Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Molecules ; 26(23)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34885740

ABSTRACT

Both UV and blue light have been reported to regulate the biosynthesis of flavonoids in tea plants; however, the respective contributions of the corresponding regions of sunlight are unclear. Additionally, different tea cultivars may respond differently to altered light conditions. We investigated the responses of different cultivars ('Longjing 43', 'Zhongming 192', 'Wanghai 1', 'Jingning 1' and 'Zhonghuang 2') to the shade treatments (black and colored nets) regarding the biosynthesis of flavonoids. For all cultivars, flavonol glycosides showed higher sensitivity to light conditions compared with catechins. The levels of total flavonol glycosides in the young shoots of different tea cultivars decreased with the shade percentages of polyethylene nets increasing from 70% to 95%. Myricetin glycosides and quercetin glycosides were more sensitive to light conditions than kaempferol glycosides. The principal component analysis (PCA) result indicated that shade treatment greatly impacted the profiles of flavonoids in different tea samples based on the cultivar characteristics. UV is the crucial region of sunlight enhancing flavonol glycoside biosynthesis in tea shoots, which is also slight impacted by light quality according to the results of the weighted correlation network analysis (WGCNA). This study clarified the contributions of different wavelength regions of sunlight in a field experiment, providing a potential direction for slightly bitter and astringent tea cultivar breeding and instructive guidance for practical field production of premium teas based on light regimes.


Subject(s)
Camellia sinensis/growth & development , Flavonoids/biosynthesis , Glycosides/biosynthesis , Plant Shoots/growth & development , Camellia sinensis/radiation effects , Flavonoids/chemistry , Flavonoids/radiation effects , Glycosides/radiation effects , Kaempferols/chemistry , Plant Shoots/radiation effects , Principal Component Analysis , Sunlight , Ultraviolet Rays
2.
BMC Plant Biol ; 21(1): 478, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34670494

ABSTRACT

BACKGROUND: Catechins are crucial in determining the flavour and health benefits of tea, but it remains unclear that how the light intensity regulates catechins biosynthesis. Therefore, we cultivated tea plants in a phytotron to elucidate the response mechanism of catechins biosynthesis to light intensity changes. RESULTS: In the 250 µmol·m- 2·s- 1 treatment, the contents of epigallocatechin, epigallocatechin gallate and total catechins were increased by 98.94, 14.5 and 13.0% respectively, compared with those in the 550 µmol·m- 2·s- 1 treatment. Meanwhile, the photosynthetic capacity was enhanced in the 250 µmol·m- 2·s- 1 treatment, including the electron transport rate, net photosynthetic rate, transpiration rate and expression of related genes (such as CspsbA, CspsbB, CspsbC, CspsbD, CsPsbR and CsGLK1). In contrast, the extremely low or high light intensity decreased the catechins accumulation and photosynthetic capacity of the tea plants. The comprehensive analysis revealed that the response of catechins biosynthesis to the light intensity was mediated by the photosynthetic capacity of the tea plants. Appropriately high light upregulated the expression of genes related to photosynthetic capacity to improve the net photosynthetic rate (Pn), transpiration rate (Tr), and electron transfer rate (ETR), which enhanced the contents of substrates for non-esterified catechins biosynthesis (such as EGC). Meanwhile, these photosynthetic capacity-related genes and gallic acid (GA) biosynthesis-related genes (CsaroB, CsaroDE1, CsaroDE2 and CsaroDE3) co-regulated the response of GA accumulation to light intensity. Eventually, the epigallocatechin gallate content was enhanced by the increased contents of its precursors (EGC and GA) and the upregulation of the CsSCPL gene. CONCLUSIONS: In this study, the catechin content and photosynthetic capacity of tea plants increased under appropriately high light intensities (250 µmol·m- 2·s- 1 and 350 µmol·m- 2·s- 1) but decreased under extremely low or high light intensities (150 µmol·m- 2·s- 1 or 550 µmol·m- 2·s- 1). We found that the control of catechin accumulation by light intensity in tea plants is mediated by the plant photosynthetic capacity. The research provided useful information for improving catechins content and its light-intensity regulation mechanism in tea plant.


Subject(s)
Camellia sinensis/radiation effects , Catechin/analogs & derivatives , Catechin/metabolism , Gene Expression Regulation, Plant/radiation effects , Photosynthesis/radiation effects , Plant Proteins/metabolism , Camellia sinensis/genetics , Camellia sinensis/physiology , Catechin/radiation effects , Light , Plant Proteins/genetics , Seedlings/genetics , Seedlings/physiology , Seedlings/radiation effects , Up-Regulation
3.
Molecules ; 26(19)2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34641378

ABSTRACT

Black net shade treatment attenuates flavonoid biosynthesis in tea plants, while the effect of light quality is still unclear. We investigated the flavonoid and transcriptome profiles of tea leaves under different light conditions, using black nets with different shade percentages, blue, yellow and red nets to alter the light intensity and light spectral composition in the fields. Flavonol glycosides are more sensitive to light intensity than catechins, with a reduction percentage of total flavonol glycosides up to 79.6% compared with 38.7% of total catechins under shade treatment. A total of 29,292 unigenes were identified, and the KEGG result indicated that flavonoid biosynthesis was regulated by both light intensity and light spectral composition while phytohormone signal transduction was modulated under blue net shade treatment. PAL, CHS, and F3H were transcriptionally downregulated with light intensity. Co-expression analysis showed the expressions of key transcription factors MYB12, MYB86, C1, MYB4, KTN80.4, and light signal perception and signaling genes (UVR8, HY5) had correlations with the contents of certain flavonoids (p < 0.05). The level of abscisic acid in tea leaves was elevated under shade treatment, with a negative correlation with TFG content (p < 0.05). This work provides a potential route of changing light intensity and spectral composition in the field to alter the compositions of flavor substances in tea leaves and regulate plant growth, which is instructive to the production of summer/autumn tea and matcha.


Subject(s)
Camellia sinensis/genetics , Flavonoids/biosynthesis , Gene Regulatory Networks , Light , Plant Leaves/genetics , Plant Proteins/genetics , Transcriptome/radiation effects , Camellia sinensis/chemistry , Camellia sinensis/growth & development , Camellia sinensis/radiation effects , Gene Expression Regulation, Plant , Plant Leaves/chemistry , Plant Leaves/growth & development , Plant Leaves/radiation effects , Plant Proteins/metabolism
4.
Mol Genet Genomics ; 296(1): 165-177, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33112986

ABSTRACT

Shading can effectively reduce photoinhibition and improve the quality of tea. Lignin is one of the most important secondary metabolites that play vital functions in plant growth and development. However, little is known about the relationship between shading and xylogenesis in tea plant. To investigate the effects of shading on lignin accumulation in tea plants, 'Longjing 43' was treated with no shading (S0), 40% (S1) and 80% (S2) shading treatments, respectively. The leaf area and lignin content of tea plant leaves decreased under shading treatments (especially S2). The anatomical characteristics showed that lignin is mainly distributed in the xylem of tea leaves. Promoter analysis indicated that the genes involved in lignin pathway contain several light recognition elements. The transcript abundances of 12 lignin-associated genes were altered under shading treatments. Correlation analysis indicated that most genes showed strong positive correlation with lignin content, and CsPAL, Cs4CL, CsF5H, and CsLAC exhibited significant positively correlation under 40% and 80% shading treatments. The results showed that shading may have an important effect on lignin accumulation in tea leaves. This work will potentially helpful to understand the regulation mechanism of lignin pathway under shading treatment, and provide reference for reducing lignin content and improving tea quality through shading treatment in field operation.


Subject(s)
Camellia sinensis/radiation effects , Gene Expression Regulation, Plant/radiation effects , Light Signal Transduction/radiation effects , Lignin/biosynthesis , Plant Leaves/radiation effects , Plant Proteins/genetics , Camellia sinensis/enzymology , Camellia sinensis/genetics , Lignin/antagonists & inhibitors , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic , Secondary Metabolism/radiation effects , Sunlight , Sunscreening Agents , Xylem/enzymology , Xylem/genetics , Xylem/radiation effects
5.
J Agric Food Chem ; 68(45): 12749-12767, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33112139

ABSTRACT

The unique aroma and flavor of oolong tea develop during the withering stage of postharvest processing. We explored the roles of miRNA-related regulatory networks during tea withering and their effects on oolong tea quality. We conducted transcriptome and miRNA analyses to identify differentially expressed (DE) miRNAs and target genes among fresh leaves, indoor-withered leaves, and solar-withered leaves. We identified 32 DE-miRNAs and 41 target genes involved in phytohormone signal transduction and ABC transporters. Further analyses indicated that these two pathways regulated the accumulation of flavor-related metabolites during tea withering. Flavonoid accumulation was correlated with the miR167d_1-ARF-GH3, miR845-ABCC1-3/ABCC2, miR166d-5p_1-ABCC1-2, and miR319c_3-PIF-ARF modules. Terpenoid content was correlated with the miR171b-3p_2-DELLA-MYC2 and miR166d-5p_1-ABCG2-MYC2 modules. These modules inhibited flavonoid biosynthesis and enhanced terpenoid biosynthesis in solar-withered leaves. Low auxin and gibberellic acid contents and circRNA-related regulatory networks also regulated the accumulation of flavor compounds in solar-withered leaves. Our analyses reveal how solar withering produces high-quality oolong tea.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Camellia sinensis/genetics , MicroRNAs/genetics , Phytochemicals/chemistry , Plant Growth Regulators/metabolism , Plant Proteins/genetics , ATP-Binding Cassette Transporters/genetics , Camellia sinensis/chemistry , Camellia sinensis/metabolism , Camellia sinensis/radiation effects , Food Handling , Gene Expression Regulation, Plant/radiation effects , Light , MicroRNAs/metabolism , Odorants/analysis , Phytochemicals/metabolism , Plant Leaves/chemistry , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plant Proteins/metabolism , Transcriptome
6.
Plant Physiol Biochem ; 155: 549-559, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32846390

ABSTRACT

Flavonoid biosynthesis is a crucial secondary metabolism process for tea plants. Its metabolism is affected by multiple environmental factors, especially light. Shade, also known as dark stress (DS), is generally used during cultivation to improve tea quality by influencing the flavonoid accumulation. To explore the molecular mechanisms of flavonoid biosynthesis under DS, metabolomics and transcriptomics (METR) analyses were performed in tea callus via culturing the plants in vitro using 12 h light/12 h dark cycles (A) or completely dark (B) conditions for 30 days. In total, 161 differential metabolic products (DMPs) and 3592 differential expression genes (DEGs) were identified. The major flavonoids including epicatechin gallate, catechin gallate, gallocatechin-catechin, cyanidin 3-O-glucoside and the total of catechin, anthocyanin and proanthocyanidin contents were all remarkably down-regulated in tea callus under DS. Meanwhile, 9 genes including CsPAL, Cs4CL, CsCHS, CsFLS, CsDFR, CsANS, CsLAR, CsANR, and CsUFGT determined to be responsible for the flavonoid biosynthesis. In addition, 2 transcription factors (TFs) including CsMYBT1 and CsMYBT2 verified to play key role in regulation the flavonoid biosynthesis. These results helped us further understand the underlying molecular mechanism of flavonoid metabolism in tea plants.


Subject(s)
Camellia sinensis , Darkness , Flavonoids/biosynthesis , Camellia sinensis/metabolism , Camellia sinensis/radiation effects , Catechin , Gene Expression Regulation, Plant , Metabolome , Plant Proteins/metabolism , Transcriptome
7.
J Agric Food Chem ; 68(8): 2528-2538, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32011878

ABSTRACT

Albino became a novel kind of tea cultivar in China recently. In this study, transcriptome and whole-genome bisulfite sequencing (WGBS) were employed to investigate the shading effects on leaf color conversion and biosynthesis of three major secondary metabolites in the albino tea cultivar "Yujinxiang". The increased leaf chlorophyll level was likely the major cause for shaded leaf greening from young pale or yellow leaf. In comparison with the control, the total catechin level of the shading group was significantly decreased and the abundance of caffeine was markedly increased, while the theanine level was nearly not influenced. Meanwhile, differentially expressed genes (DEGs) enriched in some biological processes and pathways were identified by transcriptome analysis. Furthermore, whole-genome DNA methylation analysis revealed that the global genomic DNA methylation patterns of the shading period were remarkably altered in comparison with the control. In addition, differentially methylated regions (DMRs) and the DMR-related DEG analysis indicated that the DMR-related DEGs were the critical participants in biosynthesis of the major secondary metabolites. These findings suggest that DNA methylation is probably responsible for changes in the contents of the major secondary metabolites in Yujinxiang.


Subject(s)
Camellia sinensis/metabolism , Plant Leaves/radiation effects , Secondary Metabolism/radiation effects , Camellia sinensis/genetics , Camellia sinensis/radiation effects , Chlorophyll/biosynthesis , Color , Gene Expression Regulation, Plant , Light , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
8.
Molecules ; 25(2)2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31952238

ABSTRACT

'Ziyan' is a novel anthocyanin-rich tea cultivar with dark purple young shoots. However, how its anthocyanin accumulation is affected by environmental factors, such as ultraviolet (UV), remains unclear. In this study, we observed that UV light treatments stimulated anthocyanin accumulation in 'Ziyan' leaves, and we further analyzed the underlying mechanisms at gene expression and enzyme activity levels. In addition, the catechins and chlorophyll contents of young shoots under different light treatments were also changed. The results showed that the contents of total anthocyanins and three major anthocyanin molecules, i.e., delphinidin, cyanidin, and pelargonidin, were significantly higher in leaves under UV-A, UV-B, and UV-AB treatments than those under white light treatment alone. However, the total catechins and chlorophyll contents in these purple tea plant leaves displayed the opposite trends. The anthocyanin content was the highest under UV-A treatment, which was higher by about 66% than control. Compared with the white light treatment alone, the enzyme activities of chalcone synthase (CHS), flavonoid 3',5'-hydroxylase (F3'5'H), and anthocyanidin synthase (ANS) under UV treatments increased significantly, whereas the leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR) activities reduced. There was no significant difference in dihydroflavonol 4-reductase (DFR) activity under all treatments. Comparative transcriptome analyses unveiled that there were 565 differentially expressed genes (DEGs) of 29,648 genes in three pair-wise comparisons (white light versus UV-A, W vs. UV-A; white light versus UV-B, W vs. UV-A; white light versus UV-AB, W vs. UV-AB). The structural genes in anthocyanin pathway such as flavanone 3-hydroxylase (F3H), F3'5'H, DFR, and ANS, and regulatory gene TT8 were upregulated under UV-A treatment; F3'5'H, DFR, ANS, and UFGT and regulatory genes EGL1 and TT2 were upregulated under UV-AB treatment. However, most structural genes involved in phenylpropanoid and flavonoid pathways were downregulated under UV-B treatment compared with control. The expression of LAR and ANR were repressed in all UV treatments. Our results indicated that UV-A and UV-B radiations can induce anthocyanin accumulation in tea plant 'Ziyan' by upregulating the structural and regulatory genes involved in anthocyanin biosynthesis. In addition, UV radiation repressed the expression levels of LAR, ANR, and FLS, resulting in reduced ANR activity and a metabolic flux shift toward anthocyanin biosynthesis.


Subject(s)
Anthocyanins/metabolism , Camellia sinensis/metabolism , Gene Expression Regulation, Plant/radiation effects , Pigments, Biological/metabolism , Plant Proteins/metabolism , Transcriptome/radiation effects , Ultraviolet Rays , Camellia sinensis/genetics , Camellia sinensis/radiation effects , Color , NADH, NADPH Oxidoreductases/genetics , NADH, NADPH Oxidoreductases/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Photosynthesis , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plant Proteins/genetics
9.
J Agric Food Chem ; 68(4): 961-974, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-31910000

ABSTRACT

Manipulating light transmission by shading is the most effective method of improving the nutritional value and sensory qualities of tea. In this study, the metabolic profiling of two tea cultivars ("Yulv" and "Maotouzhong") in response to different shading periods during the summer season was performed using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS) and gas chromatography-mass spectrometry (GC-MS). The metabolic pathway analyses showed that the glycolytic pathway and the tricarboxylic acid cycle (TCA cycle) in the leaves and shoots of "Maotouzhong" were significantly inhibited by long-term shading. The nitrogen metabolism in the leaves of the two cultivars was promoted by short-term shading, while it was inhibited by long-term shading. However, the nitrogen metabolism in the shoots of the two cultivars was always inhibited by shading, whether for short or long-term periods. In addition, the intensity of the flavonoid metabolism in both tea cultivars could be reduced by shading. These results revealed that shading could regulate the carbon and nitrogen metabolism and short-term shading could improve the tea quality to some extent.


Subject(s)
Camellia sinensis/metabolism , Camellia sinensis/radiation effects , Carbon/metabolism , Nitrogen/metabolism , Plant Leaves/chemistry , Camellia sinensis/chemistry , Chromatography, Liquid , Crop Production , Flavonoids/chemistry , Flavonoids/metabolism , Gas Chromatography-Mass Spectrometry , Light , Metabolomics , Plant Leaves/metabolism , Plant Leaves/radiation effects , Tandem Mass Spectrometry
10.
Planta ; 251(1): 35, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31853722

ABSTRACT

MAIN CONCLUSION: Comparative proteomics and metabolomics study of juvenile green, light purple and dark purple leaf to identify key proteins and metabolites that putatively govern color transition in Camellia sinensis. Color transition from juvenile green to dark purple leaf in Camellia sinensis is a complex process and thought to be regulated by an intricate balance of genes, proteins and metabolites expression. A molecular-level understanding of proteins and metabolites expression is needed to define metabolic process underpinning color transition in C. sinensis. Here, purple leaf growth of C. sinensis cultivar was divided into three developmental stages viz. juvenile green (JG), light purple (LP) and dark purple (DP) leaf. Scanning electron microscope (SEM) analysis revealed a clear morphological variation such as cell size, shape and texture as tea leaf undergoing color transition. Proteomic and metabolomic analyses displayed the temporal changes in proteins and metabolites that occur in color transition process. In total, 211 differentially expressed proteins (DEPs) were identified presumably involved in secondary metabolic processes particularly, flavonoids/anthocyanin biosynthesis, phytohormone regulation, carbon and nitrogen assimilation and photosynthesis, among others. Subcellular localization of three candidate proteins was further evaluated by their transient expression in planta. Interactome study revealed that proteins involved in primary metabolism, precursor metabolite, photosynthesis, phytohormones, transcription factor and anthocyanin biosynthesis were found to be interact directly or indirectly and thus, regulate color transition from JG to DP leaf. The present study not only corroborated earlier findings but also identified novel proteins and metabolites that putatively govern color transition in C. sinensis. These findings provide a platform for future studies that may be utilized for metabolic engineering/molecular breeding in an effort to develop more desirable traits.


Subject(s)
Camellia sinensis/metabolism , Camellia sinensis/radiation effects , Light , Plant Leaves/metabolism , Plant Leaves/radiation effects , Anthocyanins/biosynthesis , Camellia sinensis/genetics , Carbon/metabolism , Cell Size , Chlorophyll/analysis , Color , Flavonoids/biosynthesis , Gene Expression Regulation, Plant , Metabolic Networks and Pathways , Metabolomics , Nitrogen/metabolism , Photosynthesis , Plant Growth Regulators , Plant Leaves/cytology , Plant Leaves/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Interaction Maps , Proteomics , Secondary Metabolism , Tea , Transcription Factors , Transcriptome
11.
J Agric Food Chem ; 67(8): 2408-2419, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30721059

ABSTRACT

The effects of blue (BL) and green light (GL) treatment during the dark period were examined in Camellia sinensis as a first step to understanding the spectral effects of artificial BL and GL on plant secondary metabolism and light signaling interactions. BL could induce the expression of CRY2/3, SPAs, HY5, and R2R3-MYBs to promote the accumulation of anthocyanins and catechins in tea plants. GL, on the other hand, could stimulate the accumulation of several functional substances (e.g., procyanidin B2/B3 and l-ascorbate) and temper these BL responses via down-regulation of  CRY2/3 and PHOT2. Furthermore, the molecular events that triggered by BL and GL signals were partly overlapped with abiotic/biotic stress responses. We indicate the possibility of a targeted use of BL and GL to regulate the amount of functional metabolites to enhance tea quality and taste, and to potentially trigger defense mechanisms of tea plants.


Subject(s)
Camellia sinensis/growth & development , Camellia sinensis/radiation effects , Flavonoids/biosynthesis , Plant Leaves/chemistry , Camellia sinensis/chemistry , Camellia sinensis/metabolism , Gene Expression Regulation, Plant/radiation effects , Light , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plant Proteins/genetics , Plant Proteins/metabolism , Tea/chemistry , Transcriptome/radiation effects
12.
J Sci Food Agric ; 99(7): 3459-3466, 2019 May.
Article in English | MEDLINE | ID: mdl-30620392

ABSTRACT

BACKGROUND: As one of China's important economic crops, tea is economically damaged due to its large yield. The overall goal of this study is to develop an effective, simple, apt computer vision algorithm to detect tea disease area using infrared thermal image processing techniques and to estimate tea disease. RESULTS: This paper finds that the area of tea disease has certain regularity with its infrared image gray distribution. Using this rule, we extracted two characteristic parameters into a classifier to help achieve rapid tea disease detection, which increases the accuracy of detection a small amount. The tea disease detection algorithm consisted of the following steps: classify canopy infrared thermal image; convert red, green and blue image to hue, saturation and value; thresholding; color identification; noise filtering; binarization; closed operation; and counting. A correlation coefficient R2 of 0.97 was obtained between the tea disease detection algorithm and counting performed through human observation, which is 2% higher than traditional algorithms without classifiers. CONCLUSIONS: This article provides guidance for monitoring the condition of tea gardens with airborne thermal imaging cameras. © 2019 Society of Chemical Industry.


Subject(s)
Camellia sinensis/radiation effects , Image Processing, Computer-Assisted/methods , Plant Diseases/statistics & numerical data , Algorithms , Camellia sinensis/growth & development , Color , Humans , Infrared Rays , Plant Leaves/growth & development , Plant Leaves/radiation effects
13.
BMC Plant Biol ; 18(1): 233, 2018 Oct 12.
Article in English | MEDLINE | ID: mdl-30314466

ABSTRACT

BACKGROUND: Tea is the most popular nonalcoholic beverage worldwide for its pleasant characteristics and healthful properties. Catechins, theanine and caffeine are the major natural products in tea buds and leaves that determine tea qualities such as infusion colors, tastes and fragrances, as well as their health benefits. Shading is a traditional and effective practice to modify natural product accumulation and to enhance the tea quality in tea plantation. However, the mechanism underlying the shading effects is not fully understood. This study aims to explore the regulation of flavonoid biosynthesis in Camellia sinensis under shading by using both metabolomic and transcriptional analyses. RESULTS: While shading enhanced chlorophyll accumulation, major catechins, including C, EC, GC and EGC, decreased significantly in tea buds throughout the whole shading period. The reduction of catechins and flavonols were consistent with the simultaneous down-regulation of biosynthetic genes and TFs associated with flavonoid biosynthesis. Of 16 genes involved in the flavonoid biosynthetic pathway, F3'H and FLS significantly decreased throughout shading while the others (PAL, CHSs, DFR, ANS, ANR and LAR, etc.) temporally decreased in early or late shading stages. Gene co-expression cluster analysis suggested that a number of photoreceptors and potential genes involved in UV-B signal transductions (UVR8_L, HY5, COP1 and RUP1/2) showed decreasing expression patterns consistent with structural genes (F3'H, FLS, ANS, ANR, LAR, DFR and CHSs) and potential TFs (MYB4, MYB12, MYB14 and MYB111) involved in flavonoid biosynthesis, when compared with genes in the UV-A/blue and red/far-red light signal transductions. The KEGG enrichment and matrix correlation analyses also attributed the regulation of catechin biosynthesis to the UVR8-mediated signal transduction pathway. Further UV-B treatment in the controlled environment confirmed UV-B induction on flavonols and EGCG accumulation in tea leaves. CONCLUSIONS: We proposed that catechin biosynthesis in C. sinensis leaves is predominantly regulated by UV through the UVR8-mediated signal transduction pathway to MYB12/MYB4 downstream effectors, to modulate flavonoid accumulation. Our study provides new insights into our understanding of regulatory mechanisms for shading-enhanced tea quality.


Subject(s)
Camellia sinensis/physiology , Flavonoids/metabolism , Metabolome , Plant Proteins/metabolism , Signal Transduction , Transcriptome , Biosynthetic Pathways , Caffeine/metabolism , Camellia sinensis/genetics , Camellia sinensis/radiation effects , Catechin/metabolism , Chlorophyll/metabolism , Gene Expression Profiling , Glutamates/metabolism , Light , Metabolomics , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/radiation effects , Plant Proteins/genetics , Tea
14.
Sci Rep ; 7(1): 1237, 2017 04 27.
Article in English | MEDLINE | ID: mdl-28450727

ABSTRACT

Small heat shock proteins (sHSPs) play important roles in responses to heat stress. However, the functions of sHSPs in tea plants (Camellia sinensis) remain uncharacterized. A novel sHSP gene, designated CsHSP17.2, was isolated from tea plants. Subcellular localization analyses indicated that the CsHSP17.2 protein was present in the cytosol and the nucleus. CsHSP17.2 expression was significantly up-regulated by heat stress but was unaffected by low temperature. The CsHSP17.2 transcript levels increased following salt and polyethylene glycol 6000 treatments but decreased in the presence of abscisic acid. The molecular chaperone activity of CsHSP17.2 was demonstrated in vitro. Transgenic Escherichia coli and Pichia pastoris expressing CsHSP17.2 exhibited enhanced thermotolerance. The transgenic Arabidopsis thaliana exhibited higher maximum photochemical efficiencies, greater soluble protein proline contents, higher germination rates and higher hypocotyl elongation length than the wild-type controls. The expression levels of several HS-responsive genes increased in transgenic A. thaliana plants. Additionally, the CsHSP17.2 promoter is highly responsive to high-temperature stress in A. thaliana. Our results suggest that CsHSP17.2 may act as a molecular chaperone to mediate heat tolerance by maintaining maximum photochemical efficiency and protein synthesis, enhancing the scavenging of reactive oxygen species and inducing the expression of HS-responsive genes.


Subject(s)
Camellia sinensis/physiology , Camellia sinensis/radiation effects , Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Stress, Physiological , Thermotolerance , Arabidopsis/genetics , Arabidopsis/physiology , Escherichia coli/genetics , Escherichia coli/radiation effects , Gene Expression Profiling , Heat-Shock Proteins/genetics , Molecular Chaperones/genetics , Organisms, Genetically Modified , Pichia/genetics , Pichia/radiation effects
15.
BMC Plant Biol ; 17(1): 64, 2017 03 20.
Article in English | MEDLINE | ID: mdl-28320327

ABSTRACT

BACKGROUND: As the predominant secondary metabolic pathway in tea plants, flavonoid biosynthesis increases with increasing temperature and illumination. However, the concentration of most flavonoids decreases greatly in light-sensitive tea leaves when they are exposed to light, which further improves tea quality. To reveal the metabolism and potential functions of flavonoids in tea leaves, a natural light-sensitive tea mutant (Huangjinya) cultivated under different light conditions was subjected to metabolomics analysis. RESULTS: The results showed that chlorotic tea leaves accumulated large amounts of flavonoids with ortho-dihydroxylated B-rings (e.g., catechin gallate, quercetin and its glycosides etc.), whereas total flavonoids (e.g., myricetrin glycoside, epigallocatechin gallate etc.) were considerably reduced, suggesting that the flavonoid components generated from different metabolic branches played different roles in tea leaves. Furthermore, the intracellular localization of flavonoids and the expression pattern of genes involved in secondary metabolic pathways indicate a potential photoprotective function of dihydroxylated flavonoids in light-sensitive tea leaves. CONCLUSIONS: Our results suggest that reactive oxygen species (ROS) scavenging and the antioxidation effects of flavonoids help chlorotic tea plants survive under high light stress, providing new evidence to clarify the functional roles of flavonoids, which accumulate to high levels in tea plants. Moreover, flavonoids with ortho-dihydroxylated B-rings played a greater role in photo-protection to improve the acclimatization of tea plants.


Subject(s)
Camellia sinensis/metabolism , Flavonoids/metabolism , Light , Metabolomics , Plant Leaves/metabolism , Camellia sinensis/radiation effects , Catechin/analogs & derivatives , Catechin/metabolism , Glycosides/metabolism , Metabolic Networks and Pathways/radiation effects , Reactive Oxygen Species/metabolism
16.
J Biosci Bioeng ; 123(2): 197-202, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27568369

ABSTRACT

For an experimental model to elucidate the relationship between light quality during plant culture conditions and plant quality of crops or vegetables, we cultured tea plants (Camellia sinensis) and analyzed their leaves as tea material. First, metabolic profiling of teas from a tea contest in Japan was performed with gas chromatography/mass spectrometry (GC/MS), and then a ranking predictive model was made which predicted tea rankings from their metabolite profile. Additionally, the importance of some compounds (glutamine, glutamic acid, oxalic acid, epigallocatechin, phosphoric acid, and inositol) was elucidated for measurement of the quality of tea leaf. Subsequently, tea plants were cultured in artificial conditions to control these compounds. From the result of prediction by the ranking predictive model, the tea sample supplemented with ultraviolet-A (315-399 nm) showed the highest ranking. The improvement in quality was thought to come from the high amino-acid and decreased epigallocatechin content in tea leaves. The current study shows the use and value of metabolic profiling in the field of high-quality crops and vegetables production that has been conventionally evaluated by human sensory analysis. Metabolic profiling enables us to form hypothesis to understand and develop high quality plant cultured under artificial condition.


Subject(s)
Camellia sinensis/chemistry , Environment, Controlled , Gas Chromatography-Mass Spectrometry , Light , Plant Leaves/chemistry , Tea , Amino Acids/metabolism , Camellia sinensis/growth & development , Camellia sinensis/metabolism , Camellia sinensis/radiation effects , Catechin/analogs & derivatives , Catechin/analysis , Catechin/metabolism , Gas Chromatography-Mass Spectrometry/methods , Humans , Japan , Metabolomics , Plant Extracts/chemistry , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/radiation effects , Quality Control
17.
Sci Rep ; 5: 16858, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26567525

ABSTRACT

Regulation of plant growth and development by light wavelength has been extensively studied. Less attention has been paid to effect of light wavelength on formation of plant metabolites. The objective of this study was to investigate whether formation of volatiles in preharvest and postharvest tea (Camellia sinensis) leaves can be regulated by light wavelength. In the present study, in contrast to the natural light or dark treatment, blue light (470 nm) and red light (660 nm) significantly increased most endogenous volatiles including volatile fatty acid derivatives (VFADs), volatile phenylpropanoids/benzenoids (VPBs), and volatile terpenes (VTs) in the preharvest tea leaves. Furthermore, blue and red lights significantly up-regulated the expression levels of 9/13-lipoxygenases involved in VFADs formation, phenylalanine ammonialyase involved in VPBs formation, and terpene synthases involved in VTs formation. Single light wavelength had less remarkable influences on formation of volatiles in the postharvest leaves compared with the preharvest leaves. These results suggest that blue and red lights can be promising technology for remodeling the aroma of preharvest tea leaves. Furthermore, our study provided evidence that light wavelength can activate the expression of key genes involved in formation of plant volatiles for the first time.


Subject(s)
Camellia sinensis/chemistry , Light , Volatile Organic Compounds/analysis , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Camellia sinensis/growth & development , Camellia sinensis/radiation effects , Electrophoresis, Capillary , Gas Chromatography-Mass Spectrometry , Linoleic Acid/analysis , Lipoxygenases/genetics , Lipoxygenases/metabolism , Phenylalanine/analysis , Phenylalanine/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plant Proteins/genetics , Plant Proteins/metabolism , Spectrometry, Mass, Electrospray Ionization , Terpenes/metabolism , Volatile Organic Compounds/metabolism , alpha-Linolenic Acid/analysis
18.
J Agric Food Chem ; 62(46): 11109-15, 2014 Nov 19.
Article in English | MEDLINE | ID: mdl-25365495

ABSTRACT

Hypochlorous acid (HOCl) is an important reactive oxygen species (ROS) and non-radical and is taking part in physiological processes concerned with the defense of the organism, but there has been limited information regarding its scavenging by polyphenols. This study was designed to examine the HOCl scavenging activity of several polyphenols and microwave-assisted extracts of herbal teas. HOCl scavenging activity has usually been determined spectrophotometrically by a KI/taurine assay at 350 nm. Because some polyphenols (i.e., apigenin and chrysin) have a strong ultraviolet (UV) absorption in this range, their HOCl scavenging activity was alternatively determined without interference using resorcinol (1,3-dihydroxybenzene) as a fluorogenic probe. In the present assay, HOCl induces the chlorination of resorcinol into its non-fluorescent products. Polyphenols as HOCl scavengers inhibit the chlorination of the probe by this species. Thus, the 25% inhibitive concentration (IC25) value of polyphenols was determined using the relative increase in fluorescence intensity of the resorcinol probe. The HOCl scavenging activities of the test compounds decreased in the order: epigallocatechin gallate > quercetin > gallic acid > rutin > catechin > kaempferol. The present study revealed that epigallocatechin gallate (IC25 = 0.1 µM) was the most effective scavenging agent. In addition to polyphenols, four herbal teas were evaluated for their HOCl activity using the resorcinol method. The proposed spectrofluorometric method was practical, rapid, and less open to interferences by absorbing substances in the range of 200-420 nm. The results hint to the possibility of polyphenols having beneficial effects in diseases, such as atherosclerosis, in which HOCl plays a pathogenic role.


Subject(s)
Achillea/chemistry , Beverages/analysis , Camellia sinensis/chemistry , Free Radical Scavengers/isolation & purification , Hypochlorous Acid/analysis , Plant Extracts/isolation & purification , Polyphenols/isolation & purification , Salvia officinalis/chemistry , Achillea/radiation effects , Camellia sinensis/radiation effects , Free Radical Scavengers/analysis , Microwaves , Plant Extracts/analysis , Polyphenols/analysis , Reactive Oxygen Species/analysis , Salvia officinalis/radiation effects
19.
J Biosci Bioeng ; 118(6): 710-5, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24915994

ABSTRACT

The current study focused on the tea plant (Camellia sinensis) as a target for artificial cultivation because of the variation in its components in response to light conditions. We analyzed its sensory quality by multi-marker profiling using multicomponent data based on metabolomics to optimize the conditions of light and the environment during cultivation. From the analysis of high-quality tea samples ranked in a tea contest, the ranking predictive model was created by the partial least squares (PLS) regression analysis to examine the correlation between the amino-acid content (X variables) and the ranking in the tea contest (Y variables). The predictive model revealed that glutamine, arginine, and theanine were the predominant amino acids present in high-ranking teas. Based on this result, we established a cover-culture condition (i.e., a low-light intensity condition) during the later stage of the culture process and obtained artificially cultured tea samples, which were predicted to be high-quality teas. The aim of the current study was to optimize the light conditions for the cultivation of tea plants by performing data analysis of their sensory qualities through multi-marker profiling in order to facilitate the development of high-quality teas by plant factories.


Subject(s)
Amino Acids/analysis , Camellia sinensis/chemistry , Camellia sinensis/growth & development , Tea/chemistry , Tea/standards , Amino Acids/metabolism , Camellia sinensis/metabolism , Camellia sinensis/radiation effects , Glutamates/analysis , Least-Squares Analysis , Metabolomics , Plant Extracts/analysis , Plant Extracts/chemistry , Plant Leaves/chemistry , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/radiation effects
20.
Food Chem ; 135(4): 2268-76, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-22980801

ABSTRACT

Aroma is an essential factor affecting the quality of tea (Camellia sinensis) products. While changes of volatile compounds during tea manufacturing have been intensively studied, the effect of environmental factors on volatile contents of fresh tea leaves has received less attention. We found that C. sinensis var. Yabukita kept in darkness by shading treatment for 3 weeks developed etiolated leaves with significantly increased levels of volatiles, especially volatile phenylpropanoids/benzenoids (VPBs). Upstream metabolites of VPBs, in particular shikimic acid, prephenic acid, and phenylpyruvic acid, showed lower levels in dark treated than in control leaves, whereas the contents of most amino acids including l-phenylalanine, a key precursor of VPBs, were significantly enhanced. In addition, analysis by ultra performance liquid chromatography-time of flight mass spectrometry, capillary electrophoresis-time of flight mass spectrometry, high performance liquid chromatography, and gas chromatography-mass spectrometry indicated that volatile and non-volatile metabolite profiles differed significantly between dark treated and untreated leaves.


Subject(s)
Camellia sinensis/radiation effects , Metabolome , Plant Leaves/chemistry , Volatile Organic Compounds/chemistry , Amino Acids/analysis , Amino Acids/metabolism , Camellia sinensis/chemistry , Camellia sinensis/metabolism , Darkness , Odorants/analysis , Plant Leaves/metabolism , Plant Leaves/radiation effects , Volatile Organic Compounds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...