Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 172
Filter
1.
Mol Biol Rep ; 51(1): 602, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698158

ABSTRACT

BACKGROUND: Low-temperature severely limits the growth and development of Camellia oleifera (C. oleifera). The mitogen-activated protein kinase (MAPK) cascade plays a key role in the response to cold stress. METHODS AND RESULTS: Our study aims to identify MAPK cascade genes in C. oleifera and reveal their roles in response to cold stress. In our study, we systematically identified and analyzed the MAPK cascade gene families of C. oleifera, including their physical and chemical properties, conserved motifs, and multiple sequence alignments. In addition, we characterized the interacting networks of MAPKK kinase (MAPKKK)-MAPK kinase (MAPKK)-MAPK in C. oleifera. The molecular mechanism of cold stress resistance of MAPK cascade genes in wild C. oleifera was analyzed by differential gene expression and real-time quantitative reverse transcription-PCR (qRT-PCR). CONCLUSION: In this study, 21 MAPKs, 4 MAPKKs and 55 MAPKKKs genes were identified in the leaf transcriptome of C. oleifera. According to the phylogenetic results, MAPKs were divided into 4 groups (A, B, C and D), MAPKKs were divided into 3 groups (A, B and D), and MAPKKKs were divided into 2 groups (MEKK and Raf). Motif analysis showed that the motifs in each subfamily were conserved, and most of the motifs in the same subfamily were basically the same. The protein interaction network based on Arabidopsis thaliana (A. thaliana) homologs revealed that MAPK, MAPKK, and MAPKKK genes were widely involved in C. oleifera growth and development and in responses to biotic and abiotic stresses. Gene expression analysis revealed that the CoMAPKKK5/CoMAPKKK43/CoMAPKKK49-CoMAPKK4-CoMAPK8 module may play a key role in the cold stress resistance of wild C. oleifera at a high-elevation site in Lu Mountain (LSG). This study can facilitate the mining and utilization of genetic resources of C. oleifera with low-temperature tolerance.


Subject(s)
Camellia , Cold-Shock Response , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Cold-Shock Response/genetics , Camellia/genetics , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/genetics , Cold Temperature , Transcriptome/genetics , Multigene Family , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Gene Expression Profiling/methods , Plant Leaves/genetics
2.
Int J Mol Sci ; 25(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612806

ABSTRACT

N6-methyladenosine (m6A) is essential for RNA metabolism in cells. The YTH domain, conserved in the kingdom of Eukaryotes, acts as an m6A reader that binds m6A-containing RNA. In plants, the YTH domain is involved in plant hormone signaling, stress response regulation, RNA stability, translation, and differentiation. However, little is known about the YTH genes in tea-oil tree, which can produce edible oil with high nutritional value. This study aims to identify and characterize the YTH domains within the tea-oil tree (Camellia chekiangoleosa Hu) genome to predict their potential role in development and stress regulation. In this study, 10 members of the YTH family containing the YTH domain named CchYTH1-10 were identified from C. chekiangoleosa. Through analysis of their physical and chemical properties and prediction of subcellular localization, it is known that most family members are located in the nucleus and may have liquid-liquid phase separation. Analysis of cis-acting elements in the CchYTH promoter region revealed that these genes could be closely related to abiotic stress and hormones. The results of expression profiling show that the CchYTH genes were differentially expressed in different tissues, and their expression levels change under drought stress. Overall, these findings could provide a foundation for future research regarding CchYTHs in C. chekiangoleosa and enrich the world in terms of epigenetic mark m6A in forest trees.


Subject(s)
Camellia , Camellia/genetics , Cell Differentiation , Droughts , RNA , Tea
3.
Mol Phylogenet Evol ; 196: 108089, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38679302

ABSTRACT

Molecular analyses of rapidly radiating groups often reveal incongruence between gene trees. This mainly results from incomplete lineage sorting, introgression, and gene tree estimation error, which complicate the estimation of phylogenetic relationships. In this study, we reconstruct the phylogeny of Theaceae using 348 nuclear loci from 68 individuals and two outgroup taxa. Sequence data were obtained by target enrichment using the recently released Angiosperm 353 universal probe set applied to herbarium specimens. The robustness of the topologies to variation in data quality was established under a range of different filtering schemes, using both coalescent and concatenation approaches. Our results confirmed most of the previously hypothesized relationships among tribes and genera, while clarifying additional interspecific relationships within the rapidly radiating genus Camellia. We recovered a remarkably high degree of gene tree heterogeneity indicative of rapid radiation in the group and observed cytonuclear conflicts, especially within Camellia. This was especially pronounced around short branches, which we primarily associate with gene tree estimation error. Our analysis also indicates that incomplete lineage sorting (ILS) contributed to gene-tree conflicts and accounted for approximately 14 % of the explained variation, whereas inferred introgression levels were low. Our study advances the understanding of the evolution of this important plant family and provides guidance on the application of target capture methods and the evaluation of key processes that influence phylogenetic discordances.


Subject(s)
Camellia , Phylogeny , Camellia/genetics , Camellia/classification , Cell Nucleus/genetics , Sequence Analysis, DNA , Bayes Theorem , DNA, Plant/genetics , Evolution, Molecular , Genetic Speciation , Models, Genetic
4.
PeerJ ; 12: e17275, 2024.
Article in English | MEDLINE | ID: mdl-38650646

ABSTRACT

Background: Sect. Chrysantha Chang, belonging to the Camellia genus, is one of the rare and precious ornamental plants distinguished by a distinctive array of yellow-toned petals. However, the variation mechanisms of petal color in Sect. Chrysantha Chang remains largely unclear. Methods: We conducted an integrated analysis of metabolome and transcriptome to reveal petal coloration mechanism in three species, which have different yellow tones petals, including C. chuongtsoensis (CZ, golden yellow), C. achrysantha (ZD, light yellow), and C. parvipetala (XB, milk white). Results: A total of 356 flavonoid metabolites were detected, and 295 differential metabolites were screened. The contents of 74 differential metabolites showed an upward trend and 19 metabolites showed a downward trend, among which 11 metabolites were annotated to the KEGG pathway database. We speculated that 10 metabolites were closely related to the deepening of the yellowness. Transcriptome analysis indicated that there were 2,948, 14,018 and 13,366 differentially expressed genes (DEGs) between CZ vs. ZD, CZ vs. XB and ZD vs. XB, respectively. Six key structural genes (CcCHI, CcFLS, CcDFR1, CcDFR2, CcDFR3, and CcCYP75B1) and five candidate transcription factors (MYB22, MYB28, MYB17, EREBP9, and EREBP13) were involved in the regulation of flavonoid metabolites. The findings indicate that flavonoid compounds influence the color intensity of yellow-toned petals in Sect. Chrysantha Chang. Our results provide a new perspective on the molecular mechanisms underlying flower color variation and present potential candidate genes for Camellia breeding.


Subject(s)
Camellia , Flowers , Gene Expression Regulation, Plant , Metabolome , Pigmentation , Transcriptome , Flowers/genetics , Flowers/metabolism , Metabolome/genetics , Pigmentation/genetics , Camellia/genetics , Camellia/metabolism , Flavonoids/metabolism , Gene Expression Profiling
5.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474274

ABSTRACT

Real-time quantitative PCR (qRT-PCR) is a pivotal technique for gene expression analysis. To ensure reliable and accurate results, the internal reference genes must exhibit stable expression across varied experimental conditions. Currently, no internal reference genes for Camellia impressinervis have been established. This study aimed to identify stable internal reference genes from eight candidates derived from different developmental stages of C. impressinervis flowers. We employed geNorm, NormFinder, and BestKeeper to evaluate the expression stability of these candidates, which was followed by a comprehensive stability analysis. The results indicated that CiTUB, a tubulin gene, exhibited the most stable expression among the eight reference gene candidates in the petals. Subsequently, CiTUB was utilized as an internal reference for the qRT-PCR analysis of six genes implicated in the petal pigment synthesis pathway of C. impressinervis. The qRT-PCR results were corroborated by transcriptome sequencing data, affirming the stability and suitability of CiTUB as a reference gene. This study marks the first identification of stable internal reference genes within the entire genome of C. impressinervis, establishing a foundation for future gene expression and functional studies. Identifying such stable reference genes is crucial for advancing molecular research on C. impressinervis.


Subject(s)
Camellia , Camellia/genetics , Gene Expression Profiling/methods , Transcriptome , Real-Time Polymerase Chain Reaction/methods , Flowers/genetics , Reference Standards
6.
BMC Biol ; 22(1): 50, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38414012

ABSTRACT

BACKGROUND: The formation and domestication of ornamental traits are influenced by various aspects, such as the recognition of esthetic values and cultural traditions. Camellia japonica is widely appreciated and domesticated around the world mainly due to its rich variations in ornamental traits. Ornamental camellias have a diverse range of resources, including different bud variations from Camellia spp. as well as inter- and intra- specific hybridization. Despite research on the formation of ornamental traits, a basic understanding of their genetics and genomics is still lacking. RESULTS: Here, we report the chromosomal-level reference genome of C. japonica through combining multiple DNA-sequencing technologies and obtain a high-density genetic linkage map of 4255 markers by sequencing 98 interspecific F1 hybrids between C. japonica and C. chekiangoleosa. We identify two whole-genome duplication events in C. japonica: one is a shared ancient γ event, and the other is revealed to be specific to genus Camellia. Based on the micro-collinearity analysis, we find large-scale segmental duplication of chromosome 8, resulting to two copies of the AGAMOUS loci, which may play a key role in the domestication of floral shapes. To explore the regulatory mechanisms of seasonal flowering, we have analyzed year-round gene expression patterns of C. japonica and C. azalea-a sister plant of continuous flowering that has been widely used for cross breeding. Through comparative analyses of gene co-expression networks and annual gene expression patterns, we show that annual expression rhythms of some important regulators of seasonal growth and development, including GIGANTEA and CONSTANS of the photoperiod pathway, have been disrupted in C. azalea. Furthermore, we reveal that the distinctive expression patterns of FLOWERING LOCUS T can be correlated with the seasonal activities of flowering and flushing. We demonstrate that the regulatory module involved in GIGANTEA, CONSTANS, and FLOWERING LOCUS T is central to achieve seasonality. CONCLUSIONS: Through the genomic and comparative genomics characterizations of ornamental Camellia spp., we propose that duplication of chromosomal segments as well as the establishment of gene expression patterns has played a key role in the formation of ornamental traits (e.g., flower shape, flowering time). This work provides a valuable genomic platform for understanding the molecular basis of ornamental traits.


Subject(s)
Camellia , Seasons , Camellia/genetics , Plant Breeding , Genomics , Flowers/genetics , Gene Expression , Gene Expression Regulation, Plant
7.
Sheng Wu Gong Cheng Xue Bao ; 40(1): 280-291, 2024 Jan 25.
Article in Chinese | MEDLINE | ID: mdl-38258647

ABSTRACT

In this study, the chloroplast genome of Camellia insularis Orel & Curry was sequenced using high-throughput sequencing technology. The results showed that the chloroplast genome of C. insularis was 156 882 bp in length with a typical tetrad structure, encoding 132 genes, including 88 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. Codon preference analysis revealed that the highest number of codons coded for leucine, with a high A/U preference in the third codon position. Additionally, 67 simple sequence repeats (SSR) loci were identified, with a preference for A and T bases. The inverted repeat (IR) boundary regions of the chloroplast genome of C. insularis were relatively conserved, except for a few variable regions. Phylogenetic analysis indicated that C. insularis was most closely related to C. fascicularis. Yellow camellia is a valuable material for genetic engineering breeding. This study provides fundamental genetic information on chloroplast engineering and offers valuable resources for conducting in-depth research on the evolution, species identification, and genomic breeding of yellow Camellia.


Subject(s)
Camellia , Genome, Chloroplast , Genome, Chloroplast/genetics , Phylogeny , Plant Breeding , Camellia/genetics , Chloroplasts/genetics
8.
BMC Genomics ; 25(1): 106, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267855

ABSTRACT

BACKGROUND: Camellia sasanqua Thunb. is an essential woody ornamental plant. Our continuous observation found that scale insects often infest C. sasanqua all year round in Kunming, China, resulting in poor growth. Scientifically preventing and controlling the infestation of scale insects should be paid attention to, and the mechanism of scale insects influencing C. sasanqua should be used as the research basis. RESULTS: The scale insect was identified as Pseudaulacaspis sasakawai Takagi. We analyzed transcriptome sequencing data from leaves of C. sasanqua infested with scale insects. A total of 1320 genes were either up-regulated or down-regulated and differed significantly in response to scale insects. GO (Gene Ontology) annotation analysis showed that the pathway of catalytic activity, binding, membrane part, cell part, and cellular process were affected. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis showed that most DEGs (differentially expressed genes) involved in plant hormone signal transduction, MAPK signaling pathway, flavonoid biosynthesis, tropane, piperidine and pyridine alkaloid biosynthesis. We also observed that the expression of galactose metabolism and carotenoid biosynthesis were significantly influenced. In addition, qRT-PCR (quantitative real-time PCR) validated the expression patterns of DEGs, which showed an excellent agreement with the transcriptome sequencing. CONCLUSIONS: Our transcriptomic analysis revealed that the C. sasanqua had an intricate resistance strategy to cope with scale insect attacks. After sensing the attack signal of scale insects, C. sasanqua activated the early signal MAPK (mitogen-activated protein kinase) to activate further transcription factors and Auxin, ET, JA, ABA, and other plant hormone signaling pathways, ultimately leading to the accumulation of lignin, scopolin, flavonoids and other secondary metabolites, produces direct and indirect resistance to scale insects. Our results suggested that it provided some potential resources of defense genes that would benefit the following resistance breeding in C. sasanqua to scale insects.


Subject(s)
Camellia , Plant Growth Regulators , Plant Breeding , Gene Expression Profiling , Transcriptome , Camellia/genetics
9.
BMC Genomics ; 25(1): 108, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267876

ABSTRACT

BACKGROUND: Sect. Tuberculata belongs to Camellia, and its members are characterized by a wrinkled pericarp and united filaments. All the plants in this group, which are endemic to China, are highly valuable for exploring the evolution of Camellia and have great potential for use as an oil source. However, due to the complex and diverse phenotypes of these species and the difficulty of investigating them in the field, their complex evolutionary history and interspecific definitions have remained largely unelucidated. RESULTS: Therefore, we newly sequenced and annotated 12 chloroplast (cp) genomes and retrieved the published cp genome of Camellia anlungensis Chang in sect. Tuberculata. In this study, comparative analysis of the cp genomes of the thirteen sect. Tuberculata species revealed a typical quadripartite structure characterized by a total sequence length ranging from 156,587 bp to 157,068 bp. The cp.genome arrangement is highly conserved and moderately differentiated. A total of 130 to 136 genes specific to the three types were identified by annotation, including protein-coding genes (coding sequences (CDSs)) (87-91), tRNA genes (35-37), and rRNA genes (8). The total observed frequency ranged from 23,045 (C. lipingensis) to 26,557 (C. anlungensis). IR region boundaries were analyzed to show that the ycf1 gene of C. anlungensis is located in the IRb region, while the remaining species are present only in the IRa region. Sequence variation in the SSC region is greater than that in the IR region, and most protein-coding genes have high codon preferences. Comparative analyses revealed six hotspot regions (tRNA-Thr(GGT)-psbD, psbE-petL, ycf15-tRNA-Leu(CAA), ndhF-rpl32, ndhD, and trnL(CAA)-ycf15) in the cp genomes that could serve as potential molecular markers. In addition, the results of phylogenetic tree construction based on the cp genomes showed that the thirteen sect. Tuberculata species formed a monophyletic group and were divided into two evolutionarily independent clades, confirming the independence of the section. CONCLUSIONS: In summary, we obtained the cp genomes of thirteen sect. Tuberculata plants and performed the first comparative analysis of this group. These results will help us better characterize the plants in this section, deepen our understanding of their genetic characteristics and phylogenetic relationships, and lay the theoretical foundation for their accurate classification, elucidation of their evolutionary changes, and rational development and utilization of this section in the future.


Subject(s)
Camellia , Genome, Chloroplast , Phylogeny , Camellia/genetics , Genome, Chloroplast/genetics , Genomics , RNA, Transfer
10.
BMC Plant Biol ; 24(1): 19, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38166635

ABSTRACT

BACKGROUND: Camellia olelfera petals are colorful, and have high ornamental value. However, the color formation mechanism of C. olelfera petals with different color is still unclear. In our study, WGCNA method was applied to integrate metabolites and transcriptomes to investigate the coloration mechanism of four C. olelfera cultivars with different petal colors. RESULTS: Here, a total of 372 flavonoids were identified (including 27 anthocyanins), and 13 anthocyanins were significantly differentially accumulated in C. olelfera petals. Among them, cyanidin-3-O-(6''-O-p-Coumaroyl) glucoside was the main color constituent in pink petals, cyanidin-3-O-glucoside, cyanidin-3-O-galactoside, cyanidin-3-O-rutinoside, and cyanidin-3-O-(6''-O-malonyl) glucoside were the main contributors to candy pink petals, and peonidin-3-O-glucoside was the important color substance responsible for the red petals of C. oleifera. Furthermore, six structural genes (Co4CL1, CoF3H1, CoF3'H, CoANS, CoUGT75C1-4, and CoUGT75C1-5), three MYBs (CoMYB1, CoMYB4, and CoMYB44-3), three bHLHs (CobHLH30, CobHLH 77, and CobHLH 79-1), and two WRKYs (CoWRKY7 and CoWRKY22) could be identified candidate genes related to anthocyanins biosynthesis and accumulation, and lead to the pink and red phenotypes. The regulatory network of differentially accumulated anthocyanins and the anthocyanins related genes in C. olelfera petals were established. CONCLUSIONS: These findings elucidate the molecular basis of the coloration mechanisms of pink and red color in C. olelfera petals, and provided valuable target genes for future improvement of petals color in C. olelfera.


Subject(s)
Anthocyanins , Camellia , Anthocyanins/metabolism , Camellia/genetics , Camellia/metabolism , Flowers/metabolism , Gene Expression Profiling , Transcriptome , Metabolome , Glucosides/metabolism , Color
11.
BMC Plant Biol ; 24(1): 18, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38166751

ABSTRACT

Camellia reticulata Lindl., also known as Yunnan Camellia, is an important ornamental plant in China, especially for its large and stunning flowers. A comprehensive understanding of their coloration mechanisms can aid breeders in developing new cultivars and improving their ornamental value; however, it is still unclear in Yunnan Camellia, especially in mixed-color flowers. In this study, we conducted metabolic and transcriptomic comparison analyses to investigate the coloration differences in three Yunnan Camellia cultivars: C. reticulata 'Shizitou' (SZT), C. reticulata 'Damanao' (MN), and C. reticulata 'Tongzimian' (TZM). Our results revealed that the initial flowering stage may play a critical role in the color change of MN. Metabolome analysis demonstrated that cyanidin was the primary anthocyanin in SZT and MN's red region, while its content was low in TZM and MN's white region. According to the transcriptome analysis, the anthocyanins biosynthesis pathway was reconstructed in Yunnan Camellia, and the low expression of CHS was detected in TZM and MN's white region, while ANR maintained a high expression level, which may lead to the low content of cyanidin in them. Transcription factors MYBs, bHLH, and bZIP may play a key role in regulating anthocyanin-structural genes. The co-expression analysis showed that the meristem tissue may play a crucial role in the formation of the mixed white-red color in MN. Our study enriched the genetic basis of flower coloration differences in Yunnan Camellia which will be a valuable genomic resource to understanding the biology of coloration formation and for breeding the Camellia cultivars.


Subject(s)
Camellia , Camellia/genetics , Camellia/metabolism , Anthocyanins/metabolism , China , Plant Breeding , Gene Expression Profiling , Flowers/metabolism , Gene Expression Regulation, Plant , Transcriptome , Pigmentation/genetics
12.
BMC Plant Biol ; 24(1): 5, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38163899

ABSTRACT

Yellow Camellia (Camellia sect. chrysantha) is a rare ornamental plant and an important germplasm resource globally. Camellia nitidissima thrives in normal acidic soils, while Camellia limonia can adapt to the calcareous soils found in karst areas. Our previous study on the karst adaptation of yellow camellias revealed that the expression levels of heat shock protein 20(HSP20) were higher in Camellia limonia than in Camellia nitidissima. However, the functions of the HSP20 gene of Camellia limonia remain unclear to data. In this study, the HSP20 genes of Camellia limonia (ClHSP20-OE lines) and Camellia. nitidissima (CnHSP20-OE lines) were cloned and overexpressed heterologously in Arabidopsis thaliana. Additionally, we overexpressed the HSP20 gene of Arabidopsis (AtHSP20-OE lines) was also overexpressed, and the T-DNA inserted mutants (athspmutant lines) were also used to determine the functions of HSP20 genes. Under high calcium stress, the chlorophyll, nitrogen, water content and humidity of leaves were increased in ClHSP20-OE lines, while those of other lines were declined. The size of the stomatal apertures, stomatal conductance, and the photosynthetic efficiency of ClHSP20-OE lines were higher than those of the other lines. However, the accumulation of H2O2 and O2- in the leaves of ClHSP20-OE lines was the lowest among all the lines. Energy spectrum scanning revealed that the percentage of calcium on the surfaces of the leaves of ClHSP20-OE lines was relatively low, while that of athspmutant lines was the highest. The ClHSP20 gene can also affected soil humidity and the contents of soil nitrogen, phosphorus, and potassium. Transcriptome analysis revealed that the expressions of FBA5 and AT5G10770 in ClHSP20-OE lines was significantly up-regulated compared to that of CnHSP20-OE lines. Compared to that of athspmutant lines, the expressions of DREB1A and AT3G30460 was significantly upregulated in AtHSP20-OE lines, and the expression of POL was down-regulated. Our findings suggest that the HSP20 gene plays a crucial role in maintained photosynthetic rate and normal metabolism by regulating the expression of key genes under high-calcium stress. This study elucidates the mechanisms underlying the karst adaptation in Camellia. limonia and provides novel insights for future research on karst plants.


Subject(s)
Arabidopsis , Camellia , Camellia/genetics , Arabidopsis/genetics , Calcium , Heat-Shock Proteins/genetics , Hydrogen Peroxide , Nitrogen , Soil , Gene Expression Regulation, Plant
13.
Nucleic Acids Res ; 52(D1): D1661-D1667, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37650644

ABSTRACT

The genus Camellia consists of about 200 species, which include many economically important species widely used for making tea, ornamental flowers and edible oil. Here, we present an updated tea plant information archive for Camellia genomics (TPIA2; http://tpia.teaplants.cn) by integrating more novel large-scale genomic, transcriptomic, metabolic and genetic variation datasets as well as a variety of useful tools. Specifically, TPIA2 hosts all currently available and well assembled 10 Camellia genomes and their comprehensive annotations from three major sections of Camellia. A collection of 15 million SNPs and 950 950 small indels from large-scale genome resequencing of 350 diverse tea accessions were newly incorporated, followed by the implementation of a novel 'Variation' module to facilitate data retrieval and analysis of the functionally annotated variome. Moreover, 116 Camellia transcriptomes were newly assembled and added, leading to a significant extension of expression profiles of Camellia genes to 13 developmental stages and eight abiotic/biotic treatments. An updated 'Expression' function has also been implemented to provide a comprehensive gene expression atlas for Camellia. Two novel analytic tools (e.g. Gene ID Convert and Population Genetic Analysis) were specifically designed to facilitate the data exchange and population genomics in Camellia. Collectively, TPIA2 provides diverse updated valuable genomic resources and powerful functions, and will continue to be an important gateway for functional genomics and population genetic studies in Camellia.


Subject(s)
Camellia , Databases, Genetic , Camellia/genetics , Camellia sinensis/genetics , Camellia sinensis/metabolism , Genome, Plant , Genomics , Tea/metabolism
14.
Chinese Journal of Biotechnology ; (12): 280-291, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1008095

ABSTRACT

In this study, the chloroplast genome of Camellia insularis Orel & Curry was sequenced using high-throughput sequencing technology. The results showed that the chloroplast genome of C. insularis was 156 882 bp in length with a typical tetrad structure, encoding 132 genes, including 88 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. Codon preference analysis revealed that the highest number of codons coded for leucine, with a high A/U preference in the third codon position. Additionally, 67 simple sequence repeats (SSR) loci were identified, with a preference for A and T bases. The inverted repeat (IR) boundary regions of the chloroplast genome of C. insularis were relatively conserved, except for a few variable regions. Phylogenetic analysis indicated that C. insularis was most closely related to C. fascicularis. Yellow camellia is a valuable material for genetic engineering breeding. This study provides fundamental genetic information on chloroplast engineering and offers valuable resources for conducting in-depth research on the evolution, species identification, and genomic breeding of yellow Camellia.


Subject(s)
Genome, Chloroplast/genetics , Phylogeny , Plant Breeding , Camellia/genetics , Chloroplasts/genetics
15.
Funct Integr Genomics ; 24(1): 2, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38066213

ABSTRACT

Camellia perpetua has the excellent characteristic of flowering multiple times throughout the year, which is of great importance to solve the problem of "short flowering period" and "low fresh flower yield" in the yellow Camellia industry at present. Observations of flowering phenology have demonstrated that most floral buds of C. perpetua were formed by the differentiation of axillary buds in the scales at the base of the terminal buds of annual branches. However, the molecular mechanism of flowering in C. perpetua is still unclear. In this study, we conducted a comparative transcriptomic study of the terminal buds and their basal flower buds in March (spring) and September (autumn) using RNA-seq and found that a total of 11,067 genes were significantly differentially expressed in these two periods. We identified 27 genes related to gibberellin acid (GA) synthesis, catabolism, and signal transduction during floral bud differentiation. However, treatment of the terminal buds and axillary buds of C. perpetua on annual branch with GA3 did not induce floral buds at the reproductive growth season (in August) but promoted shoot sprouting. Moreover, 203 flowering genes were identified from the C. perpetua transcriptome library through homology alignment, including flowering integrators LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO), as well as MADS-box, SQUAMOSA PROMOTER BINDING PROTEIN-box (SBP-box), and TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) genes, which were specifically upregulated in floral buds and were likely involved in flowering in C. perpetua. The floral inhibitor CperTFL1b was identified and cloned from C. perpetua, and its expression level was specifically regulated in terminal buds in autumn. Ectopic overexpression of CperTFL1b delayed flowering time and produced abnormal inflorescence and floral organs in Arabidopsis, suggesting that CperTFL1b inhibits flowering. In conclusion, this study deepens our understanding of the molecular mechanism of blooms throughout the year in C. perpetua and provides a helpful reference for cultivating new varieties of yellow Camellia with improved flowering traits.


Subject(s)
Camellia , Transcriptome , Camellia/genetics , Gene Expression Profiling , RNA-Seq , Flowers , Gene Expression Regulation, Plant
16.
Plant Physiol Biochem ; 205: 108157, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37939544

ABSTRACT

Tea is one of the most popular beverages, it has many health benefits and flavor properties due to the presence of numerous secondary metabolites. Camellia assamica is also a main source of tea, which is mainly planted in the regions of southwest China. In this study, a non-targeted and targeted metabolomics analysis and sensory evaluation on tea leaves with and without mistletoe (Viscum articulatum) was carried out using liquid chromatography-mass spectrometry. RNA-seq-based transcriptomic analysis was conducted in parallel on the same samples, subsequently gene expression and metabolic differentiation were also investigated. Tea leaves with mistletoe presented much lower contents of (-)-catechin, (-)-epicatechin, (-)-gallocatechin gallate and (-)-epicatechin gallate, but significantly higher levels of free amino acids including Arg, Asp, GABA and Gln than that without mistletoe. Transcriptomic analysis also confirmed the main differentially expressed genes (DEGs) containing phenylpropanoid and flavonoid biosynthesis were down-regulated, but genes of amino acid biosynthesis were up-regulated. qRT-PCR analysis further revealed that the relative expression of CsCHS, CsC4H, CsANS, CsLAR, and CsF3H was hindered, while CsglyA and CsilvE expression was increased.


Subject(s)
Camellia sinensis , Camellia , Catechin , Camellia/genetics , Camellia/metabolism , Camellia sinensis/genetics , Camellia sinensis/metabolism , Transcriptome , Plant Proteins/genetics , Plant Proteins/metabolism , Metabolomics , Catechin/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Tea , Flavonoids/metabolism
17.
Sci Rep ; 13(1): 17674, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37848466

ABSTRACT

Recently, many new cultivars have been taken abroad illegally, which is now considered an international issue. Botanical evidence found at a crime scene provides valuable information about the origin of the sample. However, botanical resources for forensic evidence remain underutilized because molecular markers, such as microsatellites, are not available without a limited set of species. Multiplexed intersimple sequence repeat (ISSR) genotyping by sequencing (MIG-seq) and its analysis method, identification of not applicable (iD-NA), have been used to determine several genome-wide genetic markers, making them applicable to all plant species, including those with limited available genetic information. Camellia cultivars are popular worldwide and are often planted in many gardens and bred to make new cultivars. In this study, we aimed to analyze Camellia cultivars/species through MIG-seq. MIG-seq could discriminate similar samples, such as bud mutants and closely related samples that could not be distinguished based on morphological features. This discrimination was consistent with that of a previous study that classified cultivars based on short tandem repeat (STR) markers, indicating that MIG-seq has the same or higher discrimination ability as STR markers. Furthermore, we observed unknown phylogenetic relationships. Because MIG-seq can be applied to unlimited species and low-quality DNA, it may be useful in various scientific fields.


Subject(s)
Camellia , Camellia/genetics , Phylogeny , Plant Breeding , Genome , Genetic Markers/genetics , Microsatellite Repeats/genetics
18.
Ann Bot ; 132(5): 1007-1020, 2023 11 30.
Article in English | MEDLINE | ID: mdl-37831901

ABSTRACT

BACKGROUND AND AIMS: The functional specialization of microRNA and its target genes is often an important factor in the establishment of spatiotemporal patterns of gene expression that are essential to plant development and growth. In different plant lineages, understanding the functional conservation and divergence of microRNAs remains to be explored. METHODS: To identify small regulatory RNAs underlying floral patterning, we performed a tissue-specific profiling of small RNAs in various floral organs from single and double flower varieties (flowers characterized by multiple layers of petals) in Camellia japonica. We identified cja-miR5179, which belongs to a deeply conserved microRNA family that is conserved between angiosperms and basal plants but frequently lost in eudicots. We characterized the molecular function of cja-miR5179 and its target - a B-function MADS-box gene - through gene expression analysis and transient expression assays. KEY RESULTS: We showed that cja-miR5179 is exclusively expressed in ovule tissues at the early stage of floral development. We found that cja-miR5179 targets the coding sequences of a DEFICIENS-like B-class gene (CjDEF) mRNA, which is located in the K motif of the MADS-box domain; and the target sites of miR5179/MADS-box were consistent in Camellia and orchids. Furthermore, through a petal transient-expression assay, we showed that the BASIC PENTACYSTEINE proteins bind to the GA-rich motifs in the cja-miR5179 promoter region and suppresses its expression. CONCLUSIONS: We propose that the regulation between miR5179 and a B-class MADS-box gene in C. japonica has a deep evolutionary origin before the separation of monocots and dicots. During floral development of C. japonica, cja-miR5179 is specifically expressed in the ovule, which may be required for the inhibition of CjDEF function. This work highlights the evolutionary conservation as well as functional divergence of small RNAs in floral development.


Subject(s)
Camellia , MicroRNAs , MicroRNAs/genetics , Ovule/genetics , Ovule/metabolism , Camellia/genetics , Camellia/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Evolution, Molecular , Flowers/physiology , Plants/metabolism , Gene Expression Regulation, Plant
19.
Planta ; 258(4): 81, 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37715842

ABSTRACT

MAIN CONCLUSION: The genus Camellia underwent extensive natural transformation by Agrobacterium. Over a period of 15 million years, at least 12 different inserts accumulated in 72 investigated Camellia species. Like a wide variety of other wild and cultivated plants, Camellia species carry cellular T-DNA sequences (cT-DNAs) in their nuclear genomes, resulting from natural Agrobacterium-mediated transformation. Short and long DNA sequencing reads of 435 accessions belonging to 72 Camellia species (representing 12 out of 14 sections) were investigated for the occurrence of cT-DNA insertions. In all, 12 different cT-DNAs were recovered, either completely or partially, called CaTA to CaTL. Divergence analysis of internal cT-DNA repeats revealed that the insertion events span a period from 0.075 to 15 Mio years ago, and yielded an average transformation frequency of one event per 1.25 Mio years. The two oldest inserts, CaTA and CaTD, have been modified by spontaneous deletions and inversions, and by insertion of various plant sequences. In those cases where enough accessions were available (C. japonica, C. oleifera, C. chekiangoleosa, C. sasanqua and C. pitardii), the younger cT-DNA inserts showed a patchy distribution among different accessions of each species, indicating that they are not genetically fixed. It could be shown that Camellia breeding has led to intersectional transfer of cT-DNAs. Altogether, the cT-DNAs cover 374 kb, and carry 47 open reading frames (ORFs). Two Camellia cT-DNA genes, CaTH-orf358 and CaTK-orf8, represent new types of T-DNA genes. With its large number of cT-DNA sequences, the genus Camellia constitutes an interesting model for the study of natural Agrobacterium transformants.


Subject(s)
Camellia , Plant Breeding , Agrobacterium/genetics , Camellia/genetics , Open Reading Frames , Sequence Analysis, DNA
20.
Planta ; 258(3): 65, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37566145

ABSTRACT

MAIN CONCLUSION: Ectopic expression of Camellia oleifera Abel. gibberellin 20-oxidase 1 caused a taller phenotype, promoted secondary cell wall deposition, leaf enlargement, and early flowering, and reduced chlorophyll and anthocyanin accumulation and seed enlargement phenotype in Arabidopsis. Plant height and secondary cell wall (SCW) deposition are important plant traits. Gibberellins (GAs) play important roles in regulating plant height and SCWs deposition. Gibberellin 20-oxidase (GA20ox) is an important enzyme involved in GA biosynthesis. In the present study, we identified a GA synthesis gene in Camellia oleifera. The total length of the CoGA20ox1 gene sequence was 1146 bp, encoding 381 amino acids. Transgenic plants with CoGA20ox1 had a taller phenotype; a seed enlargement phenotype; promoted SCWs deposition, leaf enlargement, and early flowering; and reduced chlorophyll and anthocyanin accumulation. Genetic analysis showed that the mutant ga20ox1-3 Arabidopsis partially rescued the phenotype of CoGA20ox1 overexpression plants. The results showed that CoGA20ox1 participates in the growth and development of C. oleifera. The morphological changes in CoGA20ox1 overexpressed plants provide a theoretical basis for further exploration of GA biosynthesis and analysis of the molecular mechanism in C. oleifera.


Subject(s)
Arabidopsis , Camellia , Arabidopsis/metabolism , Camellia/genetics , Camellia/metabolism , Anthocyanins/metabolism , Ectopic Gene Expression , Gibberellins/metabolism , Plants, Genetically Modified/genetics , Cell Wall/metabolism , Chlorophyll/metabolism , Gene Expression Regulation, Plant
SELECTION OF CITATIONS
SEARCH DETAIL
...