosphoryl group in the coordination sphere of uranyl confers a strong affinity of proteins for uranyl. In this work, using calmodulin site 1 as a template, we modulate the structural organization of a metal-binding loop comprising carboxylate and/or carbonyl ligands and reach affinities for uranyl comparable to that provided by introducing a strong phosphoryl ligand. Shortening the metal binding loop of calmodulin site 1 from 12 to 10 amino acids in CaMΔ increases the uranyl-binding affinity by about 2 orders of magnitude to log KpH7 = 9.55 ± 0.11 (KdpH7 = 280 ± 60 pM). Structural analysis by FTIR, XAS, and molecular dynamics simulations suggests an optimized coordination of the CaMΔ-uranyl complex involving bidentate and monodentate carboxylate groups in the uranyl equatorial plane. The main role of this coordination sphere in reaching subnanomolar dissociation constants for uranyl is supported by similar uranyl affinities obtained in a cyclic peptide reproducing CaMΔ binding loop. In addition, CaMΔ presents a uranyl/calcium selectivity of 107 that is even higher in the cyclic peptide.


Subject(s)
Calmodulin , Uranium , Calmodulin/chemistry , Calmodulin/metabolism , Uranium/chemistry , Calcium/metabolism , Ligands , Carboxylic Acids/chemistry , Peptides, Cyclic/chemistry
18.
Biomolecules ; 12(11)2022 11 17.
Article in English | MEDLINE | ID: mdl-36421716

ABSTRACT

Uranyl-protein interactions participate in uranyl trafficking or toxicity to cells. In addition to their qualitative identification, thermodynamic data are needed to predict predominant mechanisms that they mediate in vivo. We previously showed that uranyl can substitute calcium at the canonical EF-hand binding motif of calmodulin (CaM) site I. Here, we investigate thermodynamic properties of uranyl interaction with site II and with the whole CaM N-terminal domain by spectrofluorimetry and ITC. Site II has an affinity for uranyl about 10 times lower than site I. Uranyl binding at site I is exothermic with a large enthalpic contribution, while for site II, the enthalpic contribution to the Gibbs free energy of binding is about 10 times lower than the entropic term. For the N-terminal domain, macroscopic binding constants for uranyl are two to three orders of magnitude higher than for calcium. A positive cooperative process driven by entropy increases the second uranyl-binding event as compared with the first one, with ΔΔG = -2.0 ± 0.4 kJ mol-1, vs. ΔΔG = -6.1 ± 0.1 kJ mol-1 for calcium. Site I phosphorylation largely increases both site I and site II affinity for uranyl and uranyl-binding cooperativity. Combining site I phosphorylation and site II Thr7Trp mutation leads to picomolar dissociation constants Kd1 = 1.7 ± 0.3 pM and Kd2 = 196 ± 21 pM at pH 7. A structural model obtained by MD simulations suggests a structural role of site I phosphorylation in the affinity modulation.


Subject(s)
Calcium , Calmodulin , Calmodulin/chemistry , Phosphorylation , Calcium/metabolism , Binding Sites , Thermodynamics
19.
Molecules ; 27(21)2022 Oct 23.
Article in English | MEDLINE | ID: mdl-36363988

ABSTRACT

In the present study, we reported the interactions at the molecular level of a series of compounds called Bisindolylmaleimide, as potential inhibitors of the calmodulin protein. Bisindolylmaleimide compounds are drug prototypes derived from Staurosporine, an alkaloid with activity for cancer treatment. Bisindolylmaleimide compounds II, IV, VII, X, and XI, are proposed and reported as possible inhibitors of calmodulin protein for the first time. For the above, a biotechnological device was used (fluorescent biosensor hCaM M124C-mBBr) to directly determine binding parameters experimentally (Kd and stoichiometry) of these compounds, and molecular modeling tools (Docking, Molecular Dynamics, and Chemoinformatic Analysis) to carry out the theoretical studies and complement the experimental data. The results indicate that this compound binds to calmodulin with a Kd between 193-248 nM, an order of magnitude lower than most classic inhibitors. On the other hand, the theoretical studies support the experimental results, obtaining an acceptable correlation between the ΔGExperimental and ΔGTheoretical (r2 = 0.703) and providing us with complementary molecular details of the interaction between the calmodulin protein and the Bisindolylmaleimide series. Chemoinformatic analyzes bring certainty to Bisindolylmaleimide compounds to address clinical steps in drug development. Thus, these results make these compounds attractive to be considered as possible prototypes of new calmodulin protein inhibitors.


Subject(s)
Biofilms , Calmodulin , Calmodulin/chemistry , Ligands , Bioreactors , Molecular Dynamics Simulation , Protein Binding
20.
J Mol Biol ; 434(23): 167872, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36354074

ABSTRACT

EF-hand Ca2+-binding proteins (CBPs), such as S100 proteins (S100s) and calmodulin (CaM), are signaling proteins that undergo conformational changes upon increasing intracellular Ca2+. Upon binding Ca2+, S100 proteins and CaM interact with protein targets and induce important biological responses. The Ca2+-binding affinity of CaM and most S100s in the absence of target is weak (CaKD > 1 µM). However, upon effector protein binding, the Ca2+ affinity of these proteins increases via heterotropic allostery (CaKD < 1 µM). Because of the high number and micromolar concentrations of EF-hand CBPs in a cell, at any given time, allostery is required physiologically, allowing for (i) proper Ca2+ homeostasis and (ii) strict maintenance of Ca2+-signaling within a narrow dynamic range of free Ca2+ ion concentrations, [Ca2+]free. In this review, mechanisms of allostery are coalesced into an empirical "binding and functional folding (BFF)" physiological framework. At the molecular level, folding (F), binding and folding (BF), and BFF events include all atoms in the biomolecular complex under study. The BFF framework is introduced with two straightforward BFF types for proteins (type 1, concerted; type 2, stepwise) and considers how homologous and nonhomologous amino acid residues of CBPs and their effector protein(s) evolved to provide allosteric tightening of Ca2+ and simultaneously determine how specific and relatively promiscuous CBP-target complexes form as both are needed for proper cellular function.


Subject(s)
Calmodulin , EF Hand Motifs , S100 Proteins , Humans , Calmodulin/chemistry , S100 Proteins/chemistry , Protein Binding , Protein Folding , Allosteric Regulation , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...